大范围运动柔性梁非线性动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了大范围运动柔性梁的非线性动力学。涉及:大范围运动柔性梁的非线性动力学建模,轴向基础激励悬臂梁的周期振动,含内共振大范围直线运动梁的参激振动稳定性,参数激励与内激励联合作用的大范围直线运动梁的非线性动力行为,及窄带随机参数激励下直线运动梁的随机稳定性等问题。旨在全面地揭示所分析对象固有的非线性动力行为本质。具体内容如下:
     第一章论述了大范围运动柔性体动力学及与其相关的各研究领域的研究现状,阐明了论文的立题目的及意义,并介绍了研究的主要内容与结构安排。
     第二章基于Kane方程及假设模态,在考虑非线性广义作用力及非线性广义惯性力的基础上,导出了大范围运动柔性梁的非线性动力学控制方程(组)。该方程(组)中既有参数激励项,又有外激励项,既有二次非线性项,又存在着三次非线性项。在三次非线性项中,既有惯性项,又有几何项,且几何项除与梁的物理特性有关,还与梁的大范围转动紧密相连,为同类问题的相关研究提供了一个较完整的动力学模型。
     第三章以基础激励悬臂梁的非线性动力行为的研究为切入点,与前期相关文献中有关建模理论的分析与比较,从一个侧面较充分地验证了本文有关分析对象的非线性动力学建模理论及结果的正确性。更为重要的是为后续研究工作的进一步深入开展提供了强有力的理论基础上的保障,同时,也完善了基础激励悬臂梁动力行为的研究。
     第四章利用多尺度法并结合笛卡尔坐标变换,对基于Kane方程所建立起的包含有耦合三次几何及惯性非线性项的大范围直线运动梁动力学控制方程进行一次近似展开,着重对含内共振现象的大范围运动两端铰支梁参激振动平凡响应的稳定性进行了详尽的分析与研究,分析了分叉值处的 Hopf分叉类型,获得了一些新发现。
     第五章同样利用多尺度法并结合笛卡尔坐标变换,对在一定直线运动加速度值下前两阶模态主参激共振或组合参激共振与一、二阶模态间3:1内共振联合作用的简支梁响应的定常解及其稳定性进行了较详尽的分析研究。同时,采用中心流形定理对调制方程进行了降维处理,分析了分叉值处的Hopf分叉类型,通过数值分析,揭示了研究对象所蕴涵的一系列内在的非线性动力学现象。
     第六章仍以前几章所涉及的大范围直线运动梁为分析对象,在考虑了主参激共振、组合参激共振及内共振条件下,利用多尺度法,通过计算系统近似稳态响应的最大Lyapunov指数,对系统定常解,特别是平凡响应的随机稳定性问题,进
    
     大范围运动柔性梁非线性动力学
    行了一些探索性的研究,数值积分表明分析结果的有效性。
     最后,在第七章中,作者对全文的主要工作、特点、创新与贡献之处进行了
    概括与总结,并简列了本课题今后值得进一步研究的几个方向。
This dissertation systematically presents a study on the nonlinear dynamics of flexible beams undergoing a large overall motion, including the nonlinear dynamic modeling of these beams, the periodic vibration of a cantilever beam subject to axial movement of base, the dynamic stability analysis of parametrically excited slender beams undergoing a larger linear motion, the nonlinear dynamic behaviors of slender beams under the combination of both parametric excitation and internal excitation, and the largest Lyapunov exponent and the almost certain stability analysis of slender beams under the narrow-band random parametric excitation. The purpose of this dissertation is to gain an insight into the inherent nonlinear dynamics of flexible beams undergoing a large overall motion. The dissertation is organized as following.
    Chapter 1 surveys the state-of-the-art of dynamics of flexible structures undergoing a large overall motion and the advance in the corresponding theories, and presents the significance, main contents and arrangement of the dissertation.
    In Chapter 2, a set of nonlinear differential equations is established by using Kane's method for the flexible beams undergoing a large overall motion. Compared with the linear model where the generalized inertial force and generalized active force are linearized, the present model takes these nonlinear terms into consideration, which makes it possible for one to capture and understand their complicated nonlinear dynamics.
    Chapter 3 focuses on the dynamic behaviors of a cantilever beam under an axial movement of its base. The results show that the nonlinear inertia terms produce a softening effect and play a significant role in the planar response of the second mode and the higher ones. On the other hand, the nonlinear geometric terms produce a hardening effect and dominate the planar response of the first mode. The validity of the present modeling results is clarified by comparing and calculating the corresponding coefficients in the present modeling method and other investigators' modeling methods, which, to a large extent, gives one the necessary theoretical security to continue the further studies.
    In Chapter 4, the first order approximation to the solution of a set of nonlinear differential equations, which is established in Chapter 2 and governs the planar motion of flexible beams undergoing a large linear motion, are systematically derived via the method of multiple scales. In the case of a simply supported beam with 3:1 internal resonance between the first two modes, the dynamic stability of the trivial state of the system is investigated by using the Cartesian transformation in detail. The equations of approximate stability boundary are derived. Finally, the modulation equations are reduced to a two-dimensional system and the type of the Hopf bifurcations are determined in the corresponding vicinity of the bifurcations via the center manifold theorem and the limit cycles are found.
    
    
    In Chapter 5, the nonlinear planar response of a simply supported flexible beam undergoing a large linear motion, which is seldom dealt with by other investigators, to a principal parametric resonance of either its first or second mode or a combination parametric resonance of the additive type of its first two modes is investigated. The comprehensive periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations and the center manifold theorem are also used to determine the type of the Hopf bifurcations. The numerously complicated nonlinear dynamic behaviors of the beam are revealed.
    Chapter 6 presents the nonlinear dynamic behaviors of a simply supported flexible beam subject to narrow-band random parametric excitation, in which either the principal parametric resonance of its first mode or a combination parametric resonance of the additive type of its first two modes with or without 3:1 internal resonance between the first two modes is taken in to conside
引文
1.张策,黄永强,王子良,陈树勋.弹性连杆机构的分析与设计.北京:机械工业出版社,1996
    2. Bae D S, Haug E J. Recursive formulation for constrained mechanical system dynamics. Ⅰ. Open loop systems. Mechanics of Structures and Machines, 1987, 15(3): 359-382
    3. Bae D S, Haug E J. Recursive formulation for constrained mechanical system dynamics. Ⅱ. Closed loop systems. Mechanics of Structures and Machines, 1988, 15(4): 481-506
    4. Kim S S, Haug E J. Recursive formulation for flexible multibody dynamics. Ⅰ. Open loop systems. Computer Methods in Applied Mechanics and Engineering, 1988, 71(3): 293-314
    5. Kim S S, Haug E J. Recursive formulation for flexible multibody dynamics. Ⅱ. Closed loop systems. Computer Methods in Applied Mechanics and Engineering, 1989, 74(3): 251-369
    6. Wu S C, Haug E J, Kim S S. A variational approach to dynamics of flexible multibody systems. Mechanics of Structures and Machines, 1989, 17(1): 3-32
    7. Chang B L, Shabana A A. Nonlinear finite element formulation for the large displacement analysis of plates. ASME Journal of Applied Mechanics, 1990, 57(3): 707-718
    
    
    8. Chen C, Shabana A A, Rismantab-Sany J. generalized constraint and joint reaction forces in the inverse dynamics of spatial flexible mechanical systems.ASME Journal of Mechanical Design, 1994, 116(3): 777-784
    9. Shabana A A. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dynamics, 1998, 16(3): 293-306
    10. Escalona J L, Hussien H A, Shabana A A. Application of the absolute nodal coordinate formulation to multibody system dynamics. Journal of Sound and Vibration, 1998, 214(5): 833-851
    11.于清,洪嘉振.柔性多体系统动力学的若干热点问题.力学进展,1999,29(2):145-154
    12.洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999
    13. Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139-151
    14. Ho J Y L. Direct path method for flexible multibody spacecraft dynamics. Journal of Spacecraft and Rockets, 1977, 14(1): 102-110.
    15. Bodley C S, Devers A D, ParkA C, Frisch H, P. A digital computer program for the dynamic interaction simulation of controls and structure. NASA Technical Paper 1978, 1219: 1&2.
    16. Banerjee A K, Kane T R. Dynamics of a plate in large overall motion. ASME Journal of Applied Mechanics, 1989, 56(4): 887-892
    17. Yoo H H, Ryan R R, Scott R A. Dynamics of flexible beams undergoing overall motions. Journal of Sound and Vibration, 1995, 181(2):261-278
    18. Yoo H H, Shin S. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 1998, 212(5):807-828
    19. Zhang D J, Liu C Q, Huston R L. On the dynamic of an arbitrary flexible body with large overall motion: An integrated approach. Mechanics of Structures and Machines, 1995, 23(3): 417-435.
    20. Simo J C, Quec V L. On the dynamics of flexible beams under large overall motion, the planar case, part Ⅰ. ASME Journal of Applied Mechanics, 1986, 53(4): 849-854
    21. Simo J C, Quec V L. The role of non-linear theories in transient dynamic analysis of flexible structures. Journal of Sound and Vibration, 1987, 119(3): 487-508
    22. Hsiao K M, Yang R T, Lee A C. A consient finite element formulation for non-linear dynamic analysis of planar beam. International Journal for Numerical Methods in Engineering, 1994, 37(1): 75-89
    23. Shaft I. Geometrically non-linear beam element for dynamics simulation of multibody systems. International Journal for Numerical Methods in Engineering, 1996, 39(5): 763-786
    24. Damaren C, Shaft I. Simulation of flexible-link manipulators with inertial and geometric nonlinearities, Journal of Dynamic System, Measurement and Control, 1995, 117(1): 74-87
    
    
    25. Zhu J F. A new consideration on the derivation of the geometrical stiffness matrix with the natural approach. Computer Methods in Applied Mechanics and Engineering, 1995, 123(1/4):141-160
    26. Wallrapp O. Linearized flexible multibody dynamics including geometric stiffening effects. Mechanics of Structures and Machines, 1991, 19(3): 385-409
    27. Wallrapp O. Standardization of flexible body modeling in multibody system codes, part 1: definition of standard input data. Mechanics of Structures and Machines, 1994, 22(3): 283-304
    28. Wallrapp O, Schwertassek R. Representation of geometric stiffening in motibody system simulation. International Journal for Numerical Methods in Engineering, 1991, 32(8): 1833-1850
    29. Padilla C E, Von Flotow A H. Nonlinear strain-displacement relations and flexible multibody dynamics. Journal of Guidance, Control and Dynamics, 1992, 15(1):128-136
    30. Zhang D J, Huston R L. On dynamic stiffening of flexible bodies having high angular velocity. Mechanics of Structures and Machines, 1996, 24(3): 313-329
    31. Wu S C, Haug E J. Geometric non-linear substructufing for dynamics of flexible mechanical systems. International Journal for Numerical Methods in Engineering, 1988, 26(9): 2211-2226
    32. Liu A Q, Liew K M. Non-linear substructure approach for dynamic analysis of rigid-flexible multibody systems. Computer Methods in Applied Mechanics and Engineering, 1994, 114(3/4):379-396
    33.洪嘉振,刘延柱.离散系统动力学现状.力学进展,1989,19(2):205-210
    34.潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法.力学进展,1996,26(1):28-40
    35.傅衣铭,张思进.非惯性参考系中弹性壳的非线性振动分析.力学学报,1997,29(5):600-605
    36.傅衣铭,张思进.非惯性参考系中板的非线性振动分析.固体力学学报,1997,18(2):133-142
    37.赵跃宇,蒋丽忠.非惯性参考系中弹性薄板动力系统在纵横振动相互耦合时的全局分叉及混沌性质.力学学报,1998,19(2):120-126
    38.蒋丽忠,洪嘉振.作大运动弹性薄板中的几何非线性与耦合变形.力学学报,1999,31(2):243-249
    39.胡海岩.应用非线性动力学.北京:航空工业出版社,2000
    40. Brockett R W. Finite Dimensional Linear Systems. New York: John Wiley, 1970
    41. Nayfeh A H. Perturbation Methods. New York: John Wiley, 1973
    42. Richards J A. Analysis of Periodically Time-Varying Systems. Berlin: Springer-Verlag, 1983
    43. Friedmann P, Hammond C E, Woo T H. EFficient numerical treatment of periodic
    
    systems with application to stability problems. International Journal for Numerical Methods in Engineerings, 1977, 11(7): 1117-1136
    44. Sinha. S C, Chou C C, Denman H H. Stability analysis of systems with periodic coefficients: an approximate approach. Journal of Sound and Vibration, 1979, 64(4): 515-527
    45. Sinha S C, Wu D H. An efficient computational scheme for the analysis of periodic systems. Journal of Sound and Vibration, 1991, 151(1): 91-117
    46. Sinha S C, Wu D H, Juneja V, Joseph P. Analysis of dynamic systems with periodically varying parameters via Chebyshev polynomials. ASME Journal of Vibration and Acoustics, 1993, 115(1): 96-102
    47. Sinha S C, Pandiyan R, Bibb J S. Lyapunov-Floquet transformation: computation and applications to periodic systems. ASME Journal of Vibration and Acoustics, 1996, 118(2): 209-219
    48. Wu D H, Sinha S C. A new approach in the analysis of linear systems with periodic coefficients for applications in rotorcrafi dynamics. The Aeronautical Journal, 1994, 98(971): 9-16
    49. Sinha S C, Butcher E A. Symbolic computation of fundamental solution matrices for linear time-periodic dynamical systems. Journal of Sound and Vibration, 1997, 206(1): 61-85
    50. Butcher E A, Sinha S C. Symbolic computation of local stability and bifurcation surfaces for nonlinear time-periodic systems. Nonlinear Dynamics, 1998, 17(1): 1-21
    51. Sinha S C, Butcher E A, David A. Construction of dynamically equivalent time-invariant forms for time-periodic systems. Nonlinear Dynamics, 1998, 16(3): 203-221
    52. Guttalu R S, Flashner H. Stability analysis of periodic systems by truncated point mappings. Journal of Sound and Vibration, 1996, 189(1): 33-54
    53. Butcher E A, Sinha S C. Canonical perturbation of a fast time-periodic Hamiltonian via Liapunov-Floquet transformation. ASME Journal of Applied Mechanics, 1998, 65(1): 209-217
    54. Belmont M R. Generalized frequency response functions for systems with time-varying coefficients. Proc Instn Mech Engrs, 1994, 208(C3): 145-153
    55. Xu X C, Agrawal S K. Linear time-varying dynamic systems optimization via higher-order method using shifted Chebyshev's polynomials. ASME Journal of Vibration and Acoustics, 1999, 121(2): 258-261
    56. 朱位秋.随机振动.北京:科学出版社,1998
    57. Davies H G, Anand G V. Phase plane for narrow band random excitation of a Duffing oscillator. Journal of Sound and Vibration, 1986, 104(2): 277-283
    58. Richard K, Anand G V. Nonlinear resonance in strings under narrow band random excitation, part Ⅰ: planar response and stability. Journal of Sound and Vibration, 1983, 86(1): 85-98
    
    
    59. Davies H G, Liu Q. The response envelope probability density function of a Duffing oscillator with random narrow band excitation. Journal of Sound and Vibration, 1990, 139(1): 1-8
    60. Rajan S, Davies H G. Multiple time scaling of the response of a Duffing oscillator to narrow-band random excitation. Journal of Sound and Vibration, 1988, 123(3): 497-506
    61. Davies H G, Rajan S. Random superharmonic and subharmonie response: multiple time scaling of a Duffing oscillator. Journal of Sound and Vibration, 1988, 126(2): 195-208
    62. Nayfeh A H, Serhan S J. Response statistics of non-linear systems to combined deterministic and random excitations. International Journal of Non-Linear Mechanics, 1990, 25(5): 493-509
    63. Fang T, Dowell E H. Numerical simulations of jump phenomena in stable Duffing systems. International Journal of Non-Linear Mechanics, 1987, 22(3): 267-274
    64. Zhu W Q, Lu M Q, Wu Q T. Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation. Journal of Sound and Vibration, 1993, 165(2): 285-304
    65.刘文彦.非线性系统的有界随机扰动:[博士学位论文].杭州:浙江大学,2000
    66.戎海武,徐伟,方同.谐和与窄带随机噪声联合作用下Duffing系统的参激主共振.力学学报,1998,30(2):178-185
    67. Rong H, Xu W, Fang T. Principal response of Duffing oscillator to combined deterministic and narrow-band random parametric excitation. Journal of Sound and Vibration, 1998, 210(4), 483-515
    68.戎海武,徐伟,方同.二自由度耦合非线性随机系统的最大Lyapunov指数和稳定性.应用力学学报,1998,15(1):22-29
    69. Stratonovich R L. Topics in the Theory of Random Noise. New York: Gordon & Breach, 1963
    70. Wedig W V. Invariant measure and Lyapunov exponents for generalized parameter fluctuations. Structural Safety, 1990, 8(1): 13-25
    71. Evensen H A, Even-Iwanowski R M. Effects of longitudinal inertia upon the parametric response of elastic columns. ASME Journal of Applied Mechanics, 1966, 33(1): 141-148
    72. Nayfeh AH, Mook D T. Nonlinear Oscillations. New York: John Wiley & Sons, 1979
    73. Crespo da Silva M R M, Glynn C C. Non-linear flexural-flexural-torsional dynamics of inextensional beams-Ⅰ: Equations of motion. Journal of Structural Mechanics, 1978, 6(4): 437-448
    74. Crespo da Silva M R M, Glynn C C. Non-linear fiexural-flexural-torsional dynamics of inextensional beams-Ⅱ: Forced motions. Journal of Structural Mechanics, 1978, 6(4): 449-461
    75. Crespo da Silva M R M. Non-linear fiexural-flexural-torsional-extensional dynamics of beams.Ⅰ: Formulation. International Journal of Solids and Structures, 1988, 24(12):
    
    1225-1234
    76.Crespo da Silva M R M. Non-linear flexural-flexural-torsional-extensional dynamics of beams.Ⅰ: Response analysis. International Journal of Solids and Structures, 1988, 24(12): 1235-1242
    77.Nayfeh A H, Pai P F. Non-linear Non-planar parametric responses of an inextensional beam. International Journal of Non-Linear Mechanics, 1989, 24(2): 138-158
    78.Zavodney L D, Nayfeh A H. The non-linear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment. International Journal of Non-Linear Mechanics, 1989, 24(2): 105-125
    79.Anderson T J, Nayfeh A H, Balachandran B. Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. ASME Journal of Vibration and Acoustics, 1996, 118(1): 21-27
    80.Hyun S H, Yoo H H. Dynamic modeling and stability analysis of axially oscillating cantilever beams. Journal of Sound and Vibration, 1999, 228(3): 543-558
    81.Esmailzadeh E, Nakhaie-Jazar G Periodic behaviors of a cantilever beam with end mass subjected to harmonic base excitation. International Journal of Non-Linear Mechanics 1998, 33(4): 567-577
    82.Esmailzadeh E, Jalili N. Parametric response of cantilever Timoshenko beams with tip mass under harmonic support motion. International Journal of Non-Linear Mechanics, 1998, 33(5): 765-781
    83.Crespo da Silva M R M, Zaretzky C L. Nonlinear flexural-flexural-torsional interactions in beams including the effect of torsional dynamics. Ⅰ: primary resonance. Nonlinear Dynamics, 1994, 5(1): 3-23
    84.Zaretzky C L, Crespo da Silva M R M. Nonlinear flexural-flexural-torsional interactions in beams including the effect of torsional dynamics. Ⅱ: combination resonance, Nonlinear Dynamics, 1994, 5(2): 161-180
    85.Kar R C, Dwivedy S K. Non-linear dynamics of a slender beam carrying a lumped mass with principal parametric and internal resonances. International Journal of Non-Linear Mechanics, 1999, 34(3): 515-529
    86.Dwivedy S K, Kar R C. Dynamics of a slender beam with an attached mass under combination parametric and internal resonances. Part Ⅰ. Steady state response. Journal of Sound and Vibration, 1999, 221(5): 823-848
    87.Dwivedy S K, Kar R C. Dynamics of a slender beam with an attached mass under combination parametric and internal resonances. Part Ⅱ. Periodic and chaotic response. Journal of Sound and Vibration, 1999, 222(2): 283-305
    88.Chin C M, Nayfeh A H. Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dynamics, 1997, 12(2): 129-154
    89.Chin C M, Nayfeh A H. Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dynamics, 1999, 20(2): 131-158
    90.Ibrahimbegovic & Mamouri S. Nonlinear dynamics of flexible beams in planar
    
    motion: Formulation and time-stepping scheme for stiff problems. Computers and Structures, 1999, 70(1): 1-22
    91.Knudsen J, Massih A R. Vibro-impact dynamics of a periodically forced beam. ASME Journal of Pressure Vessel Technology, 2000, 122(2): 210-221
    92.Yigit A S, Christoforou A E Impact dynamics of composite beams. Composite Structures, 1995, 32(1-4): 187-195
    93.Tseng C Y, Tung P C. Dynamics of a flexible beam with active nonlinear magnetic force. ASME Journal of Vibration and Acoustics, 1998, 120(1): 39-46
    94.Pellicano F, Matroddi F. Nonlinear dynamics of a beam on elastic foundation. Nonlinear Dynamics, 1997, 14(4): 335-355
    95.Chakraborty Q Mallik A K. Parametrically excited non-linear traeling beams with and without external forcing. Nonlinear Dynamics, 1998, 17(4): 301-324
    96.Behdinan K, Stylianou M T, Tabarrok B. Dynamics of flexible sliding beams-non-linear analysis. Part Ⅰ: Formulation. Journal of Sound and Vibration, 1997, 208(4): 517-539
    97.Behdinan K, Tabarrok B. Dynamics of flexible sliding beams-non-linear analysis. Part Ⅱ: Transient response. Journal of Sound and Vibration, 1997, 208(4): 541-565
    98.Zibdeh H S, Juma H S. Dynamics response ora rotating beam subjected to a random moving load. Journal of Sound and Vibration, 1999, 223(5): 741-758
    99.Jacquot R G Random vibration of damped modified beam systems. Journal of Sound and Vibration, 2000, 235(3): 441-454
    100.Eslimy-Isfahany S H R Banerjee J R Sobey A J. Response of a bending-torsion coupled beam to determinstic and random loads. Jounal of Sound and Vibration, 1996, 195(2): 267-283
    101.Banerjee J R, Kennedy D. Response of an axially loaded Timoshenko beam to random loads, Jounal of Sound and Vibration, 1985, 101(4): 481-487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700