三维衣身原型曲面展平技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维曲面展平技术是逆向工程技术的非常重要的一部分,通过对三维实物的测量研究及信息获取到二维图纸的制作,该技术为产品的快速研制开发以及快速原型化设计提供了一条捷径,被广泛的用于航空、机械、轻工、家电、汽车、玩具等领域。服装及人体曲面作为一种非常复杂的三维曲面,其曲面的研究及展平一直是三维服装CAD领域的难点,能通过智能化设计实现三维人体特别是服装曲面的自动展平,实现服装领域的自动智能打板,是很多学者研究的热点也是难点。
     目前对三维人体和服装曲面展平技术的研究,更多的从机械或者自动化角度进行,能够结合服装专业知识和人体特点的研究还是不多,展平后的曲面实用性比较差。同时对于人体和服装曲面的定义更多的是通过曲面拟合的形式实现,拟合度不高是主要的问题,或者对曲面进行简单的区域划分来进行定义,使服装曲面缺少一种精确的数学定义形式。
     本文针对三维服装曲面展平的研究状况,以标准女装人台模型为研究对象,提出基于形体特征点和特征线的三维数据测量方法,获取曲面数据,设计了基于特征点和线的曲面三角网格化方法。对网格化曲面上节点的离散高斯曲率的计算给出了计算公式,然后基于蚁群算法原理,提出了一种比较精确的定义复杂三维人体曲面的数学形式。基于胡克定律,提出了一种几何与物理结合的新型展平算法,提高了曲面展平后的实用性。最后结合服装打板和工艺归拔原理,针对不同的分割,设计了不同的物理修正算法,分别实现了展平,并对展平后的样板进行实物制作,对算法有效性进行评价和验证。论文的主要研究内容和创新点如下:
     1)基于形体特征的三维曲面数据获取技术的研究
     提出了基于形体特征的三维曲面数据获取方法,将决定服装样板造型的人体控制部位加入到服装曲面数据获取技术中。设计测量曲面上的关键点和关键线,对曲面上测量得到的节点进行三角网格化技术方面,提出了基于特征点和线进行有规律的三角网格化方法,得到了网格化的三维人台曲面以及各节点的拓扑信息。基于数据访问特点,提出了四维双向链表的数据存储方式。通过验证所设计的基于形体特征的数据获取方法及三角网格化技术对提高展平样板的实用性非常有效。
     2)基于离散高斯曲率的三维原型曲面的定义
     基于微分几何中的高斯曲率理论和Guass-Bonnet定理,设计了一种三角网格化模型,以线性表的形式将曲面上的节点表示为顶点集合和三角面片集合,给出了三角面片法向量的计算公式。基于模型,提出了一种离散化高斯曲率的计算方法,设计了算法对曲面上的节点计算离散化的高斯曲率。通过试验设计了一评判值,比较各节点高斯曲率的绝对值与评判值的大小,将节点定义成可展性节点和非可展性节点。
     3)衣身原型曲面的智能分割
     将蚁群优化算法应用到服装曲面的分割技术中,将衣身原型曲面的分割问题定义为过各节点寻找路径的旅行商问题(TSP),以区域节点所占各区域的平均百分比为评价目标确定是否终止搜索,建立了数学模型,设计了合适的信息素、更新概率和启发式信息等参数,并对算法的收敛性进行了分析了验证,实现了对曲面的分割。最后通过纸片实验,验证了算法的有效性。从而得到了衣身原型曲面上的两种区域分布:可展区域和非可展区域。
     4)非可展曲面的智能化展平算法的研究
     对非可展曲面,基于几何与物理相结合技术,提出了一种基于特征点和特征线的新型展平算法,算法首先沿形体上的特征点和特征线将曲面进行几何展平,然后基于胡克定律建立了一种新型能量评价模型,对几何展平结果进行物理修正。在能量释放问题上,考虑了与分割线位置分布的关系,提出了功能性分割线和非功能性分割线两种定义,并提出沿功能性分割线释放能量的展平算法,将本文算法与领域相关算法进行比较,得出本文算法既保证了曲面展平后的材料丝缕方向,又保证了能量积聚的最小化和样板形状的规则。
     5)基于省道转移原理和服装归拔技术的曲面展平算法的研究
     对各种分割线分布形式的衣身原型曲面,基于省道转移原理,提出将非功能分割线转变为功能性分割线的能量释放方法,设计辅助线进行分割线类型转变,在辅助线设计上提出了最短路径搜寻算法,与未进行分割线类型转变的展平结果进行对比,得出转变为功能性分割线的能量释放方法能有效减少能量积聚,提高样板的稳定性。对展平后样板的稳定性方面,提出基于材料归拔量的评价方法,建立了可归拔变形量的评价模型,选择可归拔变形量最小的材料进行样板变形量的评价,得出所展平的二维样板变形量都是处于可控范围的,然后提出将可展曲面部分和非可展曲面部分沿分界线进行拼接得到最终生产样板的方法,并输出样板,采用样布进行了制作试验,验证了算法的有效性。
The technology for surface flattening is the important part of the converse projects. It is such work that the 2-D drawing is made through measuring the 3-D object. The technology has made the new products be researched, produced and becoming prototype more rapidly and expediently. It is widely used many fields such as aviation, mechanism, light industry, domestic wiring, car and toy design. The body and garment surface as the very complex 3-D surface are more difficult to be studied in the field of 3-D garment CAD. To flatten such surface by intelligent algorithm and realize the automatic intelligent pattern making are the studying hotspot and nodus for many academician.
     Now in the researching for 3-D surface flattening, the research for rigid surface as mechanism and aviation appliance is much, and they are also flattened intelligently. The study for body and garment surface is done from the angle of mechanism and automatics. The research is less that combined with the clothing specialty acknowledge and body feature. That leads to the bad practicability for flattened surface. The minimum of area changing fore-and-after the surface being flattened and the speed are paid more attention to. At the same time more research for body surface is to define the surface by the method of surface imitation. The imitation degree is not high is the exited problem. Another problem is some research only have the simple area dividing for the surface and a kind of accurate definition form for the body surface is not formed.
     According to the present researching condition, the article takes standard female model as studying object and a kind of new 3-D measurement and surface gridding method is brought forward which based on body feature points and lines. To calculate the discrete gauss curvature of the nodes on the surface the formula is given. Then basing on ant colony algorithm a more accurate mathematics definition forms for complex 3-D body surface is put forward. A new surface flattening algorithm is designed which combined with geometry and physics and based on Hook Law. Finally combining with clothing pattern-making and technical shrink and stretch principles, all kinds of surface with different dividing lines are flattened by designing physical amending algorithm. Using the flattened pattern to cut fabrics and sewing them into body surface, which is used to evaluate and test the efficiency of the algorithm. The major researching content and innovation are as following:
     1) The researching of data acquirement techniques for 3-D surface on body features.
     A kind of new 3-D surface data acquirement methods is put forward which based on body features. Some key points and lines that play the major role on the body are used to the data acquirement techniques of garment surface. The points and lines are designed and selected. These are also used to the surface gridding techniques. In order to triangulate the measured nodes the method based on surface featured points and lines is lodged and used. The gridding surface of body and the topology information of each node are got. Basing on the data visiting features, the 4-D bidirectional link list is designed as data memory mode. All those are verified to be very effective for the improvement of flattened pattern.
     2) The definition for 3-D body surface on discrete gauss curvature.
     A kind of new triangled model is set based on the Gauss Curvature theory from differential geometry and Guass-Bonnet theorem. Express the nodes as vertex and triangle muster by linear list. The calculation formula is given for normal vector of triangles. According to the model the algorithm is designed to calculate the discrete gauss curvature for each node. A evaluating value is set by test. All nodes are classified into two types as developed ones and undeveloped ones by comparing absolute value of gauss curvature for each node with the evaluating value.
     3) The research of intelligent partition technique for body surface.
     Apply the ant-colony optimization algorithm to surface partition. The partition for surface is defined as TSP that the optimizing path is found passing through nodes. Take average percentage of nodes as evaluating target function to determine whether the searching will end. A mathematics model is set. Such parameters as pheromones, updating probability and heuristic information are set by test according to actual problem. The astringency of algorithm is also analyzed and proved. The surface is divided into developed area and undeveloped one. The partition line is found also. Finally some papers are placed onto the body to verify the algorithm efficiency.
     4) The research of intelligent flattening algorithm for undeveloped surface.
     The new flattened algorithm for undeveloped surface is put forward. The algorithm is based on feature points and lines. It also combines geometric with physics. The algorithm firstly flattens the surface along feature points and lines according to geometric principles. Then a kind of new energy evaluating model is set up based on Hook Law. Using the model the geometric flattened result is amended. It is a kind of physical method. In order to deal with the problem of energy release during surface flattening, the position of dividing lines is analyzed and such two kinds of definition as functional partition lines and nonfunctional partition lines are brought forward. The flattening algorithm that releases the energy along functional partition lines is designed. By comparing the algorithm of this article with the correlative ones it can be got that the algorithm of this article not only make sure that the material's basic longitude and latitude but also make sure that the minimum accumulated energy and regular pattern shape.
     5) The researching of surface flattening algorithm basing on dart transfer principles and clothing shrunk and stretched by ironing.
     For the body surface with all kinds of partition lines, different energy release algorithm is designed basing on dart transfer principles. In the algorithm the nonfunctional partition lines are transferred into functional partition lines. In order to realize those transferences the assistant lines are designed. The shortest path searching algorithm is put forward for the designing of assistant lines. The flattened result with partition lines type transferring is compared with that without partition lines type transferring. Such conclusion can be drawn that the new algorithm can effectively reduce energy accumulation and improve the pattern stability. In order to improve flattened pattern stability, an evaluating model for valuating material's shrink and stretch deformable capacity is set up. Such fabrics with minimum shrink and stretch deformable capacity is selected to evaluate flattened pattern deformable capacity. By comparing such conclusion can be got that the flattened pattern deformable capacity in this article is within the scope of permission. Then the fabrics are sewn into surface to test the efficiency of algorithm. The result showed that the new algorithm in this article is good for the improvement the practicality of flattened pattern and also with good stability.
引文
[1]张贤杰.复杂曲面优化展开技术研究[D],西北工业大学,2004.
    [2]杨娇艳.面向服装CAD的裁片设计技术研究与实现[D],浙江大学,2007:2-7.
    [3]三维服装CAD中关键技术的特征和方法,3D动力网,2008,http://www.3ddl.net/news__pws/focus/826.html
    [4]徐军,何梅娟.三维服装CAD中关键技术的特征和方法[J],天津工业大学学报,2007,26(5):52-57.
    [5]余国兴,缪旭静.3D服装虚拟技术,模拟成衣过程,中国家纺网,2005,http://www.tnc.com.cn/news/detail/5/8/d58209.html
    [6]夏平,孟凡鹃,姚进.三维服装CAD技术研究综述[J],成都纺织高等专科学校学报,2005,22(2):11-14.
    [7]Weil J. The synthesis of cloth objects[J], Computer Graphics,1986,20(4):49-54.
    [8]Haunman D R, Parent R E. The visual computer[J], SpringerVerlag,1988,4: 332-347.
    [9]Kunii T L. Modeling and animation of garment wrinkle for mation processes[C], Computer Animation Proc. Spring-Verlag,1990:131-146.
    [10]肖友清,高成英,王栋.碰撞检测在服装CAD排版系统中的实现[J],现代计算机,2001,9:93-96.
    [11]聂卉,罗笑南.三维虚拟服装缝合技术研究[J],计算机辅助设计与图形学学报,2002,11:1010-1013.
    [12]刘哲.面向数字化立体裁剪的服装曲面造型研究[D],大连轻工业学院,2007:1-3.
    [13]T Shimada and Y Tada. Approximate transformation of an arbitrary curved surface into a plane using dynamic programming[J], Compute-aided design, 1991,23(2):153-159
    [14]B.K. Hinds, J. McCartney, and G. Woods. Pattern development for 3D surfaces[J], Computer-Aided Design,1991,23(8):583-59
    [15]Parida L, Mudur S P. Constraint satisfying planar development of complex surface[J], Computer-aided Design,1993,25(4):225-232.
    [16]Laxmi Parida and S. P. Mudur. Constraint-satisfying planar development of complex surfaces[J], Computer-Aided Design,1993,25(4):225-232
    [17]Benic Chakib, Vezien J, Iglesia G. Piecewise surface flattening for non distorted texture mapping[J], ACM Computer Graphic,1991,25(4):237-246.
    [18]席平.三维曲面的几何展开[J],计算机学报,1997,20(4):315-322.
    [19]杨继新,刘健,肖正扬,王忠.复杂曲面的可展化及其展开方法[J],机械科学与技术,2001,20(5):520-521.
    [20]马泽恩.计算机辅助塑性成形[M],西安:西北工业大学出版社,1995
    [21]康小明,马泽恩,林兰芬.不可展曲面近似展开的四边形网格等面积法[J],西北工业大学学报,1998,16(3):327-332.
    [22]P. Azariadis, N. Aspragathos. Design of plane developments of doubly curved surfaces[J], Computer-Aided Design,1997,29(10):675-685.
    [23]Phillip N Azariadis, Nikos A Aspragathos. On using planar developments to perform texture mapping on arbitrarily curved surfaces[J], G R J,2000,6.
    [24]Azariadis P N, Aspragathos N A. Geodesic curvature preservation in surface flattening through constrained global optimization,2001.
    [25]Wonjoon Cho, Nicholas M. Patrikalakis, Jaime Peraire. Approximate development of trimmed patches for surface tessellation[J], Computer-Aided Design,1998,30(14):1077-1087.
    [26]毛昕.曲面片的可展度及其最佳展开基点[J],工程图学学报,1998,2:1-11.
    [27]毛昕,马明旭,王哲英.曲面片的可展性能及其应用[J],工程图学学报,2002,23(2):133-138.
    [28]陈动人,王国瑾.基于伪直母线的复杂曲面自适应分片与展开[J],软件学报,2003,14(3):660-665.
    [29]C.C.L. Wang.Towards flattenable mesh surfaces[J], Computer-Aided Design, 2008,40(1):109-102.
    [30]Ming-Yi Lai, Ling-Ling Wang. Automatic shoe-pattern boundary extraction by image-processing techniques[J], Robotics and Computer-Integrated Manufacturing,2008,24:217-227.
    [31]Konstantin Levinski, Alexei Sourin. Interactive function-based shape modelling[J], Computers & Graphics,2007,31:66-76.
    [32]Jianbing Shen, Xiaogang Jin, Chuan Zhou, Charlie C.L. Wang.Gradient based image completion by solving the Poisson equation[J], Computers & Graphics,31: 119-126,2007.
    [33]Charlie C.L. Wang.Incremental reconstruction of sharp edges on mesh surfaces[J], Computer-Aided Design,2006,38:689-702.
    [34]Charlie C.L. Wang, Matthew M.F. Yuen.Freeform extrusion by sketched input[J], Computers & Graphics,2003,27:255-263.
    [35]李海坚.基于三维网格构造的服装褶皱生成技术研究[D],浙江大学硕士论文,2008.
    [36]M.P. do Carmo, Differential Geometry of Curves and Surfaces[M], Prentice-Hall, Englewood Cli(?)s, NJ.
    [37]P.Decaudin, D. Julius, J. Wither, L. Boissieux, A. Sheffer, and M.-P. Cani. Virtual garments:a fully geometric approach for clothing design[C], Computer Graphics Forum (Eurographics'06 Proceedings),2006,25(3):625-634.
    [38]J. McCartney, B.K. Hinds, B.L. Seow, D. Gong. An energy based model for the flattening of woven fabrics[J]. Journal of Materials Processing Technology,2000, 107(13):312-318.
    [39]J. McCartney, B.K. Hinds, and B.L. Seow.The flattening of triangulated surfaces incorporating darts and gussets[J], Computer-Aided Design,1999,31:249-260.
    [40]Guoxin Yu, Nicholas M. Patrikalakis, Takashi Maekawa. Optimal development of doubly curved surface[J], Computer Aided Geometric Design,2000,17: 545-577.
    [41]张其林,张莉,罗晓群.任意空间曲面近似展开成平面的增量有限元算法[J],计算力学学报,2001,18(4):498-500.
    [42]Qi-Lin Zhang, Xiao-Qun Luo. Finite element method for developing arbitrary surfaces to flattened forms[J], Finite Elements in Analysis and Design,2003,39 (10):977-984.
    [43]王弘,王昌凌.基于能量模型的曲面展开通用算法[J],计算机辅助设计与图形学学报,2001,13(6):556-560.
    [44]Y. Zhong and B. Xu, A physically based method for triangulated surface flattening[J], Computer-Aided Design,2006,38:1062-1073.
    [45]Feng Ji, Ruqin Li and Yiping Qiu. Three-dimensional Garment Simulation Based on a Mass-Spring System[J], Textile Research Journal,2006,76(1):12-17.
    [46]J. McCartney, B.K. Hinds, D. Kelly.Modeling woven fabric constructions under hydrostatic pressure[J], Finite Elements in Analysis and Design,2006,42: 660-669.
    [47]J. McCartney, B.K. Hinds, D. Kelly. Modelling of anisotropic performance fabrics[J], Journal of Materials Processing Technology,2005,159:181-190.
    [48]J. McCartney, B.K. Hinds, and K.W. Chong. Pattern flattening for orthotropic materials[J], Computer-Aided Design,2004,37:631-644.
    [49]Charlie C.L. Wang*, Yu Wang, Kai Tang, Matthew M.F. Yuen.Reduce the stretch in surface flattening by finding cutting paths to the surface boundary[J], Computer-Aided Design,2004,36:665-677.
    [50]M. Aono, D. E. Breen, M. J. Wozny. Fitting a woven-cloth model to a curved surface:mapping algorithms[J], Computer-Aided Design,1994,26(4):278-292.
    [51]M. Aono, P. Denti, D. E. Breen, M. J. Wozny. Fit a woven cloth model to a curved surface:dart insertion[J], Computer Graphics in Textiles and Apparel, 1996:60-70.
    [52]Sheffer A. and de Sturler E. Parameterization of Faceted Surfaces for Meshing using Angle-Based flattening[J], Engineering with Computers,2001, 17(3):326-337.
    [53]C.C.L. Wang, K. Tang, and B.M.L. Yeung.Freeform surface flattening by fitting a woven mesh model[J], Computer-Aided Design,2005,37:799-814.
    [54]薛静等.基于弹簧质点模型的三维服装模拟[J],北京服装学院学报,2005,2(3):11-14.
    [55]X. Liu, G. Dodds, J. McCartney, B.K. Hinds.Virtual DesignWorks—designing 3D CAD models via haptic interaction[J], Computer-Aided Design,2004,36: 1129-1140.
    [56]褚莲娣,陆国栋,李基拓.三维曲面展开算法在玩具设计中的应用[J],计算机应用,2004,24(6):122-128.
    [57]Charlie C.L. Wang, Kai Tang.Woven model based geometric design of elastic medical braces[J], Computer-Aided Design,2006,39:69-79.
    [58]张敬涛,杨光,任海英.曲面展平算法在鞋样设计中的应用[J],工程图学学报,2007,3:13-17.
    [59]C.C.L. Wang, S.S.F. Smith and M.M.F.Yuen. Surface flattening based on energy model[J], Computer-Aided Design,2002,34(11):823-833.
    [60]C.C.L. Wang. WireWarping:a Fast Surface Flattening Approach with Length-Preserved Feature Curves[J], Computer-Aided Design,2008,40: 381-395.
    [61]Z. Karni, C. Gotsman, and S.J. Gortler. Free-boundary linear parameterization of 3D Meshes in the presence of constraints[C], Proceedings of Shape Modeling International,2005:266-275.
    [62]S. Li, J. Demmel, and J. Gilbert, Super LU, http://crd.lbl.gov/xiaoye/SuperLU/, February,2006.
    [63]A. Sheffer, B. Levy, M. Mogilnitsky, and A. Bogomjakov, ABF:fast and robust angle based flattening[J], ACM Transactions on Graphics,2005,24(2):311-330.
    [64]X. Liu, G. Dodds, J. McCartney, B.K. Hinds. Manipulation of CAD surface models with haptics based on shape control functions[J], Computer-Aided Design,2005,37:1447-1458.
    [65]Hongdong Li, Richard Hartley. Conformal spherical representation of 3D genus-zero meshes[J], Pattern Recognition,2007,40:2742-2753.
    [66]张文斌.服装结构设计[M], 北京:中国纺织出版社,2008:27-30.
    [67]李勇,付小莉,尚会超.三维人体测量方法的研究[J],纺织学报,2001,22(4):261-263.
    [68]张鸿志.服装CAD技术与应用教程[M],北京:中国纺织出版社,1999.
    [69]罗建坤.国内外服装CAD系统比较[J], 服装科技,2000,5:52.
    [70]闻力生.我国服装CAD/CAM的使用与发展[J], 中国服饰报,1998,1:45-47.
    [71]Hidehiko Okabe, IMAOKA H. Three Dimensional Apparel CAD system[J]. Computer Graphic,1992,26(2):105-110.
    [72]Pascal Volino etal. An evolving system for simulating clothes on virtual actors[C], IEEE Computer Graphics and Application,1996.
    [73]刘卉.服装CAD综述[J],计算机辅助设计与图形学学报,2000,12(6):473-480.
    [74]胡大芬.服装CAD三维设计及资料库的研究[J],中国服饰报,1999,12(2).
    [75]樊劲.基于弹簧质点模型的二维/三维映射算法[J],软件学报,1999,10(2):140-148.
    [76]李兰友.服装CAD原理与应用[M],北京:中国纺织出版社,1997.
    [77]M. Peternell, T. Steiner. Reconstruction of piecewise planar objects from point clouds[J], Computer-Aided Design,2004,36:333-342.
    [78]Michael S. Floater, Martin Reimers. Meshless parameterization and surface reconstruction[J], Computer Aided Geometric Design,2001,18:77-92.
    [79]Junfei Dai, Wei Luo, Miao Jin, Wei Zeng, Ying He, Shing-Tung Yau, Xianfeng Gu. Geometric accuracy analysis for discrete surface approximation[J], Computer Aided Geometric Design,2007,24:323-338.
    [80]Y.S.Liu, P.Q. Yu, M.C. Du, J.H. Yong, H. Zhang and J.C. Paul. Mesh parameterization for an open connected surface without partition[C], Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphic,2005:306-310.
    [81]M.S.Floater and K.Hormann. Surface parameterization:a tutorial and survey[J], Advances in Multiresolution for Geometric Modeling, N.A. Dodgson, M.S. Floater, and M.A. Sabin (eds.), Springer-Verlag, Heidelberg,2005:157-186.
    [82]Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, W. Wang. Geometric modeling with conical meshes and developable surfaces[J], ACM Transactions on Graphics, 2006,25(3):681-689.
    [83]Guo-Jin Wang, Kai Tang, Chiew-Lan Tai. Parametric representation of a surface pencil with a common spatial geodesic[J], Computer-Aided Design,2004,36: 447-459.
    [84]杜剑侠,施国兴.基于边界匹配的多张裁剪曲面的三角化算法研究[J],昆明理工大学学报(理工版),2008,33(3):49-52.
    [85]Lin CF, Lin CY.A new approach to high precision 3-D measuring system[J], Image Vision Computer,1999,17(11):805-814.
    [86]Marc Vigo Anglada, Ntiria Pla Garcia, Pere Brunet Crosa. Directional adaptive surface triangulation[J], Computer Aided Geometric Design,1999,16:107-126.
    [87]唐杰,周来水.基于边界匹配的多张裁剪曲面的三角化算法研究[J],计算机应用,1999,8(3):28-33.
    [88]M.D. Zaharia, L. Dorst. Modeling and visualization of 3D polygonal mesh surfaces using geometric algebra[J], Computers & Graphics,2004,28:519-526.
    [89]Borut Zalik. An efficient sweep-line Delaunay triangulation algorithm[J], Computer-Aided Design,2005,37:1027-1038.
    [90]Hovhannes Sadoyana, Armen Zakarianb, Vahram Avagyanb, Pravansu Mohantyc. Robust uniform triangulation algorithm for computer aided design[J], Computer-Aided Design,2006,38:1134-1144.
    [91]Avi Zulti, Adi Levin, David Levin, Mina Teicher. C2 subdivision over triangulations with one extraordinary point[J], Computer Aided Geometric Design,2006,23:157-178.
    [92]Certain A, Stuetzle W. Automatic body measurement for mass customization of garments,3-D digital imaging and modeling[C], Proceedings of the Second International Conference,1999:405-412.
    [93]Dekker L, Douros I, Buxton B, Treleaven P. Building symbolic information for 3D human body modeling from range data[C],3-Ddigital Imaging and Modeling Proceeding,1999:388-397.
    [94]Sung Min Kim, Tae Jin Kang, Garment pattern generation from body scan data[J]. Computer-Aided Design,2002,35:611-618.
    [95]李白.基于三维扫描数据的人体模型[D],北京服装学院硕士学位论文,2005:13-15.
    [96]李晓东.二维及多维链表及其算法实现[J],佛山科学技术学院学报:自然科学版,2003,21(3):35-38.
    [97]宋顺林等.三维计算机动画中人体建模方法的研究[J],软件学报,1995,6(5):311-315.
    [98]付世波等.基于B样条曲面的人体模型的建立[J],计算机学报,1998,21(12):1131-1135.
    [99]吴晓燕.基于NURBS的三维人体自由曲面造型技术研究及开发[D],硕士论文,2002.
    [100]班晓静.服装三维人台成型的研究[D],硕士论文,2000.
    [101]M. Levis. Evolving human figure geometry, Technical Report:OSU-ACCA D-5/00-TR1, http://www.accad.ohiostate.edu/mlevis/AED/Figure/File/maya FigTr_LR.pdf,2000.
    [102]H.Seo, F.Cordier, L.Philippon. Interactive of MPEG-4 deformable human body Models[C], Post-proceedings Deform, Kluwer Ac.Publishers.2000:120-131.
    [103]杨继新.三维服装CAD的几何学原理与数字化立体裁剪技术基础的研究[D],大连理工大学博士论文,2001.
    [104]肖正扬,杨继新等.基于三维服装CAD的可展面实现方法[J],东华大学学报(自然科学版),2002,28(3):29-33.
    [105]李鹤双.三维服装CAD中服装原型曲面的展开及省道设计[D],大连轻工业学院硕士论文,2003.
    [106]方慧兰,王国瑾.三角网格曲面上离散曲率估算方法的比较与分析[J],计算机辅助设计与图形学学报,2005,17(11): 2500-2507.
    [107]王奎武,陈发来,陈意云.基于点表示的曲面曲率计算方法[J],小型微型计算机系统,2005,26(5):813-817.
    [108]Meyer M, Desbrun M, Schroder P, Barr AH. Discrete differential geometry open triangulated 2-manifold[C], In:Visualization and Mathematics, Berlin, 2002:52-58.
    [109]Chen, X.Schmitt, F. Intrinsic Surface Properties from surface triangles[C], In: Proceeding of the European conference on computer version:739-743.
    [110]Dyn N, Hormann K, Kim S J etc. Optimizing 3D triangulations using discrete curvature analysis, In:Applied mathematics series archive mathematical methods for curves and surfaces, Oslo,2000:135-146.
    [111]Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation[C], In:Proceedings of the 5th international conference on computer vision, Washington, DC:IEEE Computer Society,1995,52:902-907.
    [112]Garland M, Heckbert P S. Surface simplification using quadric error metric[C], In:Computer graphic proceedings, Annual conference series, ACM SIGGRAPH, Los Angeles,1997:209-216.
    [113]Cohen- Steiner D, Morvan J M. Restricted delaunay triangulation and normal cycle[C]. In:Proceedings of the 19th conference on computational geometry, San Diego, California,2003,53:312-321.
    [114]G. Lavoue, F. Dupont and A. Baskurt, Constant. Curvature region decomposition of 3-DMeshes by a mixed approach vertex-triangle [J], Journal of WSCQ 2004,12(2):245-252.
    [115]K.Watanabe and A.G Belyaev. Detection of salieut curvature features on polygonal surfaces, In:Eurographics 2001.
    [116]Taubing, Kobbelt LP. Geometric signal processing on large polygonal meshes[C]. In:Computer graphics proceedings, Annual conference series, ACM SIGGRAPH, Los Angeles, California,2001.
    [117]陈维桓,微分几何初步[M],北京:北京大学出版社,2006.
    [118]Manferdo P. do CaJmo著,田畴等译.曲线与曲面的微分几何[M],北京:机械工业出版社,2005.
    [119]苏步青,胡和生等.微分几何[M],北京:高等教学出版社,1979.
    [120]Kobbelt LP, Bischoff S, Botsch M, Kahler K, Rossi C, Scheider R, Vorsatz J. Geometric modeling based on polygonal meshes, EUROGRAPHICS 2000 Tutorial.
    [121]Burr, D.J. Bellcore, Morristown, NJ. An improved elastic net method for the traveling salesman problem[C], IEEE International Conference on Neural Networkes,1998, (1):69-76.
    [122]Gang Feng, Douligeris, C Using hopfield networks to solve traveling salsman problems based on stable state analysis technique[C], Neural Networks, IJCNN 2000, (6):521-526.
    [123]Samuel A. Mulder, Donald C. Wunsch. Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks[J], Neural Networks,2003,16(5):827-832.
    [124]TSP Heng, GL Goldberg, DHD Gray ect. Effects of Castration on thymocyte Development in two Different models of Thymic Involution[J], Journal of Immunology,2005,175:2982-2993.
    [125]Gang F, Christos D. Using Hopfield networks to solve traveling salesman problems based on stable state analysis technique[C]. International Joint Conference on Neural Networks, Piscataway, NJ:Institute of Electrical and Electronics Engineers Inc,2000:24-27.
    [126]SG Ponnambalam, H Jagannathan, M Kataria, A.Gadicherla. A TSP-GA multi-objective algorithm for flow-shop scheduleing[J], Advance Manufacturing Technology,2004,23(11).
    [127]Tachibana.T, Murata.Y, Shibata.N, Yasumoto.K, Ito.M. General Architechture for Hardware Implementation of Genetic Algorithm[C], Field-Programmable Custom Computing Machines,2006:291-292.
    [128]Hung Dinh Nguyen, Yoshihara, I, Yamamori, K, Yasunaga, M. Implementation of an Effective Hybrid GA for Large-Scale travleing Salesman Problems[J], Syste, Man and Cybernetics, Psrt B:Cybernetics,2007,37(1):92-99.
    [129]Lawrence V. Snyder, Mark S. Daskin. A random-key genetic algorithm for thegeneraliazed traveling salesman problem[J], European Journal Operational Research,2006,174(1):38-53.
    [130]SS Ray, S Bandyopadhyay, Sankar K.Pal. Genetic operators for combination in TSP and micrarray gene ordering[J], Coputer Science,2007,26(3):183-195.
    [131]Vega-Rodriguez, M.A, Gutierrez-Gil, R, Avila-Roman, J.M, Sanchez-Perez, J.M, Gomez-Pulido, J.A. Genetic algorithm using parallelism and FPGAs:the TSP as case study[C], ICPP2005:573-579.
    [132]H Foerster, Gerhard Wascher. Simulated annealing for order minimization in sequencing cutting patterns[J], Operational Research,1998,110(2):272-281.
    [133]Pepper, J.W.,Golden, B.L,Wasil, E.A,Mitre Corp, McLean, VA. Solving the traveling salesman problem with anneal-based heuristics:acomputational study[J], Systems, Man and Cybernetics,2002,32(1):72-77.
    [134]Kirkpatrick S, Gelatt J C D, Vecchi M P. Optimization by Simulated Annealing [J]. Science,1983,220(4596):671-680.
    [135]Glover F. Tabu Search:part. ORSA Journal on Computing [J],1989,1:190-206.
    [136]Glover F. Tabu Search:part. ORSA Journal on Computing [J],1990,2:4-32.
    [137]William P. Nanry, J. Wesley Barns. Solving the pickup and delivery problem with time windows using reactive tabu search [J], Transportation Research(part B),2000,34:107-121.
    [138]J Branke, M Guntsch. Solving the Probabilistic TSP with Ant Colony Optimization[J], Mathematic and Statistics,2004,3(4):403-425.
    [139]Clerc M. Discrete particle swarm optimization illustrated by the traveling salesman problem[C], Proceedings of the International Congress on Evolutionary Computation,2000:479-483.
    [140]Wang K P, Huang L, thou C G and Pang W. Particle swarm optimization for traveling salesman problem[J], International Conference on 14acine Learning and Cybernetics,2003,3:1583-1585.
    [141]王文峰,刘光远等.求解TSP问题的混合离散粒子群算法[J],西南大学学报(自然科学版),2007,1:85-88.
    [142]X.H. Shi, Y.C. Liang, H.P.Lee, C. Lu and Q.X.Wang. Particle swarm optimization-based algorithm for TSP and generalized TSP[J], Information Processing Letters,2007,103(5):169-176.
    [143]Shi X H, Zhou Y, Wang L M, Wang Q X, Liang Y C. A Discrete Particle Swarm Optimization Algorithm for Travelling Salesman Problem[A], Computational Methods[C], Springer, Netherlands,2006:1063-1068.
    [144]智能算法综述,http://www.paperedu.cn/paper_h9xc5t/.
    [145]Daniel Graupe. Principles of artificial neural networks[M], Press of World Scientific,2007.
    [146]罗晓曙.人工神经网络理论·模型·算法与应用[M],广西师范大学出版社,2005,4.
    [147]丁永生,计算智能——理论、技术与应用[M],北京:科学出版社,2004:64-160.
    [148]周明,孙树栋.遗传算法原理及应用[M],北京:国防工业出版社,2002.
    [149]Meiling Zhuang, Xiaofeng Zhang, Hui Zhuang. The Application Research of Genetic Algorithm in the Balancing Design of Women Dress Module and Hanger Sewing Streamline[C],38th International Conference on Computers and Industrial Engineering (ISTP),2008(11):2622-2627.
    [150]Burkowski F J.Proximity and priority:applying a gene expression algorithm to the Traveling Salesperson Problem [J]. Parallel Computing,2004,30(5-6): 803-816.
    [151]Tsai Cheng-Fa, Tsai Chun-Wei, Yang Tzer. A Modified Multiple-Searching Method to Genetic Algorithms for Solving Traveling Salesman Problem [J], IEEE Transactions on Systems, Man andCybernetics,2002,3(10):6-12
    [152]Baraglia R, Hidalgo J I, Perego R. A Hybrid Heuristic for the Traveling Salesman Problem[J], IEEE Transactions on Evolutionary Computation,2001, 5(12):613-622
    [153]Tsai Cheng-Fa, Tsai Chun-Wei. A New Approach for Solving Large Traveling Salesman Problem Using Evolutionary Ant Rules[C], In:Proc.of the 2002 International Joint Conf.on Neural Networks, Hawaiian:honolulu,2002
    [154]Jung S, Moon B R.Toward Minimal Restriction of Genetic Encoding and Crossovers for the Two-Dimensional Euclidean TSP[J], IEEE Transactions on Evolutionary Computation,2002,6(12):557-565
    [155]徐丽,陈丽,宋遥.禁忌搜索算法的研究及其在TSP的应用[J], 中小企业管理与科技,2010,19:255.
    [156]Meiling Zhuang, Jianan Fang, Xiaofeng Zhang.The Area Partition of 3-D Basic Body Surface Based On Ant Colony Algorithm[C], Singarpour:2009 International Conference on Advanced Computer Control (El),2009(1): 144-147.
    [157]Dorigo M, Thomas S. Ant Colony Optimization[M]. The MIT Press,2004.
    [158](意)Marco Dorigo,(德)Thomas Stutzle著,张军, 胡晓敏等译.蚁群优化[M],北京:清华大学出版社,第1版,2007.
    [159]Yuehui Chen.蚁群算法ppt, http://wenku.baidu.com/view/f7e2497f5acfalc7aa 00cca8.html
    [160]李士勇.蚁群算法及其应用[M],哈尔滨:哈工大出版社,第1版,2004.
    [161]吴启迪.智能蚁群算法及应用[M],上海:上海科技出版社,第1版,2004.
    [162]彭喜元,彭宇,戴毓丰.群智能理论及应用[J],电子学报,2004,31(B12):1982-1988.
    [163]詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优选择[J],科技通报,2003,19(5):381-386.
    [164]庄梅玲,方建安,张晓枫.三维人体衣身原型曲面的研究[J],纺织学报,2010,12(2):133-137.
    [165]Dave Shreiner, Mason Woo, Jackie Neider, Tom Davis.OpenGL编程指南[M],北京:人民邮电出版社,2006
    [166]郭兆荣,李菁,王彦.Visual C++ OpenGL应用程序开发[M],北京:人民邮电出版社,2006
    [167]徐荣璋,刘晓毅,陈军.曲面展开方法的发展现状[J],模具技术,2002,5:17-20.
    [168]张文斌.服装结构设计[M],北京:中国纺织出版社,2006:120-142.
    [169][日]三吉满智子.日本文化女子大学服装讲座-服装造型学(理论篇)[M],北京:中国纺织出版社,2008:152-159.
    [170]周培德.计算几何-算法设计与分析[M],北京:清华大学出版社,2006:138-144.
    [171]詹雯,周来水,陈功.一种通用的复杂曲面展开方法研究[J],中国机械工程,2007,18(24):2914-2920.
    [172]范钦珊.理论力学[M],北京:清华大学出版社,2004:337-341.
    [173]许江平.曲面展平技术在汽车覆盖件毛坯展开中的应用[D],华中科技大学博士论文,2000:15-33.
    [174]胡克定律.http://baike.baidu.com/view/127907.htm.
    [175]杨氏模量.http://baike.baidu.com/view/266526.htm.
    [176]Meiling Zhuang, Xiaofeng Zhang, Jianan Fang. The Optimum Flattening For Undeveloped 3-D Body Surface Based On Energy Modeling, Toyko:ICEIE 2010(EI),2010(8):(v1)6-9.
    [177]张文斌.服装工艺学(成衣工艺分册)[M],北京:中国纺织出版社,1997:183-197.
    [178]刘静伟.服装洗涤去污与整烫[M],北京:中国纺织出版社,1999:124-139.
    [179]刘建萍.面料的热塑性对旗袍塑型方法影响的研究[D],天津工业大学硕士论文,2007:19-20.
    [180]倪虹.面料的性能与服装造型及生产的关系研究[D],苏州大学硕士论文,2003:39-50.
    [181]姚穆.纺织材料学[M],北京:中国纺织出版社,1996:436-456.
    [182]朱松文.服装材料学[M],北京:中国纺织出版社,1996:249-254.
    [183]蒋晓文,雷中民.熨烫工艺影响服装造型的量化研究[J],四川丝绸,2002,1:40-44.
    [184]姚穆.纺织材料学[M],北京:中国纺织出版社,1996:240-252.
    [185]陈维桓.微分几何初步[M],北京:北京大学出版社,2006:46-117.
    [186]张文斌.服装结构设计[M],北京:中国纺织出版社,2008:123-129.
    [187]周培德.计算几何-算法设计与分析[M],北京:清华大学出版社,2006:181-191.
    [188]Meiling Zhuang, Xiaofeng Zhang, Jianan Fang, Chengjian Zhao, Manliang Zhuang.The Application and Design for the Algorithm to Search the Shortest Path in the Clothing Surface Flattening, Kuala Lumpur, Malaysia,2010 International Conference on Intelligent Network and Computing (ICINC 2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700