随机激励下结构的非线性检测方法与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的迅速发展,大量轻型复合材料结构和机构在卫星设计中被广泛采用,由于卫星从发射到在轨飞行所经历的环境相当复杂,某些情况下出现了较强的非线性,为提高系统的可靠性,采用传统的环境试验和分析方法很难满足工程要求,本文采用随机激励的方法对结构非线性检测和特性分析进行深入的研究,并对卫星结构设计中常用的铝蜂窝夹层板进行了理论验证性的工作,并取得了较好的研究成果:
     给出了基于随机振动试验数据高阶统计量中双谱的结构非线性检测方法,根据检测白噪声激励下结构的输出是否为白噪声来确定结构中是否存在非线性;给出了基于混沌理论的结构非线性检测方法,该方法根据判断白噪声激励下的结构输出时间序列是否存在混沌现象,进而得到结构非线性的存在性。
     针对随机试验下频域中结构的非线性检测方法、非线性类型识别等特性分析问题,基于FPK变换和等效原理的线性等效方法,建立了随机激励下分别含有非线性阻尼、非线性刚度的频响等效模型,揭示了随机激励下含不同非线性系统频响函数随外激励量级的变化规律,并给出了利用此变化规律进行随机振动系统非线性检测及非线性定性方法。
     以卫星用铝蜂窝夹层板为试验对象,设计了随机振动试验的总体方案,利用随机振动试验数据,分别应用基于频响函数、高阶谱理论以及基于混沌理论的非线性检测方法对铝蜂窝夹层板的非线性进行了检测,揭示了试验试件的非线性存在和混沌现象;并对随机试验的混沌时间序列进行了相空间重构,通过Volterra自适应滤波器进行了动力学行为预测,通过与实际试验数据比较表明预测结果与实测结果具有良好的一致性,表明本方法的有效性。
     同时还提出了一种直接利用加速度形式输入输出数据的结构非线性特性分析方法,避免了数据处理过程。并分别应用基于频响函数的和基于加速度传递率非线性特性分析方法对铝蜂窝夹层板的非线性特性进行了分析,揭示了铝蜂窝夹层板的共振放大倍数随激励强度的变化规律和频率漂移现象,验证了所提非线性特性分析方法的适用性。
Nowadays, with the rapidly progress of the astronautics technic, the compond material is widely used in spaceflight field. Owing to the complex environment, lots of nonlinear problems appeare. The linear method can not meet the need of identification, and the study of nonlinear is necessary. Meanwhile, the traditional mechanical environment testing can not meet the need of ensure the reliability of aerocraft. The theories and methods of detecting and characteristic analysis of nonlinear of dynimic system under random excitation are studied deeply in this paper, and using the random vibration test and take aluminum honeycomb sandwich, which has been widely used in aerocraft, as study object.
     In random test, if the input is white noise single, when the system is nonlinear system, the output is not white noise single anymore. Thus, the nonlinear detection of system become the nonlinear detection of output data. Using the higher 2order statistic spectrum and largest Lyapunov exponent to detect the nonlniear existence. To observe whether the bispectrum plot of output data is smooth to detect the nonlinear. If the possibility of the presence of chaotic behavior in the time-series data is explored, and the existence of nonlinear is proved.
     To deal with prolblems of detecting and characteristic analysis of nonlinear of dynimic system under random excitation. A method combining Fokker-PlancL-Ko1mogorov(FPK) transformation and equivalent principle method is used to caculate equivalent linear frequency response function (FRF) model of nonlinear systems containning nonlinear damping and nonlinear siffness, respectively. The shapes of equivalent linear FRF and Nyquist plots will change when the excitation level changed.and the rule is explored. The result can be the method of nonlinear detection and characteristic.
     Taking aluminum honeycomb sandwich board as subject, the project of random test is designed. The existence of nonlinear is detected by using FRF, the higher 2order statistic spectrum and the Lyapunov exponent methods. Owing to the chaonic phenomena of the data, and the state space reconstruction of the test data is done and Volterra adaptive filter is used to predict the test data. it is shown the test data could be accurately predicted.
     The FRF is gained, and thus the nonlinear characterise can be done by using acceleration data directly, thus the process of data tansformation is avoided. The nonlinear is characterised by using the classical FRF and the FRF expressed by acceleration of both input and output. The phenomena of natural frequency decreasing and other nonlinear phenomenon are explored. The applicability of the methods metined in this paper is proved.
引文
1 G. Kerschen, K. Wordenb, A. F. Vakakis,J. Golinval. Past, Present and Future of Nonlinear System Identification in Structural Dynamics Mechanical Systems and Signal Processing. 2006,(20): 505~592
    2 M. Palu?. Detecting Nonlinearity in Multivariate Time Series. Phys. Lett. A. 1996, (213):138~147
    3 M. Palu?. Detecting Nonlinearity and Phase Synchronization with Surrogate Data. IEEE Engineering in Medicine and Biology. 1998,17,(6):40~45
    4 M. Palu?. Detection of A Nonlinear Oscillator underlying Experimental Time Series: Sunspot Cycle. Nonlinear Dynamics and Statistics. 2001,(1):453~473
    5王丽丽,张景绘,段权.一种硅油扭振阻尼器的非线性动力学特性研究.工程力学. 2001,18(4):102~108
    6 D. P. Feldman, J. P. Crutchfield. Measures of Statistical Complexity: Why? Physics Letters A. 1998,(238):244~252
    7谢幸幸. Lempel-Ziv复杂度在非线性检测中的应用研究.复杂系统与复杂性科学. 2005,2(3):61~66
    8 M. Rosenblatt,J. W. VanNess. Estimation of the Bispectrum. Ann. Math. Statist. 1965,36(1):1120~1136
    9 D. R. Brillinger. An Introduction to Polyspectra. Ann. Math. Statist. 1965,36(1):1351~1374
    10 H. F. Chang, W. Q. Zhu. Stochastic Optimal Control of Strongly Nonlinear Systems under Wide-band Random Excitation with Actuator Saturation. Acta Mechanica Solida Sinica. 2008, 21(2): 116~126
    11 M. Feldoman. Nonlinear System Vibration Analysis Using Hilbert Transform-II. Forced Vibration Analysis Method‘Forcevib’. Mechanical Systems and Singal Processing. 1994,8(3): 309~318
    12 W. J. Staszewski. Identification of Damping in Md of Systems Using Time-scale Decomposition. Journal of Sound and Vibration. 1997, (203): 283~305
    13 W. J. Staszewski. Analysis of Non-linear Systems Using Wavelets. Proceedings of The Institution of Mechanical Engineers Part C—Journal of Mechanical Engineering Science. 2000, (214): 1339~1353
    14 R. Lind, K. Snyder, M. Brenner. Wavelet Analysis to Characterise Non-linearities and Predict Limit Cycles of an Aeroelastic System. Mechanical Systems and Signal Processing. 2001, (15): 337~356
    15 P. Argoul, T. P. Le. Instantaneous Indicators of Structural Behaviour Based on The Continuous Cauchy Wavelet Analysis. Mechanical Systems and Signal Processing. 2003, (17): 243~250
    16 H. Franco, R. M. O. Pauletti. Analysis of Nonlinear Oscillations by Gabor Sspectrograms. Nonlinear Dynamics. 1997, (12): 215~236
    17 J. Schoukens, Y. Rolain, J. Swevers, J. D. Cuyper. Simple Methods and Insights to Deal with Non-linear Distortions in FRF Measurements. Mechanical Systems and Signal Processing. 2000,(14):657~666
    18 W. B. Collis, P. R. White, J. K. Hammond. Higher-order Spectra: the Bispectrum and Trispectrum. Mechanical Systems and Signal Processing. 1998, (12): 375~394
    19 D. M. Storer, G. R. Tomlinson, Recent Developments in the Measurements and Interpretation of Higher Order Functions From Nonlinear Structures, Mechanical Systems and Signal Processing. 1993, (7): 173~189
    20 M. R. Hajj, J. Fung, A. H. Nayfeh, S. Fahey. Damping Identification Using Perturbation Techniques and Higher-Order Spectra. Nonlinear Dynamics. 2000, (23): 189~203
    21 J. H. Hernandez. Statistical Characterization of Power System Nonlinear Behavior Using Higher–order Spectra. 39th North American Power Symposium, USA, 2007: 547~554
    22 D. Hickey, K. Worden, M. F. Platten, J. R. Wright, J. E. Cooper, Higher-order Spectra for Identification of Nonlinear Modal Coupling, Mechanical Systems and Signal Processing. Mechanical Systems and Signal Processing. 2009, (23): 1037~1061
    23 S. F. Masri, T. K. Caughey, A Nonparametric Identification Technique for Nonlinear Dynamic Problems, Journal of Applied Mechanics. 1979, (46): 433~447
    24 C. Surace, K. Worden, G. R. Tomlinson. On the Nonlinear Characteristics of Automotive Shock Absorbers. Proceedings of the I. Mech. E. Part D—Journal of Automobile Engineering. 1992, (206): 3~16
    25 A. F. Vakakis, D. J. Ewins. Effects of Weak Non-Linearities on Modal Analysis. Mechanical Systems and Signal Processing. 1994, (8): 175~198
    26 K. Worden, G R. Tomlinson. Nonlinearity in Structural Dynamics: Detection, Identification and Modelling: Insitute of Physics Publishing, 2001:52~55, 72~78, 105~108
    27 S. A. Billings. Identification of Nonlinear System. IEE Proc, England, 1980, 127, (11): 272~285
    28马红光,韩崇昭,王国华,朱小菲.一种基于混沌和GFRF的故障诊断方法.现代雷达. 2004,26(12): 56~59
    29 J. C. P. Jones. Simplified Computation of the Volterra Frequency Response Functions of Nonlinear Systems. Mechanical Systems and Signal Processing. 2007, (21): 1452~1468
    30 J. H. Chao, Atsushi Inomata. A Convergence Analysis of Volterra Adaptive Filters. 1997 IEEE International Symposium on Circuits and Systems, Hong Kong, 1997: 2477~2480
    31 J. S. Zhang, X. C. Xiao. Predicting Low-dimensional Chaotic Timeseries Using Volterra Adaptive Filers. Chin.Phys.Soc. 2000, 49(3): 403~408
    32 A. Y. Kibangoua, G. Faviera, M. M. Hassani. Selection of Generalized Orthonormal Bases for Second-order Volterra Filters. Signal Processing. 2005, (85): 2371~2385
    33 N. V. D. Wouw, H. Nijmeijer, D. H. van Campen. Statistical Bilinearization in Stochastic Nonlinear Dynamics in Proc. 2nd Int. Conf. Control Oscillations Chaos St, Petersburg, 2000. VA,2000: 394~399
    34 D. Aiordachioaie. Detection and Classification of Non-linearities Based on Volterra Kernels Processing. Engineering Applications of Artificial Intelligence. 2001, (14): 497~503
    35 A. Chatterjee, N. S. Vyas, Stiffness Non-Linearity Classification Through Structured Response Component Analysis Using Volterra Series, Mechanical Systems and Signal Processing. 2001, (15): 323~336
    36 J. L. Caillec, R. Garello. Time Series Nonlinearity Modeling: A Giannakis Formula Type Approach. Signal Processing. 2003, (83): 1759 ~1788
    37 A. Chatterjeea, N. S. Vyas. Nonlinear Parameter Estimation in Multi-degree-of-freedom Systems Using Multi-input Volterra Series. Mechanical Systems and Signal Processing. 2004, (18): 457~489
    38 D. L. Zhao, L. Zhang. Exponential Asymptotic Stability of Nonlinear Volterra Equations with Random Impulses. Applied Mathematics and Computation. 2007, (193): 18~25
    39 J. S. Peia, A. W. Smythb, E. B. Kosmatopoulosc. Analysis and Modification of Volterra/Wiener Neural Networks for the Adaptive Identification of Non-Linear Hysteretic Dynamic Systems. Journal of Sound and Vibration. 2004, (275): 693~718
    40 A. Y. Kibangou, G. Favier, M. M. Hassani. Selection of Generalized Orthonormal Bases for Second-order Volterra Filters. Signal Processing. 2005, (85): 2371~2385
    41 S. A. Billings, W. S. F. Voon. Correlation Based Model Validity Tests for Nonlinear Models. Int. J. of Control. 1986, 44(1): 235~244
    42 S. A. Billings,S. Chen. Extended Model Set Global Data and Threshold Model Identification of Severely Nonlinear Systems. Int. J. Control. 1989, (50): 1897~1923
    43 A. L. C. Osvaldo, E. Agamennoni, J. L. Figueroa. A Nonlinear Model Predictive Control System Based on Wiener Piecewise Linear Models. Journal of Process Control. 2003, 13: 655~666
    44 S. A. Billings, Q. M. Zhu. Model Validation Tests for Multivariable Nonlinear Models Including Neural Networks. Int. J. Control. 1995, 62, (4): 749~766
    45 W. F. Liu, Z. P. Luo, L. FU, Y. Q. Wang. A Systematic Method to Identify Nonlinear Dynamics of BWR by Using the Reactor Noise. Progress in Nuclear Energy. 2003, 1-4(43):209~216
    46 E. W. Bai. Frequency Domain Identification of Wiener Models. Automatica. 2003, (39): 1521~1530
    47 A. E. Ruano, P. J. Fleming, C. Teixeira, K. R. Vázquez, C. M. Fonseca. Nonlinear Identication of Aircraft Gas-Turbine Dynamics. Neurocomputing. 2003, (55): 551~ 579
    48 B. Feil, J. Abonyi, F. Szeifert. Model Order Selection of Nonlinear Input–output Models––A Clustering Based Approach. Journal of Process Control. 2004, (14): 593~602
    49 T. Kara, I. Eker. Nonlinear Modeling and Identification of a DC Motor forBidirectional Operation with Real Time Experiments. Energy Conversion and Management. 2004, (45): 1087~1106
    50 G. Dolanc, S. Strm?nik. Identification of Nonlinear Systems Using a Piecewise-Linear Hammerstein Model. Systems & Control Letters. 2005,(54): 145~158
    51 A. Pirrotta, M. Zingales. Active Controlled Structural Systems under Delta-Correlated Random Excitation: Linear and Nonlinear Case. Communications in Nonlinear Science and Numerical Simulation. 2006, (11): 646~661
    52 O. Elbeyli, J. Q. Sun. Feedback Control Optimization of Nonlinear Systems under Random Excitations Communications in Nonlinear Science and Numerical Simulation. 2006, (11): 125~136
    53 J. R. Li , Z. Z. Ren, Z. R. Wang. Response of Nonlinear Random Business Cycle Model with Time Delay State Feedback. Physica A. 2008, (387): 5844~5851
    54 N. Kishor. Nonlinear Predictive Control to Track Deviated Power of an Identified Nnarx Model of a Hydro Plant. Expert Systems with Applications. 2008, (35): 1741~1751
    55 X. P. Li , Z.H. Liu, W.Q. Zhu. First-Passage Failure of Quasi Linear Systems Subject to Multi-Time-Delayed Feedback Control and Wide-Band Random Excitation Probabilistic. Engineering Mechanics. 2009, (24): 144~150
    56 C. Turchetti. Representation of Nonlinear Random Transformations by Non-Gaussian Stochastic Neural Networks. IEEE Transactions on Neural Networks. 2008, 19(6): 1033~1060
    57 P. M. M?kil?. Squared and Absolute Errors in Optimal Approximation of Nonlinear Systems. Automatica. 2003, (39): 1865~1876
    58 M. O. Efe , O. Kaynak. A Comparative Study of Neural Network Structures in Identification of Nonlinear Systems. Mechatronics. 1999,(9): 287~300
    59 W. Yu. Nonlinear System Identification Using Discrete-Time Recurrent Neural Networks with Stable Learning Algorithms. Information Sciences. 2004, (158): 131~147
    60 X. N. Wang, A. Schumitzky, D. Z. D. Argenioa. Nonlinear Random EffectsMixture Models: Maximum Likelihood Estimation Via The Em Algorithm. Computational Statistics & Data Analysis. 2007, (51): 6614~6623
    61 A. M. Abbas, C. S. Manohar. Reliability-Based Vector Nonstationary Random Critical Earthquake Excitations for Parametrically Excited Systems. Structural Safety. 2007, (29): 32~48
    62 W. M. Ling, D. E. Rivera. A Methodology for Control-relevant Nonlinear System Identification Using Restricted Complexity Models. Journal of Process Control. 2001, (11): 209~222
    63 M. H. Petrick, B. Wigdorowitz. A Priori Nonlinear Model Structure Selection for System Identification. Control Eng. Practice. 1997, 5(8): 1053~1062
    64 D. Coca, S. A. Billings. A Direct Approach to Identification of Nonlinear Differential Models from Discrete Data. Mechanical Systems and Signal Processing, 1999, 13(5): 739~755
    65 V. Verdult. Nonlinear System Identification: A State-Space Approach. Ph. D. thesis. University of Twente. 2002:1~276
    66 M. Milanese, C. Novara. Set Membership Identification of Nonlinear Systems. Automatica: 2004, (40): 957~975
    67 E. W. Bai. Identification of Nonlinear Additive FIR Systems. Automatica. 2005, (41): 1247~1253
    68 S. Saadat, G. D. Buckner, T. Furukawa, M. N. Noori. An Intelligent Parameter Varying (IPV) Approach for Non-Linear System Identifcation of Base Excited Structures. International Journal of Non-Linear Mechanics. 2004, (39): 993~1004
    69 S. F. Masrid. Identification of Nonlinear Vibrating Structure, Part II-Application. J. of Appl. Mech. 1987, (54): 121
    70 V. Petridis, A. Kehagias. A Multi-model Algorithm for Parameter Estimation of Time-varying Nonlinear System. Automatica. 1998,34(4): 469~475
    71 W. H. Yu. A Quasi-Newton Method for Estimating the Parameter in a Nonlinear Hyperbolic System. Journal of Mathematical Analysis and Applications. 1999, (231): 397~424
    72 R. P. Selvam, S. K. Bhattacharyya. Parameter Identification of a Compliant Nonlinear SDOF System in Random Ocean Waves by Reverse MISO Method. Ocean Engineering. 2001, (28): 1199~1223
    73 V. Maksimov. Dynamical Reconstruction of Unknown Inputs in Nonlinear Differential Equations. Applied Mathematics Letters. 2001, (14): 725~730
    74 N. V. D. Wouw, H. Nijmeijer, D. H. V. Campen. A Volterra Series Approach to the Approximation of Stochastic Nonlinear Dynamics. Nonlinear Dynamics. 2002, (27): 397~409
    75 J. C. Gómez, E. Baeyens. Identification of Block-oriented Nonlinear Systems Using Orthonormal Bases. Journal of Process Control. 2004, (14): 685~697
    76 E. A. Elrady. A Nonlinear Approach to Harmonic Signal Modeling. Signal Processing: 2004, (84): 163~195
    77 I. Vajk, J. Hetthéssy. Identification of Nonlinear Errors-In-Variables Models. Automatica. 2003, (39): 2099~2107
    78 M. P. Mignolet, C. Soize. Stochastic Reduced Order Models for Uncertain Geometrically Nonlinear Dynamical Systems. Comput. Methods Appl. Mech. Engrg. 2008, (197): 3951~3963
    79 G. Dimitriadis. Experimental Validation of The Constant Level Method for Identification of Non-Linear Milti-Degree of Freedom Systems. Journal of Sound and Vibration. 2002, 258(5): 829~845
    80 M. Feldman,Nonlinear System Vibration Analysis Using The Hilbert Transform-I: Free Vibration Analysis Method‘Freevib’. Mechanical Systems and Signal Processing. 1994, (8): 119~127
    81 M. Feldman. Non-linear Free Vibration Identification Via the Hilbert Transform. Journal of Sound and Vibration. 1997, 208(3): 475~489
    82 H. Unbehauen, G. P. Rao. A Review of Identification in Continuous Time Systems. Annual Reviews in Control. 1998, (22): 145~171
    83戎海武.窄带随机噪声激励下多自由度非线性系统的响应.力学季刊. 2003,24(2): 211~218
    84张立翔.非线性振动结构的识别.工程力学. 1994,11(2): 110~122
    85赵玉成.时间序列关联维数在非线性系统运动性态识别中的应用.航空学报. 2003,24(1): 27~31
    86 A. H. Carazo, J. L. Pe′rez. Different Approaches for State Filtering in Nonlinear Systems with Uncertain Observations. Applied Mathematics and Computation. 2007, (187): 708~724
    87 M. Solomou, C. Evans, D. Rees, N. Chiras. Frequency Domain Analysis ofNonlinear Systems Driven by Multiharmonic Signals. IEEE Instrumentation and Measurement Technology Conference Anchorage, AK. USA, 2002, (5): 21~23
    88 E. A. Elrady. Anonlinear Approach to Harmonic Signal Modeling. Signal Processing. 2004, (84): 163~195
    89 E. L. Jansen. A Perturbation Method for Nonlinear Vibrations of Structures. Xxiictam,Warsaw. Poland, 2004: 15~21
    90陈昌亚,宋汉文,王德禹,陶明德.卫星结构铝蜂窝板非线性振动试验与参数辨识研究.振动与冲击. 2004,23(1): 8~12
    91 A. Lal, B. N. Singh, R. Kumar. Nonlinear Free Vibration of Laminated Composite Plates on Elastic Foundation with Random System Properties. International Journal of Mechanical Sciences. 2008, (50): 1203~1212
    92徐胜红等. MIMO非线性系统状态估计的递推Monte Carlo方法研究.数据采集与处理. 2003,(18): 319~322
    93 R. Pintelon. Frequency Domain Subspace System Identification Using Non- parametric Noise Models. Automatica. 2002, (38): 1295~1311
    94 H. Akcay, S. Turkay. Frequency Domain Subspace-based Identification of Discrete-time Powerspectra from Nonuniformly Spaced Measurements. Automatica. 2004, (40): 1333~1347
    95 D. H. Kim. Response Function for Linear and Quadratic Non-Linear systems Using Vector Notation. Mechanical Systems and Signal Processing. 2003, 17(5): 1049~1067
    96 D. E. Adams, R. J. Allemang. A Frequency Domain Method for Estimating the Parameters of a Non-Linear Structural Dynamic Model Through Feedback. Mechanical Systems and Signal Processing. 2000, 14(4): 637~656
    97 W. A. Silva. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Sing Digital Filter Techniques. NASA Technical Memorandum 112872,1997: 1~14
    98 F. F. Pashchenko, K. R. Chernyshov. A Concept of Knowledge-Based Identification of Nonlinear Systems. Computers in Industry. 1999, (39): 191~197
    99 E. M. Daya, M. P. Ferry. A Numerical Method for Nonlinear Eigenvalue Problems Application to Vibrations of Viscoelastic Structures. Computers and Structures. 2001, (79): 533~541
    100 C. F. Hung, W. J. Ko, C. H. Tai. Engineering. Identification of Dynamic Systems from Data Composed by Combination of Their Response Compoments. Structures. 2002, (24): 1441~1450
    101 J. B. Chen, J. Li.The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures with Uncertain Parameters. Structural Safety. 2007, (29): 77~93
    102俞启浩.线性和非线性振动系统的识别.振动与冲击. 1994, 2(50): 48~55
    103张宪民.应用试验模态参数修正理论模型的最佳矩阵逼近法.北京航空航天大学学报. 1994, 20(2): 142~149
    104宋汉文,傅志方,饶柱石,周海亭.非线性系统参数辨识的一种频域模型.应用力学学报. 1996,13(3):7~12
    105宋汉文,王文亮,傅志方.正弦激励用于非线性系统参数辨识.复旦学报. 1999,38(2):166~170
    106汪小华,陈学前,张培强.离散非线性系统的方程解耦与模态分析.中国科学技术大学学报. 2002,32(6): 649~655
    107傅惠民.相关系数平稳过程时频分析方法.航空动力学报. 2002, 17(50): 505~512
    108李臣,马爱军,冯雪梅.一种高效的频域模态参数识别法.振动与冲击. 2004,23(3): 128~132
    109 T. K. Cauhey. Nonlinear Theory of Random Vibrations. Advances in Applied Mechanics. Academic Press.Ⅶ. 1971: 209
    110 J. B. Roberts, Response of Non1inear Mechanical Systems to Random Excitation. Part 1:Markov Methods, Shock and Vibration Digest. 1981, 13(4): 17~28
    111 J. F. Dunne, M. Ghanbari. Extreme-value Prediction for Nonlinear Stochastic Oscillators Via Numerical Solutions of The Stationary FPK Equation. Journal of Sound and Vibrarion. 1997, 206(5): 697~724
    112 R. B. Wang, K. Yasuda, Z. K. Zhang. A Generalized Analysis Technique of The Stationary FPK Equation in Nonlinear Systems under Gaussian White Noise Excitations.International Journal of Engineering Science. 2000, 38: 1315~1330
    113 P. Yang. Experimental and Mathematical Evaluation of Dynamic Behaviour od an Oil-air Coupling Shock Absorber. Mechanical Systems and SignalProcessing. 2003, 17(6): 1367~1379
    114 S. Günel, F. A. Savaci. Determination of The Stationary State Densities of The Stochastic Nonlinear Dynamical Systems. International Journal of Engineering Science. 2006, (44): 1432~1447
    115 S. A. Fazelzadeh, S. H. Pourtakdoust, N. Assadian. Stochastic Analysis of Two Dimensional Nonlinear Panels with Structural Damping under Random Excitation. Aerospace Science and Technology. 2006, (10): 192~198
    116 X. L. Yang, W. Xu, Z. K. Sun. Response Statistics of Strongly Nonlinear System to Random Narrow Band Excitation. Journal of Sound and Vibration. 2006, (291): 1261~1268
    117 N. Hoffmann, L. Gaul. A Stochastic Averaging Approach for Printed Circuit Boards with Nonlinear Damping Characteristics Subjected to Random Vibration Loads. Mechanics Research Communications. 2006, (33): 385~393
    118 H. Hein,ü. Lepik. Response of Nonlinear Oscillators with Random Frequency of Excitation, Revisited. Journal of Sound and Vibration. 2007, (301): 1040~1049
    119 H. N. Pishkenari, M. Behzad, A. Meghdari. Nonlinear Dynamic Analysis of Atomic Force Microscopy under Deterministic and Random Excitation. Chaos, Solitons and Fractals. 2008, (37): 748~762
    120 K. S. Smith, Modal Test of The Cassini Spacecraft. 15th International Modal Analysis Conference,Bethel,CT USA, 1997: 804~810
    121 S. D. Papka, S. Kyriadkides. Experiments and Full-Scale Numerical Simulations of In-Plane Crushing of a Honeycomb. Acta Materialia. 1998,46(5): 2765~2776
    122 H. G. Allen, Analysis and Design of Structural Panels, Pergamon Press, Oxford, 1969:69
    123 H. S. Kim, S. T. S. Alhassani. A Morphological Elastic Model Hexagonal Columnar Structures. International Journal of Mechanical Sciences. 2001, (43): 1027~1060
    124 T. Saito. Parameter Identification for Aluminum Honeycomb Sandwich Panels Based on Orthotropic Timoshenlo Beam Theory. Journal of Sound and Vibration. 1997, 208(2): 271~287
    125 W. S. Burton, A. K. Noor. Assessment of Continuum Models for Sandwich Panel Honeycomb Cores. Comput. Methods Appl. Mech. Engrg. 1997, (145): 341~360
    126罗亚军,牛红攀,徐卫秀,阳志光,张希农.安装蜂窝板动力学特性分析及主动控制试验研究.应用力学学报. 2006,2(32):267~270
    127 K. Paik, A. K. Thayamballi, G. S. Kim. The Strength Characteristics of Aluminum Honeycomb Sandwich Panels. Thin-Walled Structures. 1999, (35): 205~231
    128 P. R. Cunningham, R. G. White. Dynamic Response of Doubly Curved Honeycomb Sandwich Panels to Random Acoustic Excitation. Part 1: Experimental Study. Journal of Sound and Vibration. 2003, (264): 579~603
    129 P. R. Cunningham, R. G. White. Dynamic Response of Doubly Curved Honeycomb Sandwich Panels to Random Acoustic Excitation. Part 2: Theoretical Study. Journal of Sound and Vibration. 2003, (264): 605~637
    130陈昌亚,宋汉文,王德禹,陶明德.卫星振动试验中固有频率“漂移”现象初步研究.振动与冲击,2003,22(4):23~26
    131卢文浩,鲍荣浩.动态冲击下蜂窝材料的力学行为.振动与冲击. 2005,24(1): 1~5
    132王威远,王聪,魏英杰,邹振祝.复合材料蜂窝结构锥形壳振动传递特性试验研究.工程力学. 2007,24(7): 1~10
    133 M. Meo, R. Vignjevic, G. Marengo. The Response of Honeycomb Sandwich Panels under Low-Velocity Impact Loading. International Journal of Mechanical Sciences. 2005, (47): 1301~1325
    134吴涤,郦正能,寇长河.蜂窝夹芯叠层板的低速冲击损伤分析.北京航空航天大学学报. 1999,25(1): 45~48
    135 K. M. Rao, Buckling Analysis of Frp—faced Anisotropic Cylindrical Sandwichpane1. Engineering Mech. 1985, 11(4): 529~544
    136 G. Benetin, L. Galgani, J. M. Strelcyn, Kolmogorov Entropy and Numerical Experiments. Phys. Rev. A. 1976, (14): 2338~2345
    137 A. Wolf, J. B. Swift, H. L. Swinney. Determining Lyapunov Exponent from a Time Series. Phys. D. 1985, (16): 285~317
    138 G. Barana, I. Tsuda. A New Method for Computing Lyapunov Exponents. Phys. Lett. A. 1993, 175(6): 421~427
    139 K. Briggs. An Improved for Estimating Lyapunov Exponents of ChaoticTime Series. Phys. Lett. A. 1990, (151):27~32
    140 S. Sato, M. Sano, Y. Sawada, Practical Methods of Measuring The Generalized Dimension and The Largest Lyapunov Exponent in High Dimensional Chaotic System. Prog. Theor. Phys. 1987, (77): 1~19
    141 M. T. Rosenstein, J. J. Collins, G. J. De luca. A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Phys. D. 1993, (65): 117~134
    142 H. Kantz. A Robust Method to Estimate The Maximal Lyapunov Exponent of a Time Serie. Phys. Lett. A. 1994, (185): 77~87
    143 J. P. Eckmann, S. O. Kamphorst. Lyapunov Exponents from Time Series. Phys. Rev. A. 1986, 34(6): 4971~4979
    144 Z. B. Wu. Remark on Metric Analysis of Reconstructed Dynamics from Chaotic Time Series. Phys. D. 1995, (85): 485~495
    145 D. Kugiumtzis,State Space Reconstruction Parameters in The Analysis of Chaotic Time Series-the Role of The Time Window Length. Phys. D. 1996, (95): 13~28
    146 C. C. Marsden, S. J. Price. Equivalent Linear Modal Parameter Estimation for a Nonlinear Aeroelastic System. Journal of Fluids and Structures. 2004, (19): 607~619
    147 T. P. Chang, H. C. Chang, M. F. Liu. A Finite Element Analysis on Random Vibration of Nonlinear Shell Structures. Journal of Sound and Vibration. 2006, (291): 240~257
    148 K. Fujimura, A. D. Kiureghian. Tail-Equivalent Linearization Method for Nonlinear Random Vibration. Probabilistic Engineering Mechanics. 2007, (22): 63~76
    149 G. A. Vio, G. Dimitriadis, J. E. Cooper. Identification of Non-Linear Dynamic Systems Using an Expert Approach. 47th AIAA/ASME/ASCE/ AHS/ASC Structures. Structural Dynamics, Materials Confere 1-4 Newport, Rhode Island, 2006: 2006~2037
    150莫淑红,沈冰,燕爱玲,张晓伟.基于高阶统计量的河川径流时间序列非线性特征分析.水力发电学报. 2008,27(4):25~29
    151王栋,朱元甡.基于MEM1谱分析的水文时间序列隐含周期特性研究.水文. 2004,22 (2): 19~23
    152 B. M. Kennel, D. I. A. Henry. False Neighbors and False Strands: AReliable Minimum Embedding Dimension Algorithm. Physical Review E. 2002, 66(2): 1~18
    153 F. Takens. Detecting Strange Attractors in Turbulence. In D. A. Rand and L. S.Young. Dynamical Systems and Turbulence. Warwick, Lecture Notes in Mathematics 898, 1980. Berlin, Springer,1981: 366~381
    154 S. Smithk. Modal Test of the Cassini Spacecraft. 15th International Modal Analysis Conference, Bethel, CT USA,1997: 804~810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700