云南腾冲上新世四种化石植物微细特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自工业革命以来,全球温度有了明显的升高,21世纪的全球变暖现象将比20世纪更加明显。大气CO_2浓度增加引起的温室效应是造成全球变暖的主要原因,因此正确认识气孔参数与大气CO_2浓度的相关性,有助于正确预测全球气候变化的趋势。
     本文研究了产于云南腾冲上新统芒棒组在外形上相似的四种被子植物化石,它们是油丹(Alseodaphne hainanensis Merr.),小叶木姜子(Litsea grabaui Hu et Chaney),薄叶润楠(比较种)(Machilus cf.leptophylla Hand.-Mazz.),长叶木兰(Magnoliapaenetalauma Dandy),这四种植物化石在滇西地区均为首次发现。对它们进行了大量的实验分析,揭示了其表皮微细构造特征。这四种植物化石的表皮微细构造特征明显不同,进一步说明了表皮微细构造特征在分类学上的意义。扫描电镜的应用,为被子植物的分类提供了准确而细微的叶表皮特征。
     化石Alseodaphne hainanensis地理分布区的扩大和地质时代的延伸,说明滇西地区上新世的气候比现在温暖。自上新世至现代,滇西地区海拔升高,温度降低,致使现生Magnolia paenetalauma退出云南,这进一步表明滇西地区自上新世至现代气候逐渐变冷。化石Machilus cf.leptophylla的角质层和叶结构特征与现生Machilus
     leptophylla的对比,显示出化石Machilus cf.leptophylla生长在湿润气候条件下。研究表明云南腾冲上新世时是温暖湿润气候。
     选择现生Alseodaphne hainanensis和Machilus leptoplla作为最近现存亲缘种,并对其进行了气孔参数统计,进而与化石种进行比较,应用气孔比率法恢复了云南腾冲上新世的大气CO_2浓度(分别是417.6ppmv和438ppmv),二者均落在了GEOCARBⅢ的误差范围内。恢复这一时期的古环境,对了解全球环境变化具有重要的意义。
Global temperature has clearly increased since the Industrial Revolution. The phenomenon of global warming is more obvious in the 21st Century than in the 20th Century. Greenhouse effect owing to atmospheric CO_2 enrichment is a great cause of global warming. Accordingly, understanding the relation between stomatal parameter and atmospheric CO_2 concentration is advantageous to predicting global climate trend.Four angiosperm fossil leaves having resemblance in appearance were studied in this work. They are Alseodaphne hainanensis Men., Litsea grabaui Hu et Chaney, Machilus cf. leptophylla Hand.-Mazz. and Magnolia paenetalauma Dandy, which were collected from the Pliocene Mangbang Formation in Tengchong, Yunnan Province, where the four fossil leaves were found for the first time. The epidermal microstructures of these species were investigated based upon extensive experiments in laboratory. The epidermal characteristics of the four plant fossils are different obviously, which shows the significances of epidermal characteristics in taxa to a great extent. The application of a scanning electronic microscopy provides exact and fine diagnosis for the classification of angiosperm.The enlargement of geographical distribution and the extension of geological age of fossil Alseodaphne hainanensis indicate that Pliocene climate was warmer than present-day in the area of Western Yunnan. Altitudinal increase and the decrease of temperature in the area of Western Yunnan have make modern Magnolia paenetalauma retreat from Yunnan, which further demonstrates that the temperature gradually decreased from Pliocene to present in the area of Western Yunnan Province. A detailed comparison of the cuticle and the leaf architecture between fossil Machilus cf. leptophylla and modern Machilus leptophylla reveals that fossil Machilus cf. leptophylla grew in humid climate. The result shows that Pliocene climate is warm and humid in Tengchong, Yunnan Province.Selecting modern Alseodaphne hainanensis and Machilus leptophylla as Nearest Living Relative species respectively and counting their stomatal parameter, we try to reconstruct Pliocene CO_2 concentration of Tengchong in Yunnan Province with Stomatal Ratio. The two data (Alseodaphne hainanensis 417.6ppmv and Machilus leptophylla 438ppmv) all fall into the error scope of revised GEOCARB III. Palaeoenvironmental reconstruction in the time has a profound significance for understanding global environmental change.
引文
1.白顺良等,地质历史与板块构造.地质出版社.1984,1-278
    2.陈机,植物发育解剖学.济南:山东大学出版社,1992,79-119
    3.陈立群,孙启高,李承森,气孔参数对大气CO_2浓度变化的指示.植物科学进展(第三卷),2000,179-186
    4.程捷,刘学清,高振纪,唐德翔,岳建伟,青藏高原隆升对云南高原环境的影响.现代地质,2001,15(3):290-296
    5.戈宏儒,李代芸,云南西部新生代含煤盆地及聚煤规律.云南科技出版社.1999,24
    6.贺超兴,陶君容,黑龙江依兰始新世植物的研究.植物分类学报,1997,35(3):249-256
    7.贺新强,林月惠,林金星等,气孔密度与近一个世纪大气CO_2浓度变化的相关性研究.科学通报,1998,43(8):860-862
    8.姜朝松,周瑞琦,赵慈平,腾冲地区构造地貌特征与火山活动的关系.地震研究,2003,26(4):361-366
    9.姜汉侨,云南植被分布的特点及其地带规律性.云南植物研究,1980,1:22-31
    10.解三平,阎德飞,韦利杰,丛培允,孙柏年,精确重建古大气CO_2浓度的气孔方法.古生物学报,2005,44(3):464-471
    11.金振洲,云南常绿阔叶林的类型及特点.云南植物研究,1979,1:90-104
    12.冷琴,被子植物果实和种子化石的获取和研究.微体古生物学报,1999,16(2):207-213
    13.冷琴,一种观察被子植物压膜化石细微叶结构特征的有效方法.古生物学报,2000,39(1):157-158
    14.李承森,生物进化的重大事件——陆地植物的起源及其研究的新进展.中国科学基金,1994,8(4):238-244
    15.李承森,王宇飞,孙启高,定量分析第三纪以来环境变化的新方法——特有种气候分析法.植物学报,2001,43(2):217-220
    16.李浩敏,安徽五河下白垩统被子植物叶化石.科学通报,2003,48(4):375-378
    17.李锡康,谭筱虹,高子英,姚金昌,腾冲上新统芒棒组地质时代及沉积环境.云南地质,2004,23(2):241-251
    18.李星学,周志炎等,中国地质时期植物群.广东科技出版社.1995,402
    19.李正华,刘荣谟,安芷生等,工业革命以来大气CO_2浓度不断增加的树轮稳定谈同位素证据。科学通报,1994,39(23):2172-2174
    20.刘耕武,李代芸,黄翡,傅启龙,云南元谋盆地上新世甘棠组植物和孢粉组合及其古气候意义.古生物学报,2002,41(1):1-9
    21.刘裕生,广西百色盆地更新世樟科两种植物角质层研究.植物学报,1990,32(10):805-808
    22.马清温,李承森,水杉属和红杉属化石叶表皮鉴定参照系的特殊性.武汉植物学研究,2002,20(6):413-416
    23.马清温,李凤兰,李承森,气孔参数的变异系数和影响因素.北京林业大学学报,2005,27(1):19-23
    24.明庆忠,潘玉君,对云南高原环境演化研究的重要性及环境演变的初步认知.地质力学学报,2002,8(4):361-368
    25.明延凯,谷奉天,吴锋,王锡华,植物学教程.石油大学出版社,1991,132
    26.尚映莲,腾冲硅藻土矿床及其成因.云南地质,2003,22(4):418-425
    27.施雅风,李吉均,李炳元,姚檀栋,王苏民,李世杰,崔之久,王富保,潘保田,方小敏,张青松,晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10-20
    28.孙柏年,丛培允,阎德飞,解三平,云南腾冲晚第三纪两种被子植物化石的角质层构造及其古环境意义.古生物学报,2003a,42(2):216-221
    29.孙柏年,解三平,阎德飞,丛培允,Ulmus harutoriensis Oishi et Huzioka角质层特征及古环境意义.兰州大学学报(自然科学版),2003b,39(1):80-85
    30.孙柏年,沈光隆,尼尔桑带羽叶属(Nilssoniopteris)的一个新种.古生物学报,1988,27(5):561-566
    31.孙柏年,阎德飞,解三平,丛培允,辛存林,云飞,兰州盆地古近系杨属叶化石及古气候指示意义.科学通报,2004,49(13):1283-1289
    32.孙柏年,阎德飞,石亚军,张现军,植物化石角质层分析在环境地质中的应用.地学前缘,2001,8(1):170
    33.孙启高,陈立群,李承森,地质历史时期CO_2浓度变化对陆地维管植物气孔参数的影响.科学通报,1998,43(23):2478-2482
    34.陶君容,杜乃秋,云南腾冲新第三纪植物群及其时代.植物学报,1982,24(3):273-281
    35.陶君容,中国晚白垩世至新生代植物区系发展演变.科学出版社,2000,107-110
    36.王宇飞,陶君容,植物角质层分析术语新体系.植物学通报,1991,8(4):6-13
    37.韦利杰,孙柏年,解三平,阎德飞,肖良,云南腾冲上新统植物油丹Alseodaphne hainanensis Merr.表皮微细构造研究.微体古生物学报,2005,22(4):392-399
    38.肖良,孙柏年,阎德飞,解三平,韦利杰,云南保山上新统黄背栎Quercuspannosa Hand.-Mazz.角质层特征及古环境意义.微体古生物学报,2006,23(1):23-30
    39.徐景先,王宇飞,杜乃秋,张翠芬,云南吕合地区晚第三纪孢粉植物群.植物学报,2000,42(5):526-532
    40.阎德飞,孙柏年,Solenites murrayana L.et al,在甘肃窑街煤田的发现及其地质意义.兰州大学学报(自然科学版),2004,40(3):84-88
    41.杨松涛,李彦肪,胡玉熹等,CO_2浓度倍增对十种禾本科植物叶片形态结构的影响.植物学报,1997,39(9):859-866
    42.叶美娜,关于化石角质层的研究和技术处理方法.中国古生物学会.第十二届古生物学会年会论文集.安徽科学技术出版社,1981,170-179
    43.张祖荣,郑度,杨勤业,刘燕华,横断山区自然地理.科学出版社.1997
    44.中国科学院北京植物研究所,中国科学院南京地质古生物研究所《中国新生代植物》编写组,中国植物化石 第三册 中国新生代植物.科学出版社,1978,23-24
    45.中国科学院中国植物志编辑委员会,中国植物志(第三十卷).科学出版社.1982,117
    46.中国科学院中国植物志编辑委员会,中国植物志(第三十一卷).科学出版社.1982,44-45、72、290
    47. Barthlott W, The taxonomic importance of the leaf surface In: Heywood V H, Moore D M(eds), current concept in plant taxonmy. London: Academic Press 1984, 64-94
    48. Bazzaz F A, The response of natural ecosystems to the rising global CO_2 levels, Annu Rev Ecol Syst, 1990, 21: 167-197
    49. Beerling D J, McElwain J C, Osborne C P. Stomatal responses of the "living fossil" Ginkgo biloba L.to changes in atmospheric CO2 concentrations. J Exp Bot, 1998, 49:1603-1607
    50. Beerling DJ, Changes in the stomatal density of Betula nana leaves in response to increase in atmospheric carbon dioxide concentration since the late glacial. Spec Pap Palaeontol, 1993, 49, 181-187
    51. Beerling DJ, Chaloner WG, Stomatal density as an indicator of atmospheric CO_2 concentration. The Holocene, 1992b. 2:71-78
    52. Beerling D J, Chaloner WG, Stomatal density response of Egyption Olea europea L. Leaves to CO_2 change since 1327 BC. Ann Bot, 1993, 71:431-435
    53. Beerling D J, Chaloner WG, Huntley B, Variation in the stomatai density of Salix herbacea L. under the changing atmospheric CO_2 concentrations of late- and post-glacial time. Phil Trans R Soc Lond B, 1992a. 336: 215-224
    54. Beerling D J, Changes in the stomatal density response of Betulanana leaves in response to increases in atmospheric carbon dioxide concentration since the late glacial. Special papers in Palaeontology. 1993, 49:181-187
    55. Beerling DJ, Woodward FI, Stoamtal Responses of Variegated Leaves to CO_2 Enrichment. Ann.Bot., 1995, 75:507-511
    56. Berner R A, 3 Geocard: A revised model of atmospheric CO_2 over Phanerozoic time. Amer JSci, 1994, 291:56-91
    57. Berner R A, The rise of plants and their effect on weathering and atmospheric CO_2. Science, 1997, 276: 544-546
    58. Bettarini I, Vaccari PF, Miglietta F, Elevated CO_2 concentrations and stomatal densily: observations from 17 plant species growing in a CO_2 spring in central Italy. Global Change Biology, 1998, 4:17-22
    59. Boardman N K, Comparative photosynthesis of sun and shade plants. Ann Rev Plant Physiol, 1997, 28:354-365
    60. Cantrill D J, Nichols G J, Taxonomy and palaeoecology of Early Cretaceous(Late Albian) angiosperm leaves from Alexander Island, Antarctica. Review of Palaeobotany and Palynology, 1996, 92: 1-28
    61. Chen Liqun, Li Chengsen, Chaloner W G, et al, Assessing the potential for the stomatal characters of extant and fossils Ginkgo leaves to signal atmospheric CO2 change. Am J Bot, 2001, 88: 1309-1315
    62. Chengdu Institute of Geology and Mineral Resources, The Chinese Academy of Sxiences, Team of Regional Geological Survey, Bureau of Geology and Mineral Resources of Sichuan. Geological Memoirs-Stratigraphy and Palaeontology. Vol. 12. Nu river-Lancang-River-Jinsha River. Regional Stratigraphy. Beijing: Geological PublishingHouse, 1982, 236-255
    63. Clifford S C, Black C R, Roberts J A et al., The effect of elevated atmospheric CO_2 and drought on stomatal frequency in groundnut (Arachis hypogaea L.). Journal of Experimental Botany, 1995, 46:847-852
    64. Crane P R, Friis E M, Pedersen K R, The origin and early diversification of angiosperms. Nature, 1995, 374:27-33
    65. Dilcher D L, Approaches to the Identification of Angiosperm Leaf Remains. Bot.Rev., 1974, 40: 1-157
    66. Dilcher D L, Mei Meitang, Du Meilic, A new winged seed from the Permian of China. Review of Palaeobotany and Palynology. 1997, 98:247-256
    67. Ding Z-L, Sun J-M, The record of magenetostigraphy and eolian sediment from sequence of loess and red clay in Lingtai. Quarter Sci, 1998, (1): 86-94
    68. Falkowski P, Scholes R J, Boyyle E et al., The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290:292-296
    69. Gastaldo R A, Ferguson D K et al., Criteria to distinguish parautochthonous leaves in Tertiary alluvial channel-fills. Review of Palaeobotany and Palynology, 1996, 91: 1-22
    70. Iljinskaja IA, On the Validity of Types of the Names of Species of the Fossil Angiosperms. Cour.Forsch.-Inst. Senckenfag,, 1978, 30:174-177
    71. Jonathan GW, Towards a physically based model of CO_2-induced stomatal frequency response. New Phytologist, 2003, 157:391-398
    72. Kerp H,The study of Fossil Gymnosperms by Means of Cuticular Analysis.Palaios,1991,5: 548-569
    73. Kerp H, Atmospheric CO_2 from fossil plant cuticles. Nature, 2002, 415:38
    74. Kerp H, Krings M. Light microscopy of cuticles. Fossil plants and spores: modern techniques. London: The Geological Society, 1999, 52-56
    75. Kurscher W M, Leaf stomata as biosensors of palaeoatmospheric CO_2 levels:[Ph D Thesis]. Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 5, 1996
    76. Kvacek Z, Walther H, Anisophylly and Leaf Homeomorphy in some Tertiary Plants. Cour.Forsch.-Inst. Senckenfag,, 1978, 30:84-94
    77. Martin Eckert, Ralf Kakdenhoff, Light-induced stomatal movement of selected Arabidopsis thalianamutans. Journal of Experimental Botany, 2000, 51 (349): 1435-1442
    78. McElwain J C, Do fossil plants signal palaeoatmospheric CO_2 concentration in the geological past? Phil Trans R Soc Lond. B, 1998. 353:83-96
    79. McElwain J C, Chaloner W G, Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Ann Bot,, 1995, 76:389-395
    80. McEIwain J. C., Mayle F. E., Beerling D.J., Stomatal evidence for a declince in atmospheric CO_2. concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. Journal of Quaternary Science, 2002, 17 (1): 21-29
    81. McElwain J. C., The fossil cuticle as a skeletal record of environmental change. Palaios, 1996, 11: 376-388
    82. McElwain JC, Chaloner W G, The fossil cuticle as a skeletal record of environmental changes. Palaios, 1996, 11: 376-388
    83. Metcalfe C R, Chalk L, Anatomy of the Dicotyledons, systematic anatomy of leaf and stem, with a brief history of the subject. Oxford: Clarendon Press, 1979, 1 : 149
    84. Mosbrugger V, The nearst living relative method. In: Jones T P, Rowe N P, eds.Fossil Plant and Spores: Modern Techniques.london: Geological Society, 1999, 261-265
    85. Mosbrugger V, The coexistence approach: a method for quantitative reconstruction of Tertiary terrestrial paleoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 134:61-86
    86. Paoletti E, Gellini R, Stomatal density variation in beech and holm oak leaves collected over the last 200 years. Acta Oecologia, 1993. 14:173-178
    87. Poole I , Weyes J D B, Lawson T, et al., Variation in stomatal density an index: implications for palaeoclimatic reconstructions[J] . Plant Cell Environment, 1996, 19:: 705-712.
    88. Poole I, Kurschner W M, Stomatal density and index: the practice. Fossil plants and spores: modern techniques. London: The Geological Society, 1999, 257-260
    89. Raju V S, Pan P N, Variation in the structure and development of foliar stomata in the Euphorbiaceae Bot J. Linn Soc, 1977, 75:69-97
    90. Raynaoud D., Jouzel J., Barnola J. M., et al., The ice record of greenhouse gases. Science, 1993, 259: 926-934
    91. Ren H X, Chen X, Wu D X, Effect of elevated CO_2 on photosynthesis and antioxidative ability of broad bean plants grown under drought condition. Acta Agron Sin, 2001. 27(6): 729-736
    92. Retallack G J, A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 2001, 411:287-290
    93. Royer DJ, Wing SC, Beerling D J, Jolley DW, Koch PL, Hickey L J, Berner RA, Palaeobotanical evidence for near present-day levels of atmospheric CO_2 during part of the Tertiary. Science, 2001, 292:2310-2313
    94. Royer DL, Estimating Lastest Cretaceous and Tertiary atmospheric CO_2 from stomatal indices. Geological Society of America Special Paper, 2003, 369:79-93
    95. Salisbury EI, On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Phil Trans R Soc land B, 1927. 216:1-65
    96. Stace C A, The taxonomic importance of the leaf surface. In: Heywod V H, Moore D M eds. Current Concepts in Plant Taxonomy. London: Academic Press, 1984, 67-94
    97. Sun Bainian, Dilcher D L, Beerling D J, et al., Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proc Nat Acad Sci, 2003, 100(12): 7141-7146
    98. Sun Q G, Collinson M E, Lics et al., Quantitative reconstruction of palaeoclimate from the middle Miocene shanwang flora, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 180 (4): 315-329
    99. Ticha I, Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica, 1982, 16:375-471
    100. Ticha I, Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica, 1982, 16: 375-471
    101. Van der Burgh, J., Visscher, H., Dilcher, D.L., Kurschner, W.M., Paleoatmospheric signatures in Neogene fossil leaves. Science, 1993, 260:1788-1790
    102. Van der Water P K, Leavitt S W, Betancoourt J L, Trends in stomatal density and 13C/12Cratios of Pinus flexilis needles during the last glacial-interglacial cycle. Science, 1994. 264:239-243
    103. Wanner F, The influence of environment on the stomatal frequency in Betula: [PHD Thesis]. Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series, 1998, 9:1-102
    104. Wolfe J A, Palaeoclimatic estimates from Tertiary leaf assemblages. Annu Rev Earth Planet Sci, 1995, 23: 119-142
    105. Woodward F I, Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature, 1987, 327:617-618
    106. Woodward F I, The response ofstomatal density to CO_2 partial pressure. J Exp Bot, 1988, 39: 1771-1781
    107. Zhang Z-Q, Sun C-Q, Proceedings of global changes in recent decade. Chin Bull Sci, 1999, 44:464-477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700