面向无线传感器网络数据传输与查询的节能算法与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络综合了传感器技术、微电子技术和网络技术,是一种新兴的信息采集和处理技术。它主要使用无线电技术、声波技术等进行通信。由于无线传感器网络通常部署在人类无法接近的恶劣甚至危险的远程环境中,节点电池无法补充,因此设计有效的协议及算法以降低网络能耗成为无线传感器网络研究的核心问题之一。本文围绕水下传感器网络和水面受限浮动传感器网络中的能耗问题,主要针对这两种无线传感器网络中数据传输和查询相关的节能问题,从以下几个方面进行了研究:
     为了降低数据传输过程中的能耗,本文基于信道状态变化,分别对水下传感器网络和水面受限浮动传感器网络中的数据传输控制算法进行了研究:
     1)在水下传感器网络中,本文提出了一种基于最优报文长度的无线传感器网络节能算法。该算法可以在当前误码率下通过对据报长度的最优调整来最大程度的减少重传次数,降低能耗。
     2)在水面受限浮动传感器网络中,本文提出了一种基于信道状态和拓扑结构的面向水面受限浮动传感器网络系统的自适应传输控制算法。该算法能够按需求调整水面受限浮动传感器网络系统传输间隔、降低能耗。为降低水面受限浮动传感器网络在数据查询过程中的能耗,本文根据水面受限浮动传感器网络实验系统中数据存储的特点提出了三种新的相似度方法以提高在数据多维分布式区域近似查询的效率:
     3)对现有的基于距离的相似度方法进行了改进,给出了一种基于距离的广义的相似度方法。通过实例我们验证了在数据查询过程中,可以基于这种广义相似度方法构造出较经典相似度方法更为精确的相似度函数。
     4)从数学上对距离的两类不同认识入手,根据弱距离来构造出一种新的广义相似度方法以对经典的Dengfeng-Chuntian方法进行改进。通过实例进一步验证了,由新广义相似度方法构造出来的改进的相似度函数可以提高原方法在数据查询中的精确性。
     5)本文还给出了一种基于子集度来构造相似度函数的方法。该方法给出了构造相似度函数的一种新的思路,并对今后构造更精确的相似度函数起到一定的理论指导作用。
Wireless Sensor networks (WSNs), which are made by the convergence of microelectronic technique, sensor technology, and network technology, are novel technologies. Communications in WSNs are based on wireless radio, and acoustic signals. WSNs are deployed to acquire and process information of the physical word and to transfer the sampled information to the users. Sensor networks are usually utilized in harsh or dangerous environment, so it is impossible for the node to be recharged with energy. Therefore, minimizing energy consumption is one of the key research problems in the design of sensor network protocols and algorithms. This paper focuses on energy saving strategies for Restricted Floating Sensor Networks (RFSNs) and UnderWater Sensor Networks (UWSNs). The main contents of this paper are as following:
     First, this paper focuses on data transmission technology for UWSNs and marine environment real-time monitoring systems to deal with the problem of energy saving:
     1)According to the bit error rate of the wireless links, the algorithm to determine the optimization length of the packets is proposed under the guide of the bit error rate. This algorithm can adjust the packet length dynamically, to increase the efficiency of energy consumption on packets transmission.
     2)This paper proposes an Adaptive Transmission Time Control (ATTC) strategy for RFSNs. This mechanism can adjust transmission interval dynamically according to the change of the network topology and the conditions of the wireless channels. Second, this paper focuses on constructing new similarity measures as the theoretical principle to prolong the lifetime of the UWSN, which includes:
     3)This paper improves the practical similarity measure based on distance by constructing a new similarity measure. Examples are demonstrated to show the merit of this new similarity measure on its precision.
     4)Based on two different definitions of distance, this paper constructs a general similarity measure oriented to distance, which improves the traditional distance measure of Dengfeng-Chuntian. The better precision of this new distance measure is shown through discussions of a lot of examples.
     5)Another similarity measure are proposed based on subsethood. This measure gives the novel idea for constructing similarity measures oriented to query processing.
引文
[1] Akyildiz I, Su W, Sankarasubramaniam Y, and Cayirci E. A Survey on Sensor Networks. IEEE Communications, 2002, 40(8): 102~114.
    [2] Moussaoui O, Na?mi M. A Distributed Energy Aware Routing Protocol for Wireless Sensor Networks. PE-WASUN'05 - Proceedings of the Second ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, 2005, 34~40.
    [3]王殊,阎毓杰,胡福平,屈晓旭.无线传感器网络的理论及应用.北京:北京航空航天大学出版社,2007.
    [4]孙利民,李建中.无线传感器网络.北京:清华大学出版社,2005.
    [5]任丰原,黄海宁,林闯.无线传感器网络.软件学报, 2003, 14(7):1282~1291.
    [6]李建中.无线传感器网络专刊前沿.软件学报,2007, 18(5):1077~1079.
    [7] Akkaya K, Younis M. A Survey on Routing Protocols for Wireless Sensor Networks. Ad Hoc Networks, 2005, 3(3): 325~349.
    [8]李建中.无线传感器网络研究进展.中国计算机科学技术发展报告. 2006,203~230.
    [9]窦金凤.无线传感器网络生命周期延长算法研究. [博士学位论文].青岛:中国海洋大学,2008.
    [10] Holger Karl,Andreas Willig. Protocols and Architectures for Wireless Sensor Networks. Wiley, 2005.
    [11] TPS70158 voltage regulator, Texas Instruments, http://www.ti.com
    [12] LymberoPoulos D, Savvides A. XYZ: A Motion-Enabled, Power Aware Sensor Node Platform for Distributed Sensor Network Applications. IPSN2005, UCLA, Los Angeles, California, USA, April, 2005, 449~454.
    [13] Johnson P et al. Remote continuous Physiological monitoring in the home. Journal of Telemedicine and Telecare, 1996, 2(2):107~113.
    [14] Pottie G, Kaiser W. Wireless integrated network sensors. Communication of the ACM, 2000, 43(5):51~58.
    [15] Shih E, Cho S, Ickes N, et al.. Physical Layer Driven Protocol and Algorithm Design forEnergy-Efficient Wireless Sensor Networks. Proc. ACM MobiCom’01, Rome, Italy, July, 2001, 272~286.
    [16] Estrin D, Sayeed A, and Srivastava M. Mobicom’02Tutorial, Wireless Sensor Networks. http: // nesl.ee.ucla.edu/tutorials/mobicom02/.
    [17] Sameer T, Nael B Abu G, Wendi H. A taxonomy of wireless micro-sensor network models. Mobile Computing and Communications Review, 2002, 1(2): 1~8.
    [18] Sotjanovic M. Acoustic (underwater) communications. In: J. G. Proakis (Ed.), EncycloPedia of Telecommunications. Wiley and New York, 2003.
    [19] YIN J W, HUI J Y, et al.. Underwater Acoustic Communication Based Pattern Time Delay Shift Coding Scheme. China Ocean Engineering,2006,20(3):499~508.
    [20] Liu Y T, Yang S Y, Cai H Z. A waveform design method for improving high speed underwater communication performance. Acta Acustica, 2005, 30(5): 435~441.
    [21] Xu R, Xu X M,Xu J, et al.. Implementation of MFSK coding for underwater acoustic channel data transmission using in-system programmable chip. Modeling Simulation & Control ,1999, 42 :9~20.
    [22] Xu R, Cheng E, Liu H, et al.. Underwater acoustic communication system with Trellis Coded Modulation (TCM) technique and its DSP implementation. Marine Sciences, 2005, 29(4):17~22.
    [23] Xu X M, Xu F H, Chen D S. Anti-multipath frequency hopped communication technique in shallow-water acoustic channels. High Technology Letters, 2003,9(2):17~20.
    [24] Liu M C, Yang C Q, Meng Q. Underwater Acoustic Communication Network's MAC Protocol and Opnet Network Simulation. Technical Acoustic, 2004,23(4):119~220.
    [25] GAO M S, LU J R. The implementation based the finite state machine of a novel multiple access protocol for underwater acoustic networks. Journal Of Circuits And Systems, 2006,11(5):51~56.
    [26] Shen Zhizhong, Wang Shuo, Tan Min, et al.. Robotfish-based underwater mobile sensor networks for environmental monitoring. In: Proc. of the 15th International Offrshore and Polar Engineering Conference, Seoul, South Korea, 2005.
    [27] Huang Jianguo,Chen YongZhang,Qunfei,et al.. Multi-frequency DPSK modulation for long-range underwater acoustic communication. In: Proc. of the Oceans, Europe, Brest, France, 2005.
    [28] Li Hong-Juan, Sun Chao, Li Jing-Hua. Design and simulations of underwater acoustic communication receiver without PLL. In: Proc. of the International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 2005.
    [29] Hu Z J, Wang C M, Zhu Y P, et al.. Signal Detection for the Underwater Acoustic Voice Communication. In: Proc. of the International Symposium on Test and Measurement, Shenzhen, China, 2003.
    [30] Wang C M , Kong D R , Zhu Y P. Multi-model detection and simulation of underwater acoustic signal. In: Proc. of 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004.
    [31] Guo Z W, Li Z W, Yu L. Lifetime prolonging algorithms for underwater sensor networks. China Ocean Engineering, 2006, 20(2): 325~334.
    [32] G.A?car, A.E.Adams. ACMENet: an underwater acoustic sensor network for real-time environmental monitoring in coastal areas. In: IEE Proc. Radar, Sonar, and Nav., 2006, 153(4): 365~380.
    [33] L. Freitag, M. Stojanovic, S. Singh, M. Johnson. Analysis of Channel Effects on Direct-sequence and Frequency-hopped Spread-spectrum Acoustic Communication. IEEE Journal of Oceanic Engineering, 2001, 26(4): 586~593.
    [34]易晓蕾.我国海洋环境监测工作发展的对策研究. [硕士学位论文].青岛:中国海洋大学,2003.
    [35]李玉成.海洋工程技术进展与对发展我国海洋经济的思考.大连理工大学学报,2002,vol.42(l):l~5.
    [36] Estrin D, Govindan R, Heidemann J. Next century challenges: scalable coordination in sensor networks. Proceedings of the Fifth Annual International Conference on Mobile Computing and Networks (MobiCOM '99). Washington, USA, 1999, pp. 263-270.
    [37] Spragins J D., Hammond J L., Pawlikowski K.elecommunications: Protocols and Design [M ].Boston;Addison Wesley Publishing Company,1991.
    [38] Lettieri P.,Srivastava M B.,Adaptive Frame Length Control for Improving Wireless Link Throughput,Range and Energy Efficiency. Proc of IEEE INFOCOM’98.San Francisco, 1998:564~571.
    [39]段中兴,张德运.基于误码率的模糊加权无线网络公平调度算法.西安交通大学学报,2005,39(12):1303~1306.
    [40] He T, Blum B M, Stankovic J A., Abdelzaher T. AIDA: Adaptive Application Independent Aggregation in Sensor Networks. ACM Trans on Embedded Computing System, 2003.3(2): 426~457.
    [41] Zeng P, Yu H B, Liang W, Energy Efficiency Packet Optimization Algorithm for Wireless Sensor Network. Control and Decision, 2006, 21(2):180~183.
    [42] J. Heidemann, Y. Li, A. Syed, J. Wills, and W. Ye, "Underwater Sensor Networking: Research Challenges and Potential Applications," USC/ISI Technical Report ISI-TR-2005-603, 2005.
    [43] Krishnamachari B., Estrin D., Wicker S. Modelling data—centric routing in wireless sensor networks. Proc of IEEE Infocom, 2002: 112~123.
    [44] Yang Z, Li M, Liu Y H, Sea Depth Measurement with Restricted Floating Sensors. The 28th IEEE Real-Time Systems Symposium, Tucson, 2007: 469~478.
    [45] J. Heidemann, W. Ye, J. Wills, et al.. Research Challenges and Applications for Underwater Sensor Networking. In: Proc. IEEE Wireless Comm. and Networking Conf., 2006. 228~235.
    [46] S. Smith, J. C. Park, and A. Neel. A Peer-to-Peer Communication Protocol for Underwater Acoustic Communication. In: Proc. IEEE Oceans 1997, 1997. 268~272.
    [47] Heinzelman W., Chandrakasan A., Balakrishnan H., Energy-Efficient Communication Protocol for Wireless Microsensor Networks, the 33rd Annual Hawaii International Conference on System Sciences.Hawaii, 2003:01~10.
    [48] Intanagonwiwat C, Estrin D, Govindan, R. Impact of network density on data aggregation in wireless sensor networks. In: Proc.Int’1 Conf. Distributed Computing Systems (ICDCS), 2002, 456~458.
    [49] Krishanamachari B, Estrin D, Wicker S. The impact of data aggregation in wireless sensor networks. In: Proc.Int’1 Workshop Distributed Event Based Systems (DEBS), July 2002.
    [50] D. F. Li, C. T. Cheng,“New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions”, Pattern Recognition Letters, Elsevier, New York, 2002, pp. 221~225.
    [51] Young X L, Kin J, Govindan R, Hong W. Multi-dimensional range queries in sensor networks. 1st Int’l Conf on Embedded Networked Sensor Systems, ACM Press, 2003, 63~75.
    [52] Raghavendra C S, Sivalingam K M, Zhati T, eds. Wireless Sensor Networks. Kluwer Academic Puvlishers, 2004, 185~252.
    [53] L. K. Hyung, Y. S. Song, K. M. Lee,“Similarity measure between fuzzy sets and between elements”, Fuzzy Sets and Systems, Elsevier, Amsterdam, 1994, pp.291-293.
    [54] S. M. Chen,“A comparison of similarity measures of fuzzy values”, Fuzzy Sets and Systems, Elsevier, Amsterdam, 1995, pp.79-89.
    [55]潘群华,李明禄,张重庆,张文哲,伍民友.无线传感器网络中的数据查询.小型微型计算机系统,2007,51~60.
    [56] Y Wu, Edward Y Chang. Distance—function design and fusion for sequence data. In: Proceeding of the 2004 Conference on Information and Knowledge Management, 324~333.
    [57] Apoorva Jindal, Konstantinos Psounis. Modeling spatially—cor—related data of sensor network with irregular topologies. IEEE SEC0N 2005.
    [58] Apoorva Jindal, Konstantinos Psounis. Modeling spatially—cor—related sensor network data. IEEE SECON 04, October, 2004. 162—171.
    [59] Apoorva Jindal, Konstantinos psounis. A clustering method that uses lossy aggregation of data. Extended Abstract in the Proceedings of ACM Sensys’04.November 2004, 269—270.
    [60] Guo Longjiang, Ren Meirui, Li Jingbao. Study on fuzzy prediction systems over sensor data streams. Journal of Harbin University of Commerce (Natural Sciences Edition). 2005, 21 (4): 88—91.
    [61]罗承忠.模糊集引论(上册).北京:北京师大出版社,1989.
    [62] Xiaodong Liu, Suhua Zheng, Fenglan Xiong, Entropy and Subsethood for general interval-value intuitionistic fuzzy sets, Fuzzy Systems and Knowledge Discovery’05, Augest 2005,Part I, 42~52.
    [63] Atanassov K.T., G.Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (1989), 343~349.
    [64] Atanassov K.T., Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg, New York, 1999.
    [65] Gao Q, Blow K J, Holding D J, Marshall I W, Peng X H. Radio Range Adjustment for Energy Efficient Wireless Sensor Networks. Ad Hoc Networks, 2006, (4): 75~82.
    [66] Kuruvila J, Nayak A, Stojmenovic I. Hop Count Optimal Position-based Packet Routing Algorithms for Ad hoc Wireless Networks with a Realistic Physical Layer. IEEE Journal on Selected Areas in Communications, 2005, 23(6): 1267~1275.
    [67] X.D. Liu, S.H. Zheng, and F.L. Xiong, Entropy and Subsethood for General Interval-Valued Intuitionistic Fuzzy Sets, FSKD 2005, Berlin Heidelberg, 2005:. 42~52.
    [68] Shili Xiang, HockBeng Lim, KianLee Tan, Yongluan Zhou SimilarityAware Query Allocationin Sensor Networks with Multiple Base Stations. The 4th International Workshop on Data Management for Sensor Networks (DMSN'07), Austria, 2007: 1~6.
    [69] L.A. Zadeh,“Fuzzy sets”, Inform. and Control, 1965: 338~353.
    [70] Z. Z. Liang, P. F. Shi,“Similarity measures on intuitionistic fuzzy sets”, Pattern Recognition Letters, Elsevier, New York, 2003: 2687~2693.
    [71] W.-L. Hung, M.-S. Yang,“Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance”, Pattern Recognition Letters, Elsevier, New York, 2004: 1603~1611.
    [72] Deng-Feng Li,“Some measures of dissimilarity in intuitionistic fuzzy structures”, Journal of Computer and System Sciences, Academic Press Inc. Orlando, 2004: 115~122.
    [73] Carbonelli C, Mitra U. Cooperative Multihop Communication for Underwater Acoustic Networks. The First ACM International Workshop on Underwater Networks, September 25, Los Angeles, California, USA, 2006, 97~100.
    [74] Xie P, Cui J H, Lao L. VBF: Vector-Based Forwarding Protocol for Underwater Sensor Networks. IFIP Networking 2006, Lecture Notes in Computer Science, 3976(4): 1216~1221.
    [75] Magistretti E, Kong J J, Lee U, et al.. A Mobile Delay-Tolerant Approach to Long-Term Energy-Efficient Underwater Sensor Networking. IEEE WCNC, 2007, 3: 2866~2871.
    [76] Akyildiz I F, Pompili D, and Melodia T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 2005, 3(3): 257~279.
    [77] Jurdak R, LoPes C V, Baldi P. Battery lifetime estimation and optimization for underwater sensor networks, in: Sensor Network Operations, IEEE Press, New York, 2004.
    [78] Cullar D, Estrin D, Strvastava M. Overview of Sensor Network. Computer, 2004, 37(8): 41~49.
    [79] Pompili D, Melodia T, Akyildiz I F. Deployment Analysis in Underwater Acoustic Wireless Sensor Networks, The First ACM International Workshop on Underwater Networks, September 25, Los Angeles, California, USA, 2006, 48~55.
    [80] Sozer E M, Stojanovic M, and Proakis J G. Underwater acoustic networks. IEEE Journal of Oceanic Engineering, 2000, 25(1): 72-83.
    [81] Sotjnoavie M. Recent Advances in High-Speed Underwater Acoustic Communications. IEEE Journal of Ocean, 1996, 21(2): 125~136.
    [82] Eggen T, Baggeroer A, and Preisig J. Communication over Doppler spread channels-part I: Channel and receiver presentation. IEEE Journal of Oceanic Engineering, 2000, 25(1): 62~71.
    [83] M. D. Green and J. A. Rice. Channel-tolerant FH-MFSK acoustic signaling for undersea communications and networks, IEEE Journal of Oceanic Engineering, 2000, 25(1): 28~39.
    [84] Sharif B S, Neasham J, Hinton O R, and Adams A E. Computationally efficient doppler compensation system for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 2000, 25(1): 52~61.
    [85] Peleato B, Stojanovic M. A MAC Protocol for Ad-Hoc Underwater Acoustic Sensor Networks. The First ACM International Workshop on Underwater Networks, September 25, Los Angeles, California, USA, 2006, 113~115.
    [86] Brady D and Catipovic J A. Adaptive multiuser detection for underwater acoustical channels. IEEE Journal of Oceanic Engineering, 1996, 19(2): 158~165.
    [87] Yeo J K, Lim Y, Lee H H. Modified MAC (Media Access Control) protocol design for the acoustic-based underwater digital data communication. IEEE International Symposium on Industrial Electronics, Pusan, 2001, 364~368.
    [88] Creber R K, Rice J A, Baxley P A, et al. Performance of undersea acoustic networking using RTS/CTS handshaking and ARQ retransmission. IEEE Oceans Conference Record, Honolulu, 2001, 2083~2086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700