多孔氧化铝薄膜的光学性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是一种介电常数(或折射率)在空间周期变化的介电结构,在光子晶体中引入缺陷可以在光子晶体的截止带中出现缺陷峰。光子晶体以及存在缺陷的光子晶体在很多领域有应用前景。本文瞄准现有的氧化铝类光子晶体中存在的截止带带边不陡峭的问题、引入缺陷以及实际应用等方面开展工作。论文的主要研究内容如下:
     1、采用电流控制模式制备了氧化铝薄膜类光子晶体,有效克服了电压控制模式存在的孔道生长速度不均匀问题。考察了电流控制模式下周期时间、电流数值、占空比、温度和电解液组分等对氧化铝薄膜光学性能的影响。通过选择电流信号的周期时间,我们成功地制备了窄带隙(禁带半峰宽小于20nm)氧化铝薄膜。
     2、制备了具有缺陷峰的氧化铝薄膜,考察了缺陷引入电压的波形、大小、作用时间、位置和电解液浓度等对缺陷峰的影响。缺陷的位置和物理厚度对缺陷峰透过率的影响最大。
     3、以窄带隙氧化铝薄膜作为液体传感材料,研究了光子带隙位置(或透过率)与液体折射率之间相互关系。孔道表面的化学修饰能够使光子带隙发生移动,这为后续的探测奠定了基础。
     4、以油脂作为掩膜,在氧化铝薄膜局部引入缺陷,并以此薄膜为基础,提出了一种以红外线为工作波段的光学防伪技术。
Photonic crystal is a kind of periodic structures containing ordered arrays with high and low dielectric constant components. Defect peaks will appear in the photonic band gaps (PBGs), if defects are introduced into photonic crystals. Photonic crystals with or without defects have application prospects in many filelds. The paper aims at solving slant band edge of PBGs, introducing defects and exploring practical use. The main content is as follows:
     1) A current controlled method was developed to fabricate porous anodic alumina (PAA) films, overcomeing the uneven pore growth in the voltage control mode. The periodic time, the current value, the duty ratio, the temperature and constituents of the electrolyte were investigated in the current control mode to examine their impacts on the optical property of PAA films. By selecting the proper periodic time, we successfully prepared the PAA films with narrow band gaps, of which half-peak width was less than20nrn.
     2) We have manufactured the PAA films with defects and analyzed the effects of various factors on the defect modes, including defect-introducing voltage waveform, voltage value, voltage duration, voltage sequence and electrolyte concentration. The position and physical thickness of defects played a leading role in determining the transmittance of the defect peak.
     3) Using PAA films with narrow band gaps as a sensing element for liquids, we studied the relationship between the PBG position or transmittance of PAA films and the liquid refractive index. The chemical modification on the pore surface could shift the position of PBG, which lay the foundation for selective recognition.
     4) Using the grease as a mask, we created defects in the selected sections of the PAA films. On the basis of this type of PAA films, we proposed an anti-counterfeiting technique working in infrared region.
引文
[1]马赐英,光子晶体原理及应用,第一版,科学出版社(2010).
    [2]Gargini, P., Glaze, J., Williams, O., The SIA's 1997 national technology roadmap for semiconductors. Solid State Technology 41,73-76 (1998).
    [3]Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 58,2059-2062 (1987).
    [4]John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 58,2486-2489 (1987).
    [5]http://www.sic.cas.cn/kxcb/kpwz/200908/t20090827_2448734.html
    [6]温熙森,光子/声子晶体理论与技术,第一版,科学出版社(2006).
    [7]Meade, R. D., Brommer, K. D., Rappe, A. M., et al., Existence of a photonic band-gap in 2 dimensions. Applied Physics Letters 61,495-497 (1992).
    [8]Painter, O., Vuckovic, J., Scherer, A., Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. Journal of the Optical Society of America B-Optical Physics 16,275-285 (1999).
    [9]Liu, C. Y., Electro-optical resonant switching in two-dimensional side-coupled waveguide-cavity photonic crystal systems. Physics Letters A 375,3895-3898 (2011).
    [10]Djafari-Rouhani, B., El Boudouti, E. H., Akjouj, A., et al., Surface states in one-dimensional photonic band gap structures. Vacuum 63,177-183 (2001).
    [11]Wang, X., Hu, X. H., Li, Y. Z., et al., Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures. Applied Physics Letters 80,4291-4293 (2002).
    [12]Haas, T., Hesse, A., Doll, T., Omnidirectional two-dimensional photonic crystal band gap structures. Physical Review B 73,045130 (2006).
    [13]Lodahl, P., Van Driel, A. F, Nikolaev, I. S., et al., Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654-657 (2004).
    [14]Cornelius, C. M., Dowling, J. P., Modification of Planck blackbody radiation by photonic band-gap structures. Physical Review A 59,4736-4746 (1999).
    [15]Reese, C. E., Asher, S. A., Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments. Analytical Chemistry 75,3915-3918 (2003).
    [16]Wierer, J. J., Krames, M. R., Epler, J. E., et al., In GaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Applied Physics Letters 84,3885-3887 (2004).
    [17]Kopp, V. I., Fan, B., Vithana, H. K. M., et al., Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Optics Letters 23,1707-1709 (1998).
    [18]Shih, M. H., Kuang, W., Mock, A., et al., High-quality-factor photonic crystal heterostructure laser. Applied Physics Letters 89, (2006).
    [19]Tomijenovic-Hanic, S. de, Sterke, C. M., High-Q cavity design in photonic crystal heterostructures.2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference,1-9,2415-2416 (2008).
    [20]孙冬丽.2006.一维光子晶体波分复用滤波器的研究[D]:[硕士].成都:西南交通大学,30-35.
    [21]刘艳荣,一维光子晶体滤波器的研究进展.国外电子元器件,88-89(2008).
    [22]Bingham, A., Zhao, Y. G, Grischkowsky, D., THz parallel plate photonic waveguides. Applied Physics Letters 87,051101 (2005).
    [23]Charlton, M. D. B., Parker, G J., Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap. Journal of Micromechanics and Microengineering 8,172-176 (1998).
    [24]Gomez, A., Lakhtakia, A., Solano, M. A., et al., Parallel-plate waveguides with Kronig-Penney morphology as photonic band-gap filters. Microwave and Optical Technology Letters 36,4-8 (2003).
    [25]Salzman, J., Katz, O., Photonic crystal heterostructure waveguides. Physica Status Solidi C:Current Topics in Solid State Physics,1,1531-1536 (2004).
    [26]Knight, J. C., Birks, T. A., Russell, P. S., et al., All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters 21,1547-1549 (1996).
    [27]Liu, H. W., Sun, X. W., Li, Z. F., Low-pass filters of wide stop-band based on photonic band-gap structures. Journal of Infrared and Millimeter Waves 23, 135-138 (2004).
    [28]Laegsgaard, J., Bjarklev, A., Doped photonic bandgap fibers for short-wavelength nonlinear devices. Optics Letters 28,783-785 (2003).
    [29]West, J. A., Smith, C. M., Borrelli, N. F., et al., Surface modes in air-core photonic band-gap fibers. Optics Express 12,1485-1496 (2004).
    [30]廖兴展,高跃飞,李鸿,徐旭明,空芯PBG光子晶体光纤带隙的结构.南昌大学学报(工科版)29,139-142(2007).
    [31]Ma, G H., Shen, J., Zhang, Z. J., et al., Ultrafast all-optical switching in one-dimensional photonic crystal with two defects. Optics Express 14,858-865 (2006).
    [32]Cuesta-Soto, F., Martinez, A., Garcia, J., et al., All-optical switching structure based on a photonic crystal directional coupler. Optics Express 12,161-167 (2004).
    [33]Vlasov, Y. A., Bo, X. Z., Sturm, J. C., et al., On-chip natural assembly of silicon photonic bandgap crystals. Nature 414,289-293 (2001).
    [34]Teo, S. H. G, Liu, A. Q., Yu, M. B., et al., Synthesized processing techniques for monolithic integration of nanometer-scale hole type photonic band gap crystal with micrometer-scale microelectromechanical structures. Journal of Vacuum Science & Technology B 24,1689-1701 (2006).
    [35]Yablonovitch, E., Gmitter, T. J., Meade, R. D., et al., Donor and acceptor modes in photonic band-structure. Physical Review Letters 67,3380-3383 (1991).
    [36]Ho, K. M., Chan, C. T., Soukoulis, C. M., et al., Photonic band-gaps in 3-dimensions-new layer-by-layer periodic structures. Solid State Communications 89,413-416 (1994).
    [37]Lin, S. Y., Fleming, J. G, Hetherington, D. L., et al., A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394,251-253 (1998).
    [38]Fleming, J. G, Lin, S. Y, Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm. Optics Letters 24,49-51 (1999).
    [39]毛文娟,王子华,光子晶体光纤的原理、应用和制作.光通信技术27,41-43(2003).
    [40]Xu, Y, Sun, H. B., Ye, J. Y, et al., Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips. Journal of the Optical Society of America B-Optical Physics 18, 1084-1091 (2001).
    [41]Bogaerts, W., Wiaux, V., Taillaert, D., et al., Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography. IEEE Journal of Selected Topics in Quantum Electronics 8,928-934 (2002).
    [42]Yavuzcetin, O., Ozturk, B., Xiao, D., et al., Conicity and depth effects on the optical transmission of lithium niobate photonic crystals patterned by focused ion beam. Optical Materials Express 1,1262-1271 (2011).
    [43]Teo, S. H. G., Liu, A. Q., Zhang, J. B., et al., Photonic bandgap crystal resonator enhanced, laser controlled modulations of optical interconnects for photonic integrated circuits. Optics Express 16,7842-7848 (2008).
    [44]Meseguer, F., Blanco, A., Miguez, H., et al., Synthesis of inverse opals. Colloids and Surfaces a-Physicochemical and Engineering Aspects 202,281-290 (2002).
    [45]Johnson, N. P., McComb, D. W., Richel, A., et al., Synthesis and optical properties of opal and inverse opal photonic crystals. Synthetic Metals 116, 469-473 (2001).
    [46]Holgado, M., Garcia-Santamaria, F., Blanco, A., et al., Electrophoretic deposition to control artificial opal growth. Langmuir 15,4701-4704 (1999).
    [47]Masuda, Y., Itoh, M., Yonezawa, T., et al., Low-dimensional arrangement SiO2 particles. Langmuir 18,4155-4159 (2002).
    [48]Ma, X. Y., Yan, Z. J., The size influence of silica microspheres on photonic band gap of photonic crystals. International Journal of Modern Physics B 21, 2761-2768 (2007).
    [49]Zakhidov, A. A., Baughman, R. H., Iqbal, Z., et al., Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282,897-901 (1998).
    [50]Chen, Z., Zhan, P., Wang, Z. L., et al., Two-and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Advanced Materials 16,417-422 (2004).
    [51]Ni, P. G, Cheng, B. Y, Zhang, D. Z., Inverse opal with an ultraviolet photonic gap. Applied Physics Letters 80,1879-1881 (2002).
    [52]Li, J., Wu, Y, Fu, J., et al., Reversibly strain-tunable elastomeric photonic crystals. Chemical Physics Letters 390,285-289 (2004).
    [53]Kim, T.-T., Lee, S.-G., Kim, M.-W., et al., Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures. Applied Physics Letters 95, (2009).
    [54]Ozbay, E., Layer-by-layer photonic crystals from microwave to far-infrared frequencies. Journal of the Optical Society of America B-Optical Physics 13, 1945-1955 (1996).
    [55]Liang, Q. X., Li, D. C., Yang, G, Controllable bandgap properties induced by the air sphere radius variation in diamond-structured ceramic photonic crystals. Journal of the American Ceramic Society 94,4134-4137 (2011).
    [56]Dai, W., Wang, H., Zhou, D., et al., The ultra-wide band gap property induced by lattice period gradually changing in three-dimensional photonic crystals. Journal of the American Ceramic Society 93,3980-3982 (2010).
    [57]Masuda, H., Ohya, M., Asoh, H., et al., Photonic crystal using anodic porous alumina. Japanese Journal of Applied Physics Part 2-Letters 38, L1403-L1405 (1999).
    [58]Mikulskas, I., Juodkazis, S., Tomasiunas, R., et al., Aluminum oxide photonic crystals grown by a new hybrid method. Advanced Materials 13,1574-+(2001).
    [59]Li, J., Papadopoulos, C., Xu, J., Nanoelectronics-Growing Y-junction carbon nanotubes. Nature 402,253-254 (1999).
    [60]Meng, G. W., Jung, Y. J., Cao, A. Y, et al., Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proceedings of the National Academy of Sciences of the United States of America 102, 7074-7078 (2005).
    [61]Wang, B., Fei, G. T., Wang, M., et al., Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 18,365601 (2007).
    [62]Zheng, W. J., Fei, G T., Wang, B., et al., Modulation of transmission spectra of anodized alumina membrane distributed bragg reflector by controlling Anodization Temperature. Nanoscale Research Letters 4,665-667 (2009).
    [63]Guo, D. L., Fan, L. X., Wang, F. H., et al., Porous anodic aluminum oxide bragg stacks as chemical sensors. Journal of Physical Chemistry C 112,17952-17956 (2008).
    [64]Hu, X., Ling, Z. Y., Sun, T. L., et al., Tuning optical properties of photonic crystal of Anodic alumina and the influence of electrodeposition. Journal of the Electrochemical Society 156, D521-D524 (2009).
    [65]Zhu, X. F., Liu, L., Song, Y, et al., Oxygen bubble mould effect:serrated nanopore formation and porous alumina growth. Monatshefte Fur Chemie 139, 999-1003 (2008).
    [66]Li, D. D., Zhao, L. A., Jiang, C. H., et al., Formation of anodic aluminum oxide with serrated nanochannels. Nano Letters 10,2766-2771 (2010).
    [67]Sulka, G. D., Hnida, K., Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization. Nanotechnology 23,075303 (2012).
    [68]Ono, S., Saito, M., Asoh, H., Self-ordering of anodic porous alumina induced by local current concentration:Burning. Electrochemical and Solid State Letters 7, B21-B24(2004).
    [69]Chu, S. Z., Wada, K., Inoue, S., et al., Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Advanced Materials 17,2115-2119 (2005).
    [70]Masuda, H., Yamada, H., Satoh, M., et al., Highly ordered nanochannel-array architecture in anodic alumina. Applied Physics Letters 71,2770-2772 (1997).
    [71]Asoh, H., Nishio, K., Nakao, M., et al., Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. Journal of the Electrochemical Society 148, B152-B156 (2001).
    [72]Smith, J. T., Hang, Q., Franklin, A. D., et al., Highly ordered diamond and hybrid triangle-diamond patterns in porous anodic alumina thin films. Applied Physics Letters 93,043108 (2008).
    [73]Kustandi, T. S., Loh, W. W., Gao, H., et al., Wafer-Scale Near-Perfect Ordered Porous Alumina on Substrates by Step and Flash Imprint Lithography. Acs Nano 4,2561-2568 (2010).
    [74]Sun, Z. J., Kim, H. K., Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films. Applied Physics Letters 81,3458-3460 (2002).
    [75]Tian, Z.-P., Lu, K., Chen, B., Unique nanopore pattern formation by focused ion beam guided anodization. Nanotechnology 21,405301 (2010).
    [76]Kant, K., Low, S. P., Marshal, A., et al., Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum. Acs Applied Materials & Interfaces 2,3447-3454 (2010).
    [77]Lee, W., Ji, R., Gosele, U., et al., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials 5,741-747 (2006).
    [78]Lee, W., Schwirn, K., Steinhart, M., et al., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature Nanotechnology 3,234-239 (2008).
    [79]Lee, W., Kim, J. C., Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 21,485304 (2010).
    [80]Losic, D., Lillo, M., Losic, D. Jr., Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. Small 5, 1392-1397 (2009).
    [81]冯端,金国钧,凝聚态物理学(上卷).第一版,高等教育出版社(2003).
    [82]Vincent, G., Optical-properties of porous silicon superlattices. Applied Physics Letters 64,2367-2369 (1994).
    [83]方云团,沈廷根,谭锡林,一维光子晶体掺杂缺陷模研究.光学学报24,1557-1560(2004).
    [84]Ma Rui, X. J., Tam W. Y, Wide band gap photonic structures in dichromate gelatin emulsions. Applied Physics Letters 89,081116 (2006).
    [85]Kok M. H., Lu W. X., Lee J. C. W., et al., Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions. Applied Physics Letters 92,151108 (2008).
    [86]王霞,吕浩,谭永炎,缺陷模带隙一维光子晶体的简捷制备.中国科学:物理学力学天文学42,1012-1016(2012).
    [87]Chigrin, D. N., Lavrinenko, A. V., Yarotsky, D. A., et al., Observation of total omnidirectional reflection from a one-dimensional dielectric lattice. Applied Physics a-Materials Science & Processing 68,25-28 (1999).
    [88]Chen, K. M., Sparks, A. W., Luan, H. C, et al., SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method. Applied Physics Letters 75,3805-3807 (1999).
    [89]Sreekanth, K. V., Zeng, S. W., Shang, J. Z., et al., Excitation of surface electromagnetic waves in a graphene-based bragg grating. Scientific Reports 2, 737 (2012).
    [90]Pellegrini, V., Colombelli, R., Carusotto, I., et al., Resonant second harmonic generation in ZnSe bulk microcavity. Applied Physics Letters 74,1945-1947 (1999).
    [91]Hsiao, Y. C., Wu, C. Y, Chen, C. H., et al., Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal. Optics Letters 36,2632-2634 (2011).
    [1]Taberna, L., Mitra, S., Poizot, P., et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials 5,567-573 (2006).
    [2]Umeda, R., Awaji, H., Nakahodo, T., et al., Nanotube composites consisting of metal nanoparticles and polythiophene from electropolymerization of terthiophene-functionalized metal (Au, Pd) nanoparticles. Journal of the American Chemical Society 130,3240-3241 (2008).
    [3]Salem, A. K., Searson, P. C., Leong, K. W., Multifunctional nanorods for gene delivery. Nature Materials 2,668-671 (2003).
    [4]Lee, K. B., Park, S., Mirkin, C. A., Multicomponent magnetic nanorods for biomolecular separations. Angewandte Chemie-International Edition 43, 3048-3050 (2004).
    [5]Van Quy, N., Hoa, N. D., Yu, W. J., et al., The use of anodic aluminium oxide templates for triode-type carbon nanotube field emission structures toward mass-production technology. Nanotechnology 17,2156-2160 (2006).
    [6]Santos, A., Vojkuvka, L., Pallares, J., et al., Cobalt and nickel nanopillars on aluminium substrates by direct current electrodeposition process. Nanoscale Research Letters 4,1021-1028 (2009).
    [7]Masuda, H., Fukuda, K., Ordered metal nanohole arrays made by a 2-step replication of hoeneycomb structures of anodic alumina. Science 268, 1466-1468(1995).
    [8]Lee, W., Ji, R., Goesele, U., et al., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials 5,741-747 (2006).
    [9]Masuda, H., Ohya, M., Asoh, H., et al., Photonic crystal using anodic porous alumina. Japanese Journal of Applied Physics Part 2-Letters 38, L1403-L1405 (1999).
    [10]Kustandi, T. S., Loh, W. W., Gao, H., et al., Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography. Acs Nano 4, 2561-2568 (2010).
    [11]Mikulskas, I., Juodkazis, S., Tomasiunas, R., et al., Aluminum oxide photonic crystals grown by a new hybrid method. Advanced Materials 13,1574-1577 (2001).
    [12]Mizeikis, V., Mikulskas, I., Tomasiunas, R., et al., Optical characteristics of two-dimensional photonic crystals in anodic aluminum oxide films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 43,3643-3647 (2004).
    [13]Nielsch, K., Choi, J., Schwirn, K., et al., Self-ordering regimes of porous alumina: The 10%porosity rule. Nano Letters 2,677-680 (2002).
    [14]Meng, G W., Han, F. M., Zhao, X. L., et al., A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology. Angewandte Chemie-International Edition 48,7166-7170 (2009).
    [15]Tian, Y. T., Meng, G. W., Biswas, S. K., et al., Y-branched Bi nanowires with metal-semiconductor junction behavior. Applied Physics Letters 85,967-969 (2004).
    [16]Choi, J., Sauer, G., Nielsch, K., et al., Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chemistry of Materials 15,776-779 (2003).
    [17]Mahima, S., Kannan, R., Komath, I., et al., Synthesis of platinum Y-junction nanostructures using hierarchically designed alumina templates and their enhanced electrocatalytic activity for fuel-cell applications. Chemistry of Materials 20,601-603 (2008).
    [18]Meng, G. W., Jung, Y. J., Cao, A. Y, et al., Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proceedings of the National Academy of Sciences of the United States of America 102, 7074-7078 (2005).
    [19]Li, D. D., Jiang, C. H., Jiang, J. H., et al., Self-assembly of periodic serrated nanostructures. Chemistry of Materials 21,253-258 (2009).
    [20]Li, D. D., Zhao, L. A., Jiang, C. H., et al., Formation of anodic aluminum oxide with serrated nanochannels. Nano Letters 10,2766-2771 (2010).
    [21]Wang, B., Fei, G T., Wang, M., et al., Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 18,365601 (2007).
    [22]Zheng, W. J., Fei, G. T., Wang, B., et al., Modulation of transmission spectra of anodized alumina membrane distributed Bragg reflector by controlling anodization temperature. Nanoscale Research Letters 4,665-667 (2009).
    [23]Hu, X., Ling, Z. Y, Chen, S. S., et al., Influence of light scattering on transmission spectra of photonic crystals of anodized alumina. Chinese Physics Letters 25,3284-3287 (2008).
    [24]Hu, X., Ling, Z. Y, He, X. H., et al., Controlling transmission spectra of photonic crystals under electrochemical oxidization of aluminum. Journal of the Electrochemical Society 156, C176-C179 (2009).
    [25]Hu, X., Ling, Z. Y, Sun, T. L., et al., Tuning optical properties of photonic crystal of anodic alumina and the influence of electrodeposition. Journal of the Electrochemical Society 156, D521-D524 (2009).
    [26]Hu, X., Pu, Y. J., Ling, Z. Y, et al., Coloring of aluminum using photonic crystals of porous alumina with electrodeposited Ag. Optical Materials 32,382-386 (2009).
    [27]Lee, W., Schwirn, K., Steinhart, M., et al., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature Nanotechnology 3,234-239 (2008).
    [28]Lee, W., Scholz, R., Goesele, U., A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Letters 8,2155-2160 (2008).
    [29]Bruschi, L., Mistura, G, Liu, L., et al., Capillary condensation and evaporation in alumina nanopores with controlled modulations. Langmuir 26,11894-11898 (2010).
    [30]Lee, W., Kim, J.-C., Goesele, U., Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Advanced Functional Materials 20,21-27 (2010).
    [31]Sulka, G D., Hnida, K., Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization. Nanotechnology 23,075303 (2012).
    [32]Su, Y, Fei, G T., Zhang, Y, et al., Controllable preparation of the ordered pore arrays anodic alumina with high-quality photonic band gaps. Materials Letters 65,2693-2695(2011).
    [33]Zhao, S. Y, Chan, K., Yelon, A., et al., Novel structure of AAO film fabricated by constant current anodization. Advanced Materials 19,3004 (2007).
    [34]Guo, D. L., Fan. L. X., Wang F. H., et al, Porous anodic aluminum oxide bragg stacks as chemical sensors. Journal of Physical Chemistry C 112,17952-17956 (2008).
    [35]Liu, Y., Chang, Y., Ling, Z., et al., Structural coloring of aluminum. Electrochemistry Communications 13,1336-1339 (2011).
    [36]Losic, D., Lillo, M., Losic, D., Jr., Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. Small 5, 1392-1397 (2009).
    [37]Lee, K., Tang, Y, Ouyang, M., Self-Ordered, controlled structure nanoporous membranes using constant current anodization. Nano Letters 8,4624-4629 (2008).
    [38]Zaraska, L., Sulka, G D., Jaskula, M., Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. Journal of Solid State Electrochemistry 15, 2427-2436(2011).
    [39]Lee, W., Ji, R., Gosele, U., et al., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials 5,741-747 (2006).
    [40]Zhao, S., Chan, K., Yelon, A., et al., Novel structure of AAO film fabricated by constant current anodization. Advanced Materials 19,3004-3007 (2007).
    [41]Chen, W., Wu, J.-S., Xia, X.-H., Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2,959-965 (2008).
    [42]Bruggeman, D. A. G, Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik 24,636-664 (1935).
    [43]Nielsch, K., Choi, J., Schwirn, K., et al, Self-ordering regimes of porous alumina:The 10 porosity rule. Nano Letters 2,677-680 (2002).
    [44]Garnett, J. C. M., Colours in metal glasses and in metallic films. Philosophical transactions of the royal society of London series a-containing papers of a mathematical or physical character 203,385-420 (1904).
    [45]Monecke, J., Bergman spectral representation of a simple expression for the dielectric response of a symmertrical 2-component composite. Journal of Physics-Condensed Matter 6,907-912 (1994).
    [46]Looyenga, H., Dielectric constants of heterogeneous mixtures. Physica 31,401 (1965).
    [47]Bosch, S., Ferre-Borrull, J.Sancho-Parramon, J., A general-purpose software for optical characterization of thin films:specific features for microelectronic applications. Solid-State Electronics 45,703-709 (2001).
    [48]Zheng, W. J., Fei, G T., Wang, B., et al., Distributed bragg reflector made of anodic alumina membrane. Materials Letters 63,706-708 (2009).
    [49]Morandi, V., Marabelli, F., Amendola, V., et al., Colloidal photonic crystals doped with gold nanoparticles:Spectroscopy and optical switching properties. Advanced Functional Materials 17,2779-2786 (2007).
    [50]Donovan, E. P., Vanvechten, D., Kahn, A. D. F., et al., Near-infrared rugate filter fabrication by ion-beam assited deposition of Si(1-X)Nx films. Applied Optics 28, 2940-2944(1989).
    [51]Zekovic, L. D., Urosevic, V. V., Jovanic, B. R., Determination of the refractive-Index of porous anodic oxide-films on aluminum by a photoluminescence method. Thin Solid Films 139,109-113 (1986).
    [1]Painter, O., Lee, R. K., Scherer, A., et al., Two-dimensional photonic band-gap defect mode laser. Science 284,1819-1821 (1999).
    [2]Andreani, L. C., Gerace, D., Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method. Physical Review B 73,235114 (2006).
    [3]Akahane, Y., Mochizuki, M., Asano, T., et al., Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab. Applied Physics Letters 82,1341-1343 (2003).
    [4]Notomi, M., Yamada, K., Shinya, A., et al., Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Physical Review Letters 87,253902 (2001).
    [5]Kuramochi, E., Notomi, M., Hughes, S., et al., Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Physical Review B 72, 161318(R)(2005).
    [6]Prather, D. W., Murakowski, J., Shi, S. Y., et al., High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide. Optics Letters 27, 1601-1603(2002).
    [7]Prather, D. W., Shi, S. Y., Pustai, D. M., et al., Dispersion-based optical routing in photonic crystals. Optics Letters 29,50-52 (2004).
    [8]Jian, Z. P., Pearce, J., Mittleman, D. M., Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy. Optics Letters 29,2067-2069 (2004).
    [9]Masuda, H., Ohya, M., Asoh, H., et al., Photonic crystal using anodic porous alumina. Japanese Journal of Applied Physics Part 2-Letters 38, L1403-L1405 (1999).
    [10]Mikulskas, I., Juodkazis, S., Jagminas, A., et al., Aluminium oxide film for 2D photonic structure:room temperature formation. Optical Materials 17,343-346 (2001).
    [11]Choi, J., Luo, Y, Wehrspohn, R. B., et al., Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. Journal of Applied Physics 94? 4757-4762 (2003).
    [12]Yokoyama, S., Nakahama, T., Mashiko, S., et al., Photonic crystal templates for organic solid-state lasers. Applied Physics Letters 87,191101 (2005).
    [13]Wang, B., Fei, G. T., Wang, M., et al., Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 18,365601 (2007).
    [14]Lee, W, Ji, R., Goesele, U., et al., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials 5,741-747 (2006).
    [15]Lee, W., Kim, J. C., Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 21,485304 (2010).
    [16]Lee, W, Schwirn, K., Steinhart, M., et al., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature Nanotechnology 3,234-239 (2008).
    [17]Hu, X., Ling, Z. Y., Sun, T. L., et al., Tuning optical properties of photonic crystal of anodic alumina and the influence of electrodeposition. Journal of the Electrochemical Society 156, D521-D524 (2009).
    [18]Zheng, W. J., Fei, G T., Wang, B., et al., Modulation of transmission spectra of anodized alumina membrane distributed bragg reflector by controlling anodization temperature. Nanoscale Research Letters 4,665-667 (2009).
    [19]Intonti, F., Vignolini, S., Turck, V., et al., Rewritable photonic circuits. Applied Physics Letters 89,211117 (2006).
    [20]Yokoo, A., Notomi, M., Suzuki, H., et al., Emission from functional-polymer-injected point defects in two-dimensional photonic crystals. Ieee Journal of Quantum Electronics 38,938-942 (2002).
    [21]Meng, G. W., Han, F. M., Zhao, X. L., et al., A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology. Angewandte Chemie-International Edition 48,7166-7170 (2009).
    [22]Meng, G W, Jung, Y. J., Cao, A. Y, et al., Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proceedings of the National Academy of Sciences of the United States of America 102, 7074-7078 (2005).
    [23]承军,王玮钰,熊耀兵,等,TiO2/SiO2多层膜系一维光子晶体缺陷态特性研究.光电技术应用27,34-37(2012).
    [24]刘启能,一维掺杂光子晶体缺陷模的全貌特征.半导体光电28,224-227(2007).
    [25]王彪,电压波形对阳极氧化铝膜和银纳米线微观结构的影响,中国科学院固体物理研究所.2008:合肥.
    [26]Lyubchanskii, I. L., Dadoenkova, N. N., Zabolotin, A. E., et al., A one-dimensional photonic crystal with a superconducting defect layer. Journal of Optics a-Pure and Applied Optics 11,114014 (2009).
    [27]Masse, P., Reculusa, S., Clays, K., et al., Tailoring planar defect in three-dimensional colloidal crystals. Chemical Physics Letters 422,251-255 (2006).
    [1]Guo, D. L., Fan, L. X., Wang, F. H., et al., Porous anodic aluminum oxide bragg stacks as chemical sensors. Journal of Physical Chemistry C 112,17952-17956 (2008).
    [2]Vandenberg, E. T., Bertilsson, L., Liedberg, B., et al., Structure of 3-aminopropyl triethoxy silane on silicon-oxide.. Journal of Colloid and Interface Science 147, 103-118(1991).
    [3]Qin, Z. H., Yuan, P., Zhu, J. X., et al., Influences of thermal pretreatment temperature and solvent on the organosilane modification of Al 13-intercalated/Al-pillared montmorillonite. Applied Clay Science 50,546-553 (2010).
    [4]Poursaberi, T., Hassanisadi, M., Torkestani, K., et al., Development of zirconium (IV)-metalloporphyrin grafted Fe3O4 nanoparticles for efficient fluoride removal. Chemical Engineering Journal 189,117-125 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700