Au-Pd纳米粒子的制备及对重金属离子检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属对人体健康有很大的毒害作用,其对环境的污染是一个全世界范围的问题。例如,砷是一种剧毒物质,在许多国家已发现饮用水中含有砷污染物。因此,现在急需研究出一种快速、灵敏和有选择性检测重金属离子的方法。许多技术已被用于重金属离子的检测,在这些方法中,电化学技术是最有前景的检测技术,其具备的特点有成本低、较高的检测精度和较快的检测速度。在电化学分析领域,纳米金属粒子表现出许多先进的功能特性,因此,纳米金属粒子修饰电极已被用于电化学检测。纳米材料修饰电极制备的方法有很多,修饰电极的性能也受许多因素的影响。
     本论文制备了Au-Pd纳米粒子,研究其对重金属离子的检测,主要工作如下:
     (1)实验中采用水热合成技术制备Au-Pd纳米粒子,并对Au-Pd纳米粒子的形貌和组成结构进行了相关的表征,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、能量弥散X射线谱(EDS),以及X射线衍射(XRD)等分析。为了优化实验参数,实验中在不同的实验条件下制备Au-Pd纳米粒子,例如不同的温度和时间,研究了聚乙烯吡咯烷酮(PVP)对Au-Pd纳米粒子形貌和尺寸的影响。实验中研究了以镍片为基体在其表面制备Au-Pd纳米粒子的方法,以及氢氧化钠在Au-Pd纳米粒子制备过程中的作用。
     (2)以超声分散法对Au-Pd纳米粒子进行预处理,并对电极进行磨平和抛光处理。采用直接滴涂法将Au-Pd纳米粒子引入电极表面制备纳米修饰电极,并对Au-Pd纳米修饰电极进行电化学表征,包括循环伏安法(CV)、线性扫描伏安法(LSV)、电化学阻抗(EIS)等分析。这将进一步完善修饰电极的制备工艺,提高修饰电极的性能。
     (3)实验中将Au-Pd纳米修饰电极用于重金属离子的检测,采用方波阳极溶出伏安法,以该电极分别对As3+和Cu2+进行检测。实验结果表明,As3+和Cu2+在电极表面上都有各自的溶出峰,且都具有良好的线性关系。此外,该电极被用于As3+和Hg2+的同时检测,由其结果可知,Hg2+的加入对As3+的检测没有干扰,即该电极对As3+的检测具有很好的选择性。这将拓展纳米材料的应用,同时为重金属离子的检测提供了一种检测方法。
The heavy metals are toxic for the human health,and the pollution of the natural environment by heavy metals is a worldwide problem. For example,the arsenic is a highly toxic element, and arsenic contamination of groundwater has been reported in many countries. Therefore,it is very essential to develop fast, sensitive, and selective analytical methods for the detection of heavy metals. Many techniques have been used for the detection of heavy metals. Among of these methods, electrochemical techniques are potentially the most promising techniques,as they are cheap and provide very accurate measurements with fast analysis time. Nanometallic materials have shown many advantageous functional properties in the field of electrochemical analysis, so the nanometal particles modified electrodes have been used for the electroanalysis. A lot of methods are used in the prepation of nanomaterials modified electrodes, the performance of the modified electrodes also be affected by a lot of factors.
     The paper has prepared the Au-Pd nanoparticles, and researched the performance of it in the detection of heavy metal ions, the main work of this paper has completed as follows.
     (1) In the experiment, the hydrothermal synthesis technology was used for the preparation of Au-Pd nanoparticles, the shape and composition of Au-Pd nanoparticles were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). In order to optimize experiment parameters, the Au-Pd nanoparticles were prepared in the different conditions, such as different reaction temperature and time, and had researched the influence of polyethylene pyrrole (PVP) to the morphology and size of Au-Pd nanoparticles. Moreover,the Au-Pd nanoparticles were prepared on the surface of nickel piece,and had researched the effect of sodium hydroxide(NaOH) in the reaction.
     (2) The Au-Pd nanoparticles were preprocessed by the use of ultrasound dispersing, and the electrode was grinded and polished. The modified electrode was prepared by directly dropping Au-Pd nanoparticles on the surface of electrode. The electrochemical properties of the modified electrode were characterized by cyclic voltammetry(CV), linear sweep voltammetry(LSV), and electrochemical impedance(EIS). This will further perfect the preparation of the modified electrodes, and improve the properties of the modified electrode.
     (3) The Au-Pd nanoparticles modified electrode was used in the electrochemical detection of heavy metal ions, it has been used in the separate detection of As3+and Cu2+with square wave anodic stripping voltammetry(SWASV). The results showed that As3+and Cu2+have their stripping peak in the detection with a good correlation. In addition,the modified electrode was also used in the simultaneous detection of As3+and Hg+, the results showed that the electrode can detect As3+even in the presence of Hg2+without any interference, so that the electrode showed a good slective detection of As3+. This will develop the application of nanometer materials,and provide a new method for the detection of heavy metal ion.
引文
[1]戴树桂.环境化学[M].北京:高等教育出版社,1997:102-112.
    [2]Guo J X, Hu L, Yand P Z, et al. Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects[J]. Journal of Environmental Science and Health Part A,2007,42(12):1853-1858.
    [3]Ivandini T A, Sato R, Makide Y, et al. Electrochemical detection of arsenic (III) using iridium-implanted boron-doped diamond electrodes[J]. Analytical chemistry, 2006,78(18):6291-6298.
    [4]Batayneh A T. Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment[J]. International Journal of Environmental Science and Technology, 9(1):1-10.
    [5]Mandal B K, Suzuki K T. Arsenic round the world: a review[J]. Talanta, 2002,58(1):201-235.
    [6]Bond A M, Wallace G G. Simultaneous determination of copper, nickel, cobalt, chromium (VI), and chromium (III) by liquid chromatography with electrochemical detection[J]. Analytical Chemistry,1982,54(11):1706-1712.
    [7]Chow E, Hibbert D B, Gooding J J. Electrochemical detection of lead ions via the covalent attachment of human angiotensin 1 to mercaptopropionic acid and thioctic acid self-assembled monolayers[J]. Analytica chimica acta,2005,543(1):167-176.
    [8]Boening D W. Ecological effects, transport, and fate of mercury:a general review[J]. Chemosphere,2000,40(12):1335-1351.
    [9]Abu-Shawish H M. A mercury (II) selective sensor based on N, N'-bis (salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples[J]. Journal of hazardous materials,2009,167(1-3):602-608.
    [10]Tsai Y C, Coles B A, Holt K, et al. Microwave-enhanced Anodic Stripping Detection of Lead in a River Sediment Sample. A Mercury-free Procedure Employing a Boron-doped Diamond Electrode[J]. Electroanalysis,2001,13(10):831-835.
    [11]Wang J, Foster N, Armalis S, et al. Remote stripping electrode for in situ monitoring of labile copper in the marine environment[J]. Analytica chimica acta,1995,310(2):223-231.
    [12]Wang J, Lu J, Hocevar S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry,2000,72(14):3218-3222.
    [13]Shin S H, Hong H G. Anodic Stripping Voltammetric Detection of Arsenic (III) at Platinum-Iron (III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode[J]. Bull. Korean Chem. Soc,2010,31(11):3077.
    [14]Xiao L, Wildgoose G G, Compton R G. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry[J]. Analytica chimica acta,2008,620(1):44-49.
    [15]Chen L, Ma D, Pietruszka B, et al. Carbon-supported silver catalysts for Co selective oxidation in excess hydrogen[J]. Journal of Natural Gas Chemistry,2006,15(3):181-190.
    [16]Wang S, Forzani E S, Tao N. Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry[J]. Analytical chemistry,2007,79(12):4427-4432.
    [17]施利毅.纳米材料[M]//上海:华东理工大学出版社,2007:1-161.
    [18]Cheng D, Wang W, Huang S. The onion-ring structure for Pd-Pt bimetallic clusters[J]. The Journal of Physical Chemistry B,2006,110(33):16193-16196.
    [19]孙庆军.水热与微波水热法合成形貌可控纳米氧化钨粉体[D].新疆大学,2008.
    [20]Lai C Y T B G J. Polylactide- and polypeptide-functionalized mesoporous silica nanosphere materials for in vitro fluorescence detection of amino acid-based neurotransmitters[J]. J. Am. Chem,2003(125):4451-4459.
    [21]Numata M, Li C, Bae A H, et al. β -1,3-Glucan polysaccharide can act as a one-dimensional host to create novel silica nanofiber structures[J]. Chemical communications,2005(37):4655-4657.
    [22]Wang J, Holt-Hindle P, MacDonald D, et al. Synthesis and electrochemical study of Pt-based nanoporous materials[J]. Electrochimica Acta,2008,53(23):6944-6952.
    [23]Dai X, Nekrassova O, Hyde M E, et al. Anodic stripping voltammetry of arsenic (III) using gold nanoparticle-modified electrodes[J]. Analytical chemistry,2004,76(19):5924-5929.
    [24]Xiang Y, Wu X, Liu D, et al. Formation of rectangularly shaped Pd/Au bimetallic nanorods: evidence for competing growth of the Pd shell between the {110} and {100} side facets of Au nanorods[J]. Nano letters,2006,6(10):2290-2294.
    [25]Toshima N, Yonezawa T. Bimetallic nanoparticles-ovel materials for chemical and physical applications[J]. New J. Chem.,1998,22(11):1179-1201.
    [26]Nutt M O, Hughes J B, Wong M S. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination[J]. Environmental science & technology, 2005,39(5):1346-1353.
    [27]金利通,仝威,徐金瑞等.化学修饰电极.上海:华东师范大学出版社,1992:1-136.
    [28]Hossain M. M., Islam M. M., Ferdousi S., 等. Anodic Stripping Voltammetric Detection of Arsenic (III) at Gold Nanoparticle鈥怣odified Glassy Carbon Electrodes Prepared by Electrodeposition in the Presence of Various Additives[J]. Electroanalysis, 2008,20(22):2435-2441.
    [29]杨天鸣,邓敏,钟利.PVC膜修饰粉末微电极溶出伏安法测定水中铅(Ⅱ)[J].分析试验室,1999,18(5):27-30.
    [30]H S D, B G M, Garcia G. Meta-nanoparticles based electroanalysis[J]. Electroanalysis, 2002,14(18):1225-1235.
    [31]Oyama M. Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis[J]. Analytical Sciences,2010,26(1):1-12.
    [32]赵会欣,李毅,蔡巍,等.水环境痕量重金属检测的电化学传感器的研究[J].仪表技术与传感器,2009(S1):158-161.
    [33]Streeter I, Wildgoose G G, Shao L, et al. Cyclic voltammetry on electrode surfaces covered with porous layers:An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes[J]. Sensors and Actuators B:Chemical,2008,133(2):462-466.
    [34]Xie H, Zhang C, Gao Z. Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode[J]. Analytical chemistry, 2004,76(6):1611-1617.
    [35]孙伟,尚智美,焦奎,等.纳米碳管修饰电极在生物药物分析中的应用[J].药物分析杂志,2005(6):731-734.
    [36]郑彦.新型化学修饰电极及生物传感器的研究与应用[D].山东师范大学,2003.
    [37]Forsberg G, Laughlin J W O, Megargle R G. Considerations for the determination of trace Concentrations of Arsenic in environmental water samples[J]. Anal. Chem, 1975(47):1586-1592.
    [38]Ferrer D, Torres-Castro A, Gao X, et al. Three-layer core/shell structure in Au-Pd bimetallic nanoparticles[J]. Nano letters,2007,7(6):1701-1705.
    [39]Taguchi N, Hori F, Iwai T, et al. Study of Au-Pd core-shell nanoparticles by using slow positron beam[J]. Applied Surface Science,2008,255(1):164-166.
    [40]Lee Y W, Kim M, Kim Z H, et al. One-Step Synthesis of Au@ Pd Core@Shell Nanooctahedron[J]. Journal of the American Chemical Society,2009,131(47):17036-17037.
    [41]Lee Y W, Kim N H, Lee K Y, et al. Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles[J]. The Journal of Physical Chemistry C, 2008,112(17):6717-6722.
    [42]宋永辉,梁工英,张秋利,等.球形纳米银粉的制备研究[J].稀有金属材料与工程,2007(4):709-712.
    [43]Wiley B, Sun Y, Mayers B, et al. Shape-controlled Synthesis of Metal Nanostructures:The Case of Silver[J]. Chemistry-A European Journal,2005,11(2):454-463.
    [44]长崎诚三.二元合金状态图集[M].北京:冶金出版社,2004.
    [45]陈渊,周科朝,黄苏萍,等.水热法制备Cu掺杂可见光催化剂BiVO_4及其光催化性能研究[J].无机材料学报,2012(1):19-25.
    [46]Lee Y W, Kim M, Kim Y, et al. Synthesis and Electrocatalytic Activity of Au-Pd Alloy Nanodendrites for Ethanol Oxidation[J]. The Journal of Physical Chemistry C, 2010,114(17):7689-7693.
    [47]窦妍,曹丰,李延报,等.水热条件下以聚乙烯吡咯烷酮为模板制备羟基磷灰石微球:第七届中国功能材料及其应用学术会议,中国湖南长沙,2010[C].
    [48]Li M, Zhao J K, Han L, et al. XRD Analysis of Silver Nanoparticles Prepared under Microwave Irradiation[J]. Research and Exploration in Laboratory,2006,1.
    [49]Gao Y, Jiang P, Liu D F, et al. Evidence for the monolayer assembly of poly (vinylpyrrolidone) on the surfaces of silver nanowires[J]. The Journal of Physical Chemistry B,2004,108(34):12877-12881.
    [50]任月萍,徐程程,方云.聚乙烯吡咯烷酮碱性水溶液中金纳米花的简易合成[J].物理化学学报,2011(5):1244-1248.
    [51]宋永辉,梁工英,张秋利,等.球形纳米银粉的制备研究[J].稀有金属材料与工程,2007(4):709-712.
    [52]徐如人,庞文琴.无机合成与制备化学[M]//北京:高等教育出版社,2001:108-112.
    [53]林敬东,杨振威,钟怀国,等.银纳米粒子的形貌可调控研究[J].化学研究与应用,2007(2):169-171.
    [54]韦建军,唐永建,吴卫东.Cu-A1系纳米金属间化合物的制备[J].四川大学学报(工程科学版),2008(4):105-108.
    [55]马延文,胡征.一种直接在镍片上生长氮化硼纳米管膜的方法[J].南京邮电大学学报(自然科学版),2008(1):83-86.
    [56]Shen L, Bao N, Yanagisawa K, et al. Controlled synthesis and assembly of nanostructured ZnO architectures by a solvothermal soft chemistry process[J]. Crystal Growth and Design, 2007,7(12):2742-2748.
    [57]Chen S, Wang Z L, Ballato J, et al. Monopod, bipod, tripod, and tetrapod gold nanocrystals[J]. Journal of the American Chemical Society,2003,125(52):16186-16187.
    [58]杨立平,涂伟霞.微波法合成纳米金胶体颗粒的调控研究[J].物理化学学报,2006,22(4):513-516.
    [59]吕维忠,李金玉,黄旭珊,等.水热法合成PbTe微晶及其微观形貌表征[J].深圳大学学报(理工版),2011(2):178-182.
    [60]鞠剑峰,施新宇,吴东辉.乙醇/水混合溶剂热法制备不同形貌的CuO晶体[J].人工晶体学报,2010(3):776-779.
    [61]Cavicchioli A, La-calea M A, Gutz I G R. Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry:a Review[J]. Electroanalysis, 2004,16(9):697-711.
    [62]高迎春.银纳米修饰电极的制备及其应用[D].安徽师范大学,2004.
    [63]Jena B K, Percival S J, Zhang B. Au Disk Nanoelectrode by Electrochemical Deposition in a Nanopore[J]. Analytical chemistry,2010,82(15):6737-6743.
    [64]常燕.碳纳米管修饰电极在电化学传感器中的研究与分析应用[D].山西大学,2009.
    [65]何为,唐先忠,王守绪,等.线性扫描伏安法与循环伏安法实验技术[J].实验科学与技术,2005(S1):134-136.
    [66]Koczkur K, Yi Q, Chen A. Nanoporous Pt-Ru Networks and Their Electrocatalytical Properties[J]. Advanced Materials,2007,19(18):2648-2652.
    [67]钟燕,周洁丹,刘英菊,等.新型巯基化合物自组装膜修饰电极对铜离子的检测[J].分析测试学报,2009(9):1031-1034.
    [68]Nam S H, Kim J J, Han S S. Direct determination of total arsenic and arsenic species by ion chromatography coupled with inductively coupled plasma mass spectrometry[J]. Bulletin-Korean Chemical Society,2003,24(12):1805-1808.
    [69]Forzani E S, Foley K, Westerhoff P, et al. Detection of arsenic in groundwater using a surface plasmon resonance sensor[J]. Sensors and Actuators B:Chemical, 2007,123(1):82-88.
    [70]Herzog G, Arrigan D W M. Application of disorganized monolayer films on gold electrodes to the prevention of surfactant inhibition of the voltammetric detection of trace metals via anodic stripping of underpotential deposits:Detection of copper[J]. Analytical chemistry, 2003,75(2):319-323.
    [71]陶建中,王爱荣,荆瑞俊,等.方波溶出伏安法测定镀镍液中的微量铜[J].材料保护,2004,37(12):59-61.
    [72]Oztekin Y, Yazicigil Z, Ramanaviciene A, et al. Square wave voltammetry based determination of copper (II) ions by polyluteolin-and polykaempferol-modified electrodes[J]. Talanta,2011.
    [73]He J L, Wu T B, Hu B J, et al. Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly (ethylene glycol)/CO2 system[J]. Science China Chemistry,2010,53(7):1592-1597.
    [74]吴艳燕.茶叶中铅等多元素快速检测电化学传感技术的研究[D].浙江工商大学,2008.
    [75]付静.水环境重金属检测的电化学传感器的研究[D].浙江大学,2007.
    [76]邹绍芳.重金属电化学传感器及其在海水检测中应用的研究[D].浙江大学,2006.
    [77]Lee S J, Lee S S, Lee J Y, et al. A functionalized inorganic nanotube for the selective detection of copper (II) ion[J]. Chemistry of materials,2006,18(20):4713-4715.
    [78]任旺,张英,孙延春.柠檬酸修饰电极电化学测定铜离子的研究:第十届全国化学传感器学术会议,重庆,2008[C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700