猪骨髓间充质干细胞治疗猪全层皮损的促血管化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的检测骨髓间充质干细胞治疗猪全层皮肤缺损过程中相关促血管化因子表达及血管数量变化,探讨骨髓间充质干细胞对大面积皮肤缺损治疗的临床应用价值。
     方法选择2头一岁龄滇南小耳猪,多次在麻醉下使用骨髓穿刺针由髂骨处按15-20ml/次抽取骨髓,采用密度梯度离心和细胞贴壁培养法联合筛选单核细胞层。使用含15%胎牛血清和1%双抗(青霉素和链霉素)的F-12培养基,放入95%饱和湿度,37℃的CO2培养箱中培养。首次72h换液,之后每日倒置显微镜下观察细胞形态,隔日换液。达到80%融合时按1:3传代,传至第三代,留取备用。
     猪麻醉后采用自身配对设计,沿脊椎两侧旁开2.5cm按24个/每头预制作3cm×3cm正方形全层皮肤缺损创面。按是否使用干细胞分为实验组(A/B/C组)和对照组(a/b/c组)。实验组按植皮方式分为三组,即微粒皮+干细胞治疗组(A组)、小皮片+干细胞治疗组(B组)、单纯干细胞治疗组(C组),按1×107/ml密度于每个创面注射干细胞1m1。术后第7天、第14天分别取新生上皮和/或肉芽组织行免疫组织化学血管平滑肌肌动蛋白染色计数微血管密度,同时采用实时荧光多聚酶链反应(RT-PCR)检测血管内皮细胞生长因子、血管细胞黏附分子、血管生成素mRNA相对表达量。
     结果干细胞移植治疗实验组对创面愈合均有促进作用①第14天时创面大体观可见实验组愈合情况均优于各自对照组,实验组中B组创面已愈合优于A组的部分愈合及C组的肉芽创面。②免疫组化染色可见肉芽组织或新生表皮下血管平滑肌肌动蛋白棕染阳性的内皮细胞团簇,计数微血管密度可知第7、14天时B组血管密度显著高于其他5组(P<0.05)。③RT-PCR检测采用2.△△ct相对定量法可知血管内皮细胞生长因子mRNA在第7天时高表达,第14天表达水平显著下降。第7天时各实验组均高于对照组,实验组中C组表达最高,其次是B组。血管细胞黏附分子、血管生成素表达变化趋势与血管内皮细胞生长因子相似。
     结论骨髓间充质干细胞移植可能通过促进血管新生进而促进创面愈合,其主要机制可能是通过促进VEGF、VCAM、ANG三种目的基因的表达来实现的。但是单纯干细胞治疗还不能取代治疗。
Objective:
     To investigate the clinical value of BMSCs treatment in full-thickness skin defect wounds, the expression of vascular factors and microvessel density were detected in this research.
     Method:
     2 one-year-old pigs were employed for BMSCs isolation.15-20 ml bone marrow were harvested from ileac bone using a ileac needle and mononuclear cells were isolated using density gradient centrifugation and cultured in F-12 with 15% fetal bovine serum. After 48 hours of cell isolation medium was replaced and after then cell medium was replaced every 2 days. Culture cells were daily observed under phasecontrast microscope and passaged when cells almost 80% confluent.
     24 3cm×3cm full-thickness skin wounds were made on the back of each pig after anesthesia. Every wound was divided into different group. Group A:1×107 cultured BMSCs in 1 ml PBS were administrated to each wound followed by autologous microskin grafting, and covered by acellular dermal matrix (ADM); Group B:After BMSCs administration like Group A, auto-split skin were transplanted to each wound and covered with ADM; Group C:After BMSCs administration like Group A, wounds were covered with ADM. As control groups, Group a, Group b, and Group c, all steps were similar to above but BMSCs administration was replaced by PBS injection. At 7,14 days post operations, wound tissues were harvested for histology and total RNA abstraction. Actin was detected by immunohistochemistry staining, and microvessel density (MVD) was counted under microscope. VEGF, VCAM, and ANG mRNA expression were detected by real time-PCR.
     Result:
     Combined with cultured BMSCs administration, full-thickness skin wounds closure were accelerated.①Among three experimental groups, wounds of Group B were complete healed at 14 days after operation, but small open wounds were still exist in Group A, and Group C. Compared with Group C, at day 14, opening wounds of Group A were smaller.②MVD analysis expressed that counting of Actin-positive cell clusters in wound beds and leading edges in Group B were higher than other groups (P< 0.05).③Relative quantitative analysis by real time PCR shows, in all groups, VEGF mRNA expression at day 7 post operation were higher than its expression at day 14. But in three experimental groups combined with BMSCs administration, VEGF mRNA were higher than control groups. Among three experimental groups, its expression in Group C was highest, and its expression in Group B was higher than Group A. VCAM, ANG mRNA expression pattern were similar to VEGF mRNA.
     Conclusion:
     BMSCs could accelerate full-thickness skin wound healing by improving angiogenesis, and the main mechanism may promote the expression of VEGF, VCAM, and ANG.. But only local BMSCs administration could not replace auto-split skin grafting.
引文
[1]杨宗城,烧伤治疗学[M].北京:人民卫生出版社,2006,19-21.
    [2]周红梅,吕国忠.组织工程皮肤的研究新进展[J/CD].中华损伤与修复杂志:电子版,2010,5(4):532-537.
    [3]RoguinA, LevyAP.Angiogenesis-an update.Pediatr EndocrinolRev.2005;2(3):391-8,
    [4]SehierlingW, TroidlK, TroidlC, etal.The role of Angiogenic growth fators in Arteriogenesis.[j]Vase Res.2009:46(4):365-374.
    [5]Drake C. Embryonic and adult vasculogenesis. Birth Defects Res Part C Embryo Today. 2003; 69:73-82
    [6]Duart e IG, Bufkin BL, Pennington MF, et al. Angiogensis as a predictor of surivival after surgical resection for stage I non-small-cell lung cancer[J].J Thorac Caediovass Surg,1998,115(4):652-658.
    [7]Giatromanolaki A, KoukourakisMI, Theodossiou D,et al.Comparative evaluation of angiogenesis assessment with anti-factor-Ⅷ and anti-cd31 immunostaining in non-small cell lung cancer [J].Clin Cancer Res,1997,3(20):2485-2492。
    [8]Matsuyama K,Chiba Y,Saski M, et al.Tumor angiogenesis as a prognostic marker in operable non-small lung cancer[J].Ann Thorac Surg,1998,65(5):1405-1409.
    [9]Sato TN,Tozawa Y,Deutshc U,et al.Distinct roles of the recept or tyrosine kinases Tie-1 and Tie-2 in blood vessel format ion[J].Nature,1995,376(6535):70-74.
    [10]熊正文,朱光君,李春光.肿瘤血管及非小细胞肺癌检测技术研究进展[J].中华现代医学杂志,2001,1(3):12-15.
    [11]熊正文,李春光,综述.肿瘤血管生成及微循环形态学研究技术[J]中国组织化学与细胞化学杂志,1998,7(4):499-500.
    [12]熊正文,王炳胜,李春光.CD34、CD31与FⅧ显示非小细胞肺癌微血管密度的对比研究[J].中国医师杂志,2003,5(4):438-440.
    [13]左藤靖史.血管新生的诱导因子和阻害因子.最新医学,1995,50(6):252-301.
    [14]Hideshima T,Podar K,Chauhan D,et al.Cytokines and signal transduction[J].Best Pract Res Clin Haematol,2005,18(4):50925-24.
    [15]Sako,A.Kitayama,J.Yamaguchi,H,et al. Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2:possible role of mesothelial cell on the development of peritoneal metastasis [J].Surg Res.2003,115:113-120.
    [16]师永红,王玉湘.bFGF和低氧诱导VEGF分泌的作用机制及其信号通路.2006年中国第四届肿瘤学术大会教育集.70-75.
    [17]JayeM,Schlessinger J, Craig A, et al.FGFR tyrosine kinases moolecular analysis and signal transduction[j].Biochem Acta,1992,1:135-185.
    [18]Schichor C,Birnbaum T,Etminan N,et al. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells(hMSC)[J].Exp Neurol,2006,199 (2):301-310.
    [19]倪效,燕敏VEGF受体功能研究进展.[J]生命科学,2008,20(1):120-124.
    [20]Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation.[J] Biol Chem,2001,276(52):49289-98.
    [21]陈旭林、夏照帆、韦多等.烧伤血清激活p38丝裂原活化蛋白激酶信号转导通路和核因子kB诱导血管内皮细胞血管细胞黏附分子1的表达。中华烧伤杂志,2005,21(6):426-429.
    [22]万晓晨、刘翠平、陈海啸等TGF-b/BMPs、Wnt和MAPK信号通路在间充质干细胞向成骨细胞分化中的作用。细胞生物学杂志,2008,30:697-700.
    [23]方利君、郭澍.MMP-2在猪骨髓间充质干细胞分化为血管内皮细胞过程中的表达[J].上海口腔医学,2010,19(3):270-274.
    [24]高蕾、余时沧.血管细胞粘附分子调控造血的研究进展[J].西部医学,2004,16(2):167-170.
    [25]张雷雷、胥全彬、马清钧.血管生成素的结构与功能的研究进展[J].生物技术通讯,2006,17(2):248-251.
    [26]M.F.Rasulov,A.V.Vasilchenkov,N.AOnishchenko,etal. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns [J].Bull Exp Biol Med,2005,139(1):141-144.
    [27]方利君,付小兵,孙同柱,等.骨髓间充质干细胞分化为血管内皮细胞的实验研究[J].中华创伤杂志,2003,19(1):22-24.
    [28]Sullivan TP, Eaglstein WH, Davis SC, et al. The pig as a model for human wound healing[J]. Wound Repair Regen,2001,9(2):66-76.
    [29]Feriedenstein AJ,Gorskaja JF,Kulagina NN,et al. Fibrloblast precursors in normal and irradiated mouse hematopoietic organs [J]. Exp Haematol,1976,4:267-274.
    [30]Friedenstein AJ,Chailakhyan RK, Gerasimov UV,et al.Bone marrow steogenic stem cells:in vitro cultivation and trans plantation in diffusion chambers [J]. Cell Tissue Kinet, 1987,20(3):263-272.
    [31]PittengerMF,MackayAM,BeckSC,et.Multilineage potential of adult Human mesenehymal stem cells.Seienee.1999:284(5411):143-7.
    [32]KuoCK, TuanRS.Meehanoaetive tenogenie differentiation of human Mesenehymal stem cells.Tissue Eng PartA.2008,14(10):1615-27.
    [33]ShinM,YoshimotoH,VaeantiJP. In vivo bone tissue engineering using Mesenehymal stem cell son a novel electro spun nano fibrous seaffold.Tissue Eng.2004,10(1-2):33.
    [34]LiuZJ, ZhugeY, VelazquezOC. Traffieking and differentiation of Mesenehymal stem cells.[J]CellBiochem.2009,106(6):984-991.
    [35]VlasselaerPV,FallaN,SnoeckH,etal.Characterization and purification of osteogenic cells from murine bonemarrow by two colour cell sorting using anti Sca E monoclonal antibody and wheat germagglutinin[J]. Blood,1994,84 (3):753-756.
    [36]裴雪涛.干细胞试验指南[M].北京:北京科学出版社,2006,83-90.
    [37]JoskoJ, GwozdzB, HendrykS.Vascular endothelial growth factor(VEGF) and its effect on angiogenesis.Med Sci Monit2000;6:1047-1052.
    [38]EPsteinSE, FuchsS, ZhouYF, BaffourR, KomowskiR:TheraPeutic Interventions for enhancing collateral development by administration of growth faetors:Basic PrineiPle, early results and Potential hazards. CardiovaseRes2001:49:532-542.
    [39]CarmelietP.Angiogenesis in health and disease.NatMed,2003;9:653-660.
    [40]CarmelietP.VEGF gene theary:stimulating angiogenesis or angioma genesis? [J].Nat med,2000,6:1102-1103.
    [41]Takamiya M, Saigusa K, Aoki Y.Immunohistochemical study of basic fibroblast growth factor and vascular endothelial growth factor expression for age determination of cutaneous wounds[J]. Am J Forensic Med Pathol,2002,23(3):264-267.
    [42]Corral CJ, SiddiquiA, Wu L,et al.Vascular endothelial growth factor is more important than basic fibroblastic growth factor during is chemic wound healing[J].Arch Surg,1999, 134(2):200-205.
    1 Feriedenstein AJ,Gorskaja JF,Kulagina NN,et al. Fibrloblast precursors in normal and irradiated mouse hematopoietic organs [J]. Exp Haematol,1976,4:267-274.
    2 Friedenstein AJ, Chailakhyan RK, Gerasimov UV, et al. Bone marrow osteogenic stem cells; in vitro cultivation and transplantation in diffusion chambers [J]. Cell Tissue Kinet,1987,20 (3):263-272.
    3 Caplan AI. Mesenchymal stem cells [J]. J Ort hop Res,1991,9 (5):641-650.
    4裴雪涛.干细胞试验指南[M].北京:北京科学出版社,2006:83-90.
    5 Vlasselaer PV,Falla N,Snoeck H,et al. Characterization and purification of osteogenic cells from murine bone marrow by two col-our cell sorting using anti Sea monoclonal antibody and wheat germagglutinin[J]. Blood,1994,84(3):753-756.
    7姚颖龙,张浩,龚德军,等.超极化激活环化核苷酸门控通道基因转染猪骨髓间充质干细胞[J].中国组织工程研究与临床康复,2009,13(49):9673-9676.
    8朱伟,许文荣,孙晓春,等.骨髓间质干细胞体外分化为成骨细胞的实验研究[J].生物医学工程研究,2003,(22)1:41-43.
    9 Pittenger MF,Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284 (5411):143-147.
    10王文磊,田杰,朱静,等:小型猪骨髓间充质干细胞的分离和培养[J].中国微生态学杂志,2010,22(6):537-541.
    11窦兴葵,郭涛,思永玉,等.超顺磁性氧化铁纳米粒子和CM-Dil荧光双标记骨髓间充质干细胞[J].中国组织工程研究与临床康复,2010,14(14):2513-2517.
    12窦兴葵,郭涛,金从国,等.超顺磁性氧化铁纳米粒子标记骨髓间充质干细胞实验研究[J].现代生物医学进展,2009,23(26).4467-4469.
    13施晓雷,顾劲扬;张悦,等.猪肝细胞与骨髓间充质干细胞最适共培养体系的建立[J].中国普通外科杂志,2009,18(8):811-816.
    14孙林,周旭章,体玲,等.骨髓单个核细胞的提取、分离、标记和体外培养[J].1中国心血管病研究,2008,10(6):777-779.
    15邹立津,吕农华,冯文周,等.体外诱导家猪骨髓间充质干细胞向成骨细胞分化[J].中国修复重建外科杂志.2007.21(11):1222-1227.
    16 Jiang Y, Jahagirdar BN, Reinhardt RL,et al. Pluripotency of mesenchymal stem cells derived from adult marrow [J]. Nature, 2002,418(6893):41-49.
    17 Schwartz RE,Reyes M,Koodie L,et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepato-cyte-like cells[J]. Clin lnvest,2002,109(10):1291-1302.
    18 Coelho MJ,Fernande MH. Human bone cell cultures in biocompatibility testing. PartⅡ:effect of ascorbic acid, β-glycrophosphate and dexame-thasone on osteoblastic differentiation[J]. Biomaterials,2000,21 (11):1095-1102
    19何庚戌,要彤,张浩,等.心脏MRI在体示踪移植细胞的可行性研究[J].中国临床医学影像杂志,2009,20(6):418--422.
    20艾国平,粟永萍,闫国和,等.诱导骨髓间充质干细胞向成骨细胞和成软骨细胞分化[J].中国临床康复,2002,6(18):2689-2690.
    21 Cai GQ,Cui YM,Chen XD. Differentiation of bone marrow mesenchymal stem cells into fibrochondrocyte phenotype[J]. J Clin Rehab Tissue Eng Res,2010,2(14):218-222.
    22夏万尧,商庆新,崔磊,等.骨髓间质干细胞向软骨细胞表型定向诱导分化的实验研究[J].中华整形外科杂志,2002,18(1):12-14.
    23程苟,王士雯,曹丰,等.5-氮胞苷浓度对体外骨髓间充质干细胞诱导分化为心肌样细胞的影响[J].中华老年多器官疾病杂志,2005,4(3):196-220.
    24李树仁,齐晓勇,孟存良,等.骨髓间充质干细胞体外诱导培养后的电生理特性[J].中国组织工程研究与临床康复,2009,13(27):5261-5264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700