待定固有频率法与非线性动力系统的复杂动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性动力系统蕴含着复杂的动力学行为,如分岔、混沌等。正是这些复杂动力学行为的存在并伴以新现象的不断涌现,成为促进近代非线性动力学理论研究方法的产生、发展并日臻完善的源动力。待定固有频率法是在规范形理论全面发展以及强非线性振动问题深入研究的基础上提出的,最初的研究内容主要涉及非线性动力系统由Hopf分岔而产生的稳态响应,本文是这一方法在非线性动力系统复杂问题领域的进一步推广,针对:○1强非线性振动系统的静态与动态动力学行为研究;○2提高Melnikov方法分析非线性动力系统同(异)宿分岔问题的求解精度;○3三维系统的Shilnikov同宿轨道与倍周期分岔等问题,结合非线性动力学理论,开展研究工作,提出有效的解决方法。
     本文的研究内容与主要研究成果体现在如下几个方面
     (1).提出了以待定固有频率为基础,计算强非线性系统同(异)分岔问题的解析判据,克服了弱非线性系统分析方法在该领域的应用局限性。通过在复数形式规范形求解过程中引入待定固有频率,获得了强非线性系统周期响应,以该待定频率趋于零和相平面上极限环趋于鞍点为途径,确定了发生分岔的临界参数值。
     (2).研究了一类强非线性转摆系统的高余维静态分岔问题。提出利用约束分岔理论和奇异性理论,充分考察强非线性振动系统的余维3静态分岔特性,全面建立了系统转迁集与分岔图之间的对应关系,并且讨论了平凡解的稳定性问题。
     (3).研究了参数激励和强迫激励联合作用下强非线性系统的动态分岔问题。当控制方程中的激励形式比较复杂时,得到的平均系统会展现出丰富的动力学行为,形成的动态分岔问题无法用Melnikov方法对原有系统直接积分获取。因此,本文首先利用待定固有频率法得到了强非线性振动系统的平均方程,再通过Melnikov函数,考察系统中由于复杂激励形式存在而出现的鞍点状态与同(异)宿分岔。
     (4).提出了利用待定固有频率法提高Melnikov函数分析非线性动力系统混沌门槛值计算精度的简单方法。对于复杂激励形式作用下的三阱势能系统,通过引入由待定固有频率形成的时间尺度变换,从同宿及异宿分岔两个角度获得了系统的混沌临界值,使得非线性扰动量对于基频的影响有效地体现于Melnikov函数表达式中,进而结合相应的分析过程提高了所得结果的计算精度。
     (5).研究了三维PID控制系统与简化WINDMI模型Shilnikov意义下的Samle马蹄混沌。在常规的同宿轨道存在性证明基础上,进一步得到了系统Shilnikov类型同宿轨道的解析表达式。文中所述的动力系统均具有比较复杂的非线性项形式,利用Shilnikov定理对系统的混沌行为进行了充分的研究,将计算Lorenz类系统不变流形的相关方法拓展至建立三维系统鞍-焦平衡点处Shilnikov类型同宿轨道。此外,针对三维系统的周期倍化分岔问题,尝试采用待定固有频率法,提高倍周期分岔值的计算精度,有效地避免了由于寻求高阶近似解而引发的计算复杂性问题。
General nonlinear dynamical systems contain the complicated dynamical phenomenon mostly, such as bifurcation and chaos. That makes it the fundamental motility for the emerging, developing, and gradually optimizing of the modern nonlinear dynamical research because the complicated problems exciting and unfamiliar phenomenon rush out in the physical world all the time. The emergency of the undetermined fundamental frequency just accorded with the circumstance, where the research of the normal form theory has come to its mature stage and the strongly nonlinear problems bring us the enough temptation to practise our research. In this article, the initial targets of the method is extend, from pursuiting the steady asymptotic responses to the broader areas. It includes the static and dynamic bifurcation behaviors of the strongly nonlinear oscillation system (SNOS), improving the computational precision of the Homoclinic and Heteroclinic bifurcation in terms of the Melnikov method, and Shilnikov sense Homoclinic orbit and flip (periodic doubling) bifurcation in the three dimensional nonlinear system. So we pay our attention to these fields with the application of modern nonlinear dynamical methodology, to find the appropriate resolvents.
     The research contents and obtained major results of this dissertation are as follows.
     (1). The analytical criterions of the Homoclinic (Heteroclinic) bifurcation of the strongly nonlinear oscillator are presented. We consider the approximate periodic solution of the system subject to the quintic nonlinearity by introducing the undetermined fundamental frequency into the complex normal form operation. For the occurrence of Homoclinicity (Heteroclinicity), the bifurcation criterions are accomplished. They depend on the contact of the limit cycle with the saddle equilibrium and the vanishing undermined fundamental frequency. So the available ranges of the former criterions are extended from the weakly nonlinear oscillation system to the SNOS.
     (2). The static bifurcation of the parametrically excited rotating arm with strongly nonlinearity is researched. For the discussion of static bifurcation, the bifurcation problem is described as the 3-codimension unfolding with Z2 symmetry on the basis of the singularity theory. The transition set and bifurcation diagrams, for the singularity are wholly presented with constraints, while the stability of the zero solution is researched by the eigenvalues in various parameter regions.
     (3). The dynamic bifurcations of strongly nonlinear oscillator induced by parametric and external excitation are researched. It is known that the parametric and external excitation may induce additional saddle states, and result chaos in the phase space, which can not be detected by applying the Melnikov method directly. A feasible solution for this problem is the combination of the averaged equations and Melnikov method. So we consider the averaged equations of the system subject to Duffing-Van der Pol type strong nonlinearity by introducing the undetermined fundamental frequency. Then the saddle states and bifurcation values of Homoclinic structure formation are detected through the combined application of the new averaged equations with Melnikov method.
     (4). The simple approach to improve the computational precision of Melnikov method is presented by using the undetermined fundamental frequency and normal form method. We construct the improved Melnikov expression for a triple well nonlinear oscillator subject to principal parametric resonance and external excitation. For the occurrence of chaos, the threshold value approximations of chaotic motion are obtained in the Homoclinicity and Heteroclinicity points of view. It depends on the introduction of undetermined fundamental frequency, and adopting new time transformation for fulfilling the Homoclinic and Heteroclinic orbits, so that the effect of disturbing parameter can be easily detected and embodied in the Melnikov operation.
     (5). The strategy of predicting the Shilnikov sense horseshoe and Homoclinic orbit of the new PID controller and reduced solar wind driven magnetosphere ionosphere model (WINDMI) is presented by using the Shilnikov theorem and the invariant manifolds of the saddle-focus equilibrium point. It provides the quadratic and cubic nonlinearity to the controller systems, and extends the canonical forms of continuous time quadratic autonomous chaotic systems in three dimensions. The Shilnikov type Homoclinic orbit is concerned not only about its existence but also the analytical series expression, which distinguishes the present work from the general description of the Shilnikov sense chaos. For the discussion of flip bifurcation in the three dimensional system, the introduction of the undetermined fundemental frequency improve the computational precise of normal form method and efficiently avoid the difficulties of seeking higher-order asymptotic solutions during the course of operation.
引文
[1]陈树辉,强非线性振动系统的定量分析方法,北京:科学出版社, 2007
    [2]王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科学技术出版社, 2002
    [3]Jones S E, Remarks on the perturbation process for certain conservative systems, International Journal of Non-Linear Mechanics, 1978, 13(2): 125-128
    [4]Burton T D, A perturbation method for certain nonlinear oscillators, International Journal of Non-Linear Mechanics, 1984, 19(5): 397-407
    [5]Cheung Y K, Chen S H, Lau S L, A modified Lindstedt-Poincarémethod for certain strongly non-linear oscillators, International Journal of Non-Linear Mechanics, 1991, 26(3/4): 367-378
    [6]Franciosi C, Tomasiello S, The use of Mathematica for the Analysis of Strongly Nonlinear Two-Degree-of-Freedom systems by means of the modified Lindstedt-Poincarémethod, Journal of Sound and Vibration, 1998, 211(2): 145-156
    [7]Qaisi M I, Abu-Hilal M, Analysis of a forced Strongly Non-linear Two-Degree-Of-Freedom System by means of the Power-Series method, Journal of Sound and Vibration, 2001, 241(4): 635-642
    [8]唐驾时,求强非线性系统次谐共振解的MLP方法,应用力学和数学, 2000, 21(10): 1039-1045
    [9]Chen S H, Cheung Y K, An elliptic perturbation method for certain strongly non-linear oscillators, Journal of Sound and Vibration, 1996, 192(2): 453-464
    [10]Chen S H, Cheung Y K, An elliptic Lindstedt-Poincarémethod for certain strongly nonlinear oscillators, Nonlinear Dynamics, 1997, 12(3): 199-213
    [11]杨晓丽,徐伟,孙中奎,窄带随机噪声作用下强非线性Duffing-Rayleigh振子的响应,动力学与控制学报, 2004, 2 (4): 19-23
    [12]徐兆,非线性力学中一种新的渐近方法,力学学报, 1985, 17 (3): 266-271
    [13]Xu Z, Cheung Y K, Averaging method using generalized harmonic functions for strongly non-linear oscillators, Journal of Sound and Vibration, 1994, 174(4): 563-576
    [14]Xu Z, Non-linear time transformation method for strongly nonlinear oscillationsystems, Acta Mechanica Sinica (English Edition), 1992, 8(3): 279-288
    [15]Xu Z, Cheung Y K, A nonlinear scales method for strongly nonlinear oscillators, Nonlinear Dynamics, 1995, 7(3): 285-289
    [16]Leung A Y T, Zhang Q C, Complex Normal Form for Strongly Non-linear Vibration Systems Exemplified by Duffing-Van der Pol equation, Journal of Sound and Vibration, 1998, 213(5): 907-914
    [17]郝淑英,王炜,张琪昌,研究两自由度强非线性振动系统的规范形方法,振动工程学报, 2007, 20(4): 422-426
    [18]万浩川,复规范形理论在多自由度强非线性振动系统中的应用: [硕士学位论文],天津;天津大学, 2007
    [19]Li L, Energy Method for Approximate Periodic Solution of Strongly Nonlinear No autonomous Systems, Nonlinear Dynamics, 1999, 19(3): 237-260
    [20]Li L, Ye H L, Energy Method for Computing Periodic Solutions of Strongly Nonlinear Autonomous Systems with Multi-Degree-of Freedom, Nonlinear Dynamics, 2003, 31(1): 23-47
    [21]Liao S J, Kind of approximate solution technique which does not depend upon small parameters - II. An application in fluid mechanics, International Journal of Non-Linear Mechanics, 1997, 32(5): 815-822
    [22]Liao S J, An analytic approach to solve multiple solutions of a strongly nonlinear problem, Applied Mathematics and Computation, 2005, 169(2): 854-865
    [23]He J H, An approximate solution technique depending on an artificial parameter: A special example, Communications in Nonlinear Science and Numerical Simulation, 1998, 3(2): 92-97
    [24]He J H, Linearized perturbation technique and its applications to strongly nonlinear oscillators, Computers & Mathematics with Applications, 2003, 45(1-3): 1-8
    [25]孙中奎,徐伟,杨晓丽等,基于参数展开的同伦分析技术及其应用,力学学报, 2005, 37(5) : 667-672
    [26]唐驾时,尹小波,一类强非线性振动系统的分叉,力学学报,1996,28(3):363-369
    [27]Tang J S, Qin J Q, Xiao H, Bifurcations of a generalized Van der Pol oscillator with strong nonlinearity, Journal of Sound and Vibration, 2007, 306(3-5): 890-896
    [28]毕勤胜,陈予恕, Duffing系统解的转迁集的解析表达式,力学学报,1997,29(5): 573-581
    [29]毕勤胜,陈予恕,强Duffing系统的周期共振解及其转迁集,振动工程学报,1997,10(1): 29-34
    [30]毕勤胜,陈予恕,强非线性Duffing系统倍周期分岔,振动工程学报,1997,10(2): 183-189
    [31]黄赪彪,强非线性振动系统周期解分析,应用力学学报, 1994, 11(4): 1-10
    [32]Gottlieb H P W, On the harmonic balance method for mixed-parity non-linear oscillators, Journal of Sound and Vibration, 1992, 152(1): 189-191
    [33]Xu Z, Chan H S Y, Cheung Y K, Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method, Journal of Sound and Vibration, 1996, 11(3): 213-233
    [34]Zhang Y M, Lu Q S, Homoclinic bifurcation of strongly nonlinear oscillators by frequency-incremental method, Communications in Nonlinear Science and Numerical Simulation, 2003, 8(1): 1-7
    [35]Ge Z M, Ku F N, Melnikov method for strongly odd nonlinear oscillators, Japanese Journal of Applied Physics, 1998, 37(3A): 1021-1028
    [36]Ge Z M, Ku F N, Subharmonic Melnikov functions for strongly odd non-linear oscillators with large perturbations, Journal of Sound and Vibration, 2000, 236(3): 554-560
    [37]Belhaq M, Fiedler B, Lakrad F, Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincarémethod, Nonlinear Dynamics, 2000, 23(1): 67-86
    [38]Zaki K, Noah S, Rajagopal K R, Srinivasa, A R, Effect of nonlinear stiffness on the motion of a flexible pendulum, Nonlinear Dynamics, 2002, 27(1): 1-18
    [39]Nayfeh A H, Method of normal forms, New York: John Wiley & Sons, 1993
    [40]Cushman R, Deprit A, Mosak R, Normal forms and representation theory, Journal of Mathematic and Physics, 1983, 24(5): 2103-2116
    [41]Zhang Q C, He X J, Hao S Y, Computation of the simplest normal forms for resonant double hopf bifurcations system based on lie transform, Transactions of Tianjin University, 2006, 12(3): 180-185
    [42]张琪昌,胡兰霞,何学军,高维Hopf分岔系统的最简规范形,天津大学学报, 2005, 38(10): 878-881
    [43]张琪昌,胡仕华,王炜,不经中心流形化简计算半单系统的最简规范形,天津大学学报, 2006, 39(7): 773-776
    [44]Tian R L, Zhang Q C, He X J, Calculation of coefficients of simplest normal forms of Hopf and generalized Hopf bifurcations, Transactions of Tianjin University, 2007, 13(1): 18-22
    [45]张琪昌,王炜,具有一对纯虚及单零特征根系统的最简规范形,天津大学学报, 2007, 40(8): 971-975
    [46]Wang X F, Chen G T, Wang D, Unique normal forms for the Takens-Bogdanov singularity in a special case, Comptes Rendus de l'Academie des Sciences Series I Mathematics, 2001, 332(6): 551-555
    [47]Yu P, Yuan Y, The simplest normal forms associated with a tripple zero eigenvalue of indices one and two, Nonlinear Analysis, 2001, 47(2): 1105-1116
    [48]Yu P, Yuan Y, An efficient method for computing the simplest normal forms of vector fields, International Journal of Bifurcation and Chaos, 2003, 13(1): 19-46
    [49]Yu P, Leung AYT, The simplest normal form of Hopf bifurcation, Nonlinearity, 2003, 16(1): 277-300
    [50]张琪昌,王炜,研究强非线性振动问题的最简规范形方法,应用力学学报, 2008, 25(4): 698-702
    [51]Lorenz E N, Deterministic Nonperiodic Flow, Journal of Bifurcation and Chaos, Journal of Atmospheric Sciences, 1963, 20(2): 130-148
    [52]Hénon M, Heiles C, The application of the third integral of motion some numerical experiments, The Astronomical Journal, 1964, 69: 73-79
    [53]Arnold V I, Mathematical Metods of Classical Mechanics, New York: Springer-Verlag, 1980
    [54]Smale S, Differentiable dynamical system, Bulletin of the American Mathematical Society, 1967, 73: 747-817
    [55]Melnikov V K, On the stability of the center for time periodic perturbations, Transaction of the Moscow Mathematical Society, 1963, 12: 1-57
    [56]Shilnikov L P, A case of the existence of a countable number of periodic motions, Sov Math Docklady, 1965, 6: 163-166
    [57]Arnold V I, Instability of dynamical systems with several degrees of freedom, Sov Math Docklady, 1964, 5: 581-585
    [58]Holmes P J, A nonlinear oscillator with a strange attractor, Philosophical Transactions of the Royal Society of London, 1979, 292: 1934-1990
    [59]Shilnikov L P, A contribution of the problem of the structure of an extendedneighborhood of rough equibrium state of saddle-focus type, Math USSR-Shornik, 1970, 10: 91-102
    [60]Silva C P, Shilnikov theorem--a tutorial, IEEE Trans Circ Syst-I, 1993, 40(10): 675-682
    [61]朱淑芹,杨淼,张先华,闵乐泉,利用Shilnikov定理构造混沌系统,北京科技大学学报, 2005, 27(5): 635-637
    [62]Zhou T S, Chen G R, Yang Q G, Constructing a new chaotic system based on the Shilnikov criterion, Chaos, Solitons and Fractals, 2004, 19(4): 985-993
    [63]张琪昌,田瑞兰,王炜,一类机电耦合非线性动力系统的混沌动力学特性,物理学报, 2008, 57(5): 2799-2706
    [64]Li Z, Chen G R, Halang W A, Homoclinic and heteroclinic orbits in modified Lorenz system, Information Sciences, 2004, 165(3-4): 235-245
    [65]Li T C, Chen G T, Chen G R, On homoclinic and heteroclinic orbits of Chen's system, International Journal of Bifucation and Chaos, 2006, 16(10): 3035-3041
    [66]Chang Y, Chen G R, Complex dynamics in Chen's system, Chaos, Solitons and Fractals, 2006, 27(1): 75-86
    [67]Chang Y, Chen G R, Hopf bifurcation and chaos analysis of Chen's system with distributed delays, Chaos, Solitons and Fractals, 2005, 25(1): 197-220
    [68]Vakakis A F, Azeez M F A, Analytic approximation of the homoclinic orbits of the Lorenz system atσ= 10, b = 8/3 andρ= 13.926, Nonlinear Dynamics, 1998, 15(3): 245-257
    [69]Mikhlin Y V, Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems, Journal of Sound and Vibration, 2000, 230(5): 971-983
    [70]Li Y H, Zhu S M, n-Dimensional stable and unstable manifolds of hyperbolic singular point, Chaos, Solitons and Fractals, 2006, 29(5): 1155-1164
    [71]Holmes P J, Marsden J E, Melnikov’s method and arnold diffusion for perturbations of integrable Hamiltonian systems, Journal of Mathematical Physics, 1982, 23(4): 669-675
    [72]Wiggins S, Global bifurcation and chaos, Berlin: Springer-Verlag, 1988
    [73]Kovacic G, Wiggins S, Oribits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Physica D: Nonlinear Phenomena, 1992, 57(1-2): 185-225
    [74]Kovacic G, Hamiltonian dynamics of orbits homoclinic to a resonance band,Physics Letters A, 1992, 167(2): 137-142
    [75]Kovacic G, Dissipative dynamics of orbits homoclinic to a resonance band, Physics Letters A, 1992, 167(2): 143-150
    [76]Yagasaki K, The method of Melnikov for perturbations of multi-degree-of -degree Hamiltonian systems, Nonlinearity, 1999, 12(4): 799-822
    [77]Yagasaki K, Horseshoe in two-degree-of-freedom Hamiltonian systems with saddle-centers, Archive for Rational Mechanics and Analysis, 2000, 154(4): 275-296
    [78]Yagasaki K, Homoclinic and heteroclinic behavior in an infinite degree of freedom Hamiltonian system: Chaotic free vibration of an undamped buckled beam, Physics Letters A, 2001, 285(1-2): 55-62
    [79]Yagasaki K, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamilton systems with saddle centers, Nonlinearity, 2003, 16(6): 2003-2012
    [80]Xu P C, Jing Z J, Shilnikov’s orbits in coupled Duffing’s systems, Chaos, Solitons and Fractals, 2000, 11(6): 853-858
    [81]姚明辉,多自由度非线性机械系统的全局分叉和混沌动力学研究: [博士学位论文],北京;北京工业大学, 2006
    [82]Zhang W, Global and chaotic dynamics for a parametrically excited thin plate, Journal of Sound and Vibration, 2001, 239(5): 1013-1036
    [83]Zhang W, Wang F X, Yao M H, Global bifurcations and chaotic dynamics in nonlinear non-planar oscillations of a parametrically excited cantilever beam, Nonlinear Dynamics, 2005, 40(3): 251-279
    [84]Guo B L, Chen H L, Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schrodinger equation, Communications in Nonlinear Science and Numerical Simulation, 2004, 9(4): 431-441
    [85]陈予恕,王德石,余俊,参外激励作用下非线性振动系统的混沌,振动工程学报, 1996, 9(1): 54-69
    [86]刘曾荣,混沌研究中的解析方法,上海:上海大学出版社, 2002
    [87]陈立群,刘延柱,任意圆轨道上磁性刚体航天器的混沌姿态运动及其控制,振动工程学报, 2001, 14(4): 414-418
    [88]李银山,陈予恕,李伟锋,各种板边条件下大挠度圆板的全局分岔和混沌,天津大学学报, 2001, 34(6): 718-722
    [89]陈昌萍,傅衣铭,单轴转动截锥扁壳的全局分岔与混沌,非线性动力学报,2002, 9(1-2): 56-61
    [90]Ravichandran V, Chinnathambi V, Rajasekar S, Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force, Physica A: Statistical Mechanics and its Applications, 2007, 376(15): 223-236
    [91]Li W, Jing Z J, Xu P C, The existence of Shilnikov’s orbits in one coupled Duffing equation, Science In China( Series A), 2003, 46(1): 11-23
    [92]Li W, Xu P C, The existence of Shilnikov’s orbit in four-dimensional Duffing’s systems, Acta Mathematicae Applicatae Sinica, English Series, 2003, 19(4): 677-690
    [93]Kaper T J, Kovacic G, Multi-bump orbits homoclinic to resonance bands, Transactions of the American Mathematical Society, 1996, 348(10): 3835-3887
    [94]Camassa R, Kovacic G, Tin S K, A Melnikov method for homoclinic orbits with many pulse, Archive for Rational Mechanics and Analysis, 1998, 143(2): 105-193
    [95]Haller G, Wiggins S, Orbits homoclinic to resonances: the Hamiltonian case, Physica D: Nonlinear Phenomena, 1993, 66(3-4): 298-346
    [96]Haller G, Wiggins S, Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrodinger equation, Physica D: Nonlinear Phenomena, 1995, 85(3): 311-347
    [97]Haller G, Wiggins S, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D: Nonlinear Phenomena, 1996, 90(4): 319-365
    [98]Haller G, Chaos near resonance, Berlin: Springer-Verlag, 1999
    [99]Feng Z C, Liew K M, Global bifurcations in parametrically excited systems with zero-to-one internal resonance, Nonlinear Dynamics, 2000, 21(3): 249-263
    [100]陈立群,带慢变角参数摄动平面非Hamilton可积系统的混沌,应用数学和力学, 2001, 22(11): 1172-1176
    [101]Yeo M H, Lee W K, Evidence of global bifurcations of an imperfect circular plate, Journal of Sound and Vibration, 2006, 293(1-2): 138-155
    [102]Liu X B, Fu X L, Zhu D M, Bifurcation of homoclinic orbits with saddle-center equilibrium, Chinese Annals of Mathematics, Series B, 2007, 28B(1): 81-92
    [103]陈利平,一类一维阵列的孤波特征,数学物理学报, 1999, 19(4): 361-367
    [104]Malhotra N, Namachchivaya N S, McDonald R J, Multi-pulse orbits in the motion of flexible spinning discs, Journal of Nonlinear Science, 2002, 12(1): 1-26
    [105]黄德斌,刘曾荣,郑永爱, Sine-Gordon方程中混沌跳跃行为的机制,力学学报, 2002, 34(2): 238-247
    [106]梁建术,陈予恕,一类含平方立方非线性项1:2内共振两自由度系统的全局分岔,应用力学学报, 2002, 19(4): 62-67
    [107]Zhang W, Tang Y, Global dynamics of the cable under combined parametrical and external excitations, International Journal of Non-Linear Mechanics, 2002, 37(3): 505-526
    [108]Yao M H, Zhang W, Multi-pulse Shilnikov orbits and chaotic dynamics for nonlinear non-planar motion of a cantilever beam, International Journal of Bifurcations and Chaos, 2005, 15(12): 3923-3952
    [109]Yao M H, Zhang W, Multi-pulse Shilnikov orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6(1):37-46
    [110]Zhang W, Yao M H, Multi-pulse orbits and chaotic dynamics in motion of parametriclly excited viscoelastic moving belt, Chaos, Solitons and Fractals, 2006, 28(1): 42-66
    [111]Zhang W, Yao M H, Zhan X P, Multi-pulse chaotic motions of a rotor-active magnetic bearing with time-varying stiffness, Chaos, Solitons and Fractals, 2006, 27(1): 175-186
    [112]Yao M H, Zhang W, Multi-pulse Shilnikov orbits and chaotic dynamics of a parametrically and externally excited thin plate, International Journal of Bifurcations and Chaos, 2007, 17(3): 1-25
    [113]Feigenbaum M J, Quantitative universality for a class of nonlinear transformations, Journal of Statistical Physics, 1978, 19(1): 25-52
    [114]Rand R H, Analytical approximation for period-doubling following a Hopf bifurcation, Mechanics Research and Communications, 1989, 16(2): 117-123
    [115]Nayfeh A H, Balachandran B, Motion near a Hopf bifurcation of three dimensional system, Mechanics Research and Communications, 1990, 17(3): 191-198
    [116]Belhaq M, Houssni M, Symmetry-breaking and first period-doubling following a Hopf bifurcation in a three dimensional system, Mechanics Research and Communications, 1995, 22(3): 221-231
    [117]Belhaq M, Houssni M, Second period-doubling in a three-dimensional system, Mechanics Research and Communications, 1999, 26(2): 123-128
    [118]Berns D W, Moiola J L, Chen G R, Detecting period-doubling bifurcation: an approximate monodromy matrix approach, Automatica, 2001, 37(11): 1787-1795
    [119]Wang L Q, Xu M T, Property of period-doubling bifurcations, Chaos, Solitons and Fractals, 2005, 24(2): 527-532
    [120]Oldeman B E, Krauskopf B, Champneys A R, Numerical unfoldings of codimension-three resonant homoclinic flip bifurcations, Nonlinearity, 2005, 14(3): 597-621
    [121]Homburg A J, Krauskopf B, Resonant Homoclinic Flip Bifurcations, Journal of Dynamics and Differentical Equations, 2000, 12(4): 807-851
    [122]Shashkov M V, Turaev D V, An Existence Theorem of Smooth Nonlocal Center Manifolds for Systems Close to a System with a Homoclinic Loop, Journal of Nonlinear Science, 1999, 9(5): 525-573
    [123]Shashkov M V, On bifurcations of separatrix contours with two saddles, International Journal of Bifurcations and Chaos, 1992, 2(4): 911-915
    [124]Sandstede B, Scheel A, Forced symmetry breaking of homoclinic cycles, Nonlinearity, 1995, 8(3): 333-365
    [125]Xu L Q et al, Oscillations and period-doubling bifurcations in the electrochemical oxidation of thiourea, Chemical Physics Letters, 2004, 397(1-3): 265-270
    [126]Ben T A, Banded chaos in power systems, IEEE Transactions on Power Delivery, 2001,16(1): 105-110
    [127]Perez V J L et al, Dynamical regimes underlying epileptiform events: role of instabilities and bifurcations in brain activity, Physica D, 2003, 186(3-4): 205-220
    [128]Kongas O, Von H R, Nonlinear dynamics and cardiac arrhythmias, Medical & Biological Engineering & Computing, 1996, 34(1): 373-374
    [129]Golubisky M, Schaeffer D G, Singularities and Groups in Bifurcation Theory, Vol. 1, Berlin: Springer-Verlag, 1999
    [130]Nayfeh A H, Mook D T, Nonlinear Oscillations, New York: John Wiley and Sons, 1979
    [131]Bogoliubov N N, Mitripolsky A Y, Asymptotic Methods in the Theory of Nonlinear Oscillations, New York: Gordon and Breach, 1961
    [132]Chen Y S, Langford W F, The Subharmonic bifurcation solution of nonlinearMathieu’s equation and Euler dynamically bucking problem, Acta Mechanica Sinica, 1998, 20(4): 522-532
    [133]陈芳启,吴志强,黏弹性圆柱形壳动力学高余维分岔、普适开折问题,力学学报, 2001, 33(5): 661-668
    [134]吴志强,陈予恕,含约束非线性动力系统的分岔分类,应用力学和数学, 2002, 23(5): 477-482
    [135]吴志强,陈予恕,具有单边约束的基本分岔问题的新分岔模式,应用力学和数学, 2001, 22(11): 1135-1141
    [136]刘秉正,彭建华,非线性动力学,北京:高等教育出版社, 2003
    [137]高普云,非线性动力学-分岔混沌孤立子,长沙:国防科技大学出版社, 2005
    [138]胡海岩,应用非线性动力学,北京:航空工业出版社, 2000
    [139]张琪昌,王洪礼,竺致文等,分岔与混沌理论及应用,天津:天津大学出版社, 2005
    [140]杨绍普,申永军,滞后非线性系统的分岔与奇异性,北京:科学出版社, 2003
    [141]Grebogi Celso, Ott Edward, Yorke James A, Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation, Physical Review Letters, 1983, 50(13): 935-938
    [142]Belhaq M, Fashi A, Homoclinic bifurcations in self-excited oscillators, Mechanics Research and Communications, 1996, 23(4): 381-386
    [143]Belhaq M, Fashi A, New analytical technique for predicting homoclinic bifurcations in autonomous dynamical systems, Mechanics Research and Communications, 1998, 25(1): 49-58
    [144]Belhaq M, Fashi A, Lakrad F, Predicting homoclinic bifurcations in planar autonomous systems, Nonlinear Dynamics, 1999, 18(4) 303-310
    [145]徐伟,孙中奎,杨晓丽,基于参数展开的同伦分析法在强非线性随机动力系统中的应用,物理学报, 2005, 54(11): 5069-5076
    [146]那仁满都拉,乌恩宝音,王克协,具5次强非线性项的波方程新的孤波解,物理学报, 2004, 53(1): 11-14
    [147]套格图桑,斯仁道尔吉,构造非线性发展方程精确解的一种方法,物理学报, 2006, 55(12): 6214-6221
    [148]莫嘉琪,张伟江,何铭,强非线性发展方程孤波近似解,物理学报, 2007, 56(4): 1843-1846
    [149]Bajaj A k, Bifurcations in a parametrically excited non-linear oscillator,International Journal of Non-Linear Mechanics, 1987, 22(1) 47-59
    [150]Perkins N C, Modal interactions in the non-linear response of elastic cables under parametric/external excitation, International Journal of Non-Linear Mechanics, 1992, 27(2) 233-250
    [151]Yang X L, Sethna P R, Local and global bifurcations in parametrically excited vibrations of nearly square plates, International Journal of Non-Linear Mechanics, 1991, 26(2) 199-220
    [152]Yu P, Zhang W, Bi Q, Vibration analysis on a thin plate with the aid of computation of normal forms, International Journal of Non-Linear Mechanics, 2001, 36(4) 597-627
    [153]Chen S H, Cheung Y K, Xing H X, Nonlinear vibration of plane structures by finite element and incremental harmonic balance method, Nonlinear Dynamics, 2001, 26(1): 87-104
    [154]Schmidt B A, Analysis of a pendulum on a rotating arm, Transactions of the ASME. Journal of Applied Mechanics, 1992, 59(1): 233-234
    [155]Anderson T J, Nayfeh A H, Balachandran B, Coupling between high-frequency modes and a low-frequency mode: theory and experiment, Nonlinear Dynamics, 1996, 11(1): 17-36
    [156]Nayfeh A H, Chin C M, Nonlinear interactions in a parametrically excited system with widely spaced frequencies, Nonlinear Dynamics, 1995, 7(2): 195-216
    [157]Ariaratnam S T, Xie W C, Vrscay E R, Chaotic motion under parametric excitation, Dynamics and Stability of Systems, 1989, 4(2): 111-130
    [158]Abou-Rayan A M, Nayfeh A H, Mook D T, Nonlinear response of a parametrically excited buckled beam, Nonlinear Dynamics, 1993, 4(5): 499-525
    [159]Restuccio J M, Krougrill C M, Bajaj A K, Nonlinear nonplanar dynamics of a parametrically excited inextensional elastic beam, Nonlinear Dynamics, 1991, 2(2): 263-289
    [160]Zhang W, Ye M, Local and global bifurcations of valve mechanism, Nonlinear Dynamics, 1994, 6(3): 301-316
    [161]Sanchez C J, Modern radiocommunication for ships, Metalurgiay Electricidad, 1972, 36(417): 310-314
    [162]Sanchez C J, Nayfeh A H, Stability and complicated rolling responses of ships in regular beam seas, International Shipbuilding Progress, 1990, 37(410):177-198
    [163]唐友刚,李红霞,随机斜浪中船舶参数—强迫激励横摇运动计算,中国船舶研究, 2008, 3(1): 5-8
    [164]唐友刚,谷家扬,用Melnikov方法研究船舶在随机横浪中的倾覆,中国船舶研究, 2004, 8(5): 27-34
    [165]Feng Z C, Sethna P R, Global bifurcations in the motion of parametrically excited thin plates, Nonlinear Dynamics, 1993, 4(4): 398-408
    [166]Vavriv D M et al, Chaotic states of weakly and strongly nonlinear oscillators with quasiperiodic excitation, Physical Review E, 1996, 53(1): 103-114
    [167]Levandovsky A Y, Tsarin Y A, Vavriv D M, The interaction of resonances in a weakly nonlinear oscillator with a quasiperiodic excitation, Chaos, 1997, 7(2): 270-277
    [168]Siewe M S, Kakmeni F M M, Tchawoua C, Woato P, Nonlinear response and suppresion of chaos by weak harmonic perturbation inside a triple wellΦ6-Rayleigh oscillator combined to parametric excitations, Journal of Computational and Nonlinear Dynamics, 2006, 1(3): 196-204
    [169]Siewe M S, Kakmeni F M M, Tchawoua C, Woato P, Bifurcations and chaos in the triple-wellΦ6-Van der Pol oscillator driven by external and parametric excitations, Physica A, 2005, 357(3-4): 383-396
    [170]雷佑铭,徐伟,一类约瑟夫森结混沌系统的谐和共振控制,物理学报, 2008, 57(6): 3342-3352
    [171]雷佑铭,徐伟,有界噪声和谐和激励联合作用下一类非线性系统的混沌研究,物理学报, 2007, 56(9): 5103-5110
    [172]罗诗裕,韦洛霞,刘曾荣,位错动力学与系统的全局分叉,物理学报, 2004, 53(6): 1940-1945
    [173]Stenfanski A, Dabrowski A, Kapitaniak T, Evaluation of the largest Lyapunov exponent in dynamical systems with time delay, Chaos, Solitons and Fractals, 2005, 23(5): 1651-1659
    [174]Chen Z M, Djidjeli K, Price W G, Computing Lyapunov exponents based on the solution expression of the variational system, Applied Mathematics and Computation (New York), 2006, 174(2): 982-996
    [175]Palmer K J, Shadowing and shilnikov chaos, Nonlinear Analysis, Theory, Methods & Applications, 1996, 27(9): 1075-1093
    [176]Samaranayake S, Bajaj A K, Subharmonic oscillations in harmonically excitedmechanical systems with cyclic symmetry, Journal of Sound and Vibration, 1997, 206(1): 39-60
    [177]Cui F S et al, Bifurcation and chaos in the Duffing oscillator with a PID controller, Nonlinear Dynamics, 1997, 12(3): 251-262
    [178]刘振兴,濮祖荫,沈超,磁层亚暴面临的难题及研究方向,中国科学院院刊, 1998, 2: 109-112
    [179]刘振兴,我国磁层物理研究进展,物理, 1999, 28(10): 585-592
    [180]Smith J P, Thiffeault J L, Horton W, Dynamical range of the WINDMI model: an exploration of possible magnetospheric plasma states, Journal of Geophysical Research, 2006, 105(A6): 12893-12986
    [181]Horton W, Weigel R S, Sprott J C, Chaos and the limits of predictability for the solar-wind-driven magnetosphere-ionosphere system, Physics of Plasmas, 2001, 8(6): 2946-2952
    [182]He J H, Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part II:a new transformation, Nonlinear Mechanics, 2002, 37(2): 315-320
    [183]Abd EL-Latif G. M, On a problem of modified Lindstedt-Poincare for certain strongly oscillators, Applied Mathematics and Computation, 2004, 152(3): 821-836
    [184]陈予恕,非线性振动,天津:天津科技出版社, 1982
    [185]王东生,混沌、分形及其应用,合肥:中国科学技术出版社, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700