单传感器全景立体环带成像光学系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全景环带光学成像系统是一种特殊的超广角光学系统,进入系统的光线经多次反射和折射进入转向镜组,并最终成像在传感器上。这种系统能在保持结构体积紧凑的前提下将360。视场的物体按柱面投影的方式映射到一个环状平面上,在全景监控,管道探测等领域都有较为广阔的应用前景。
     普通传感器获得的都是二维的图像信息,拍摄者与之间物体的距离信息在投影过程中丢失,而立体成像是一种依靠多镜头或是多次拍摄来还原立体信息的方法,能在获取平面图像的同时获取物体的距离信息。传统的立体视觉都只针对某一个特定的方向,无法做到实时的采集周视环境的三维立体信息,为了实现某些需要无死角三维信息实时采集的需求,传统的方法往往需要精密的光学设备与复杂的后期图像处理的过程。
     本文提出的利用全景环带光学系统实现单传感器立体信息获取的设备与方法即可以解决以上的问题,采用两个同轴放置的全景环带透镜,在无遮拦的情况下成在同一个像面上。上方单元成像在下方单元的盲区中,且成像区域互不影响。此外,为了解决实验中的杂散光问题,还提出了一系列在优化设计中即可抑制全景环带透镜杂散光的方法,并都予以了实验验证。
     本文的研究内容主要包括以下几个方面:
     1.介绍了全景立体成像的研究背景,大视场成像技术和传统立体视觉获取设备的分类、发展现状、几种典型实例以及各自的优缺点。将全景和立体视觉相结合产生的集中光学系统和其基本原理,引出了一种基于全景环带透镜的独特成像方式,以及其较有潜力的应用领域。
     2.对全景环带透镜的有关参数结构之间的约束关系给出具体的数学表达关系,推导了主光线与各个表面交点的通用表达式,对优化设计的方法予以概括,提出了针对全景环带透镜的评价方法,最后综合其特点给出了全景环带透镜较有前景的几类应用领域。
     3.提出全景立体成像系统的基本成像原理,并建立了相应数学模型。详细介绍了上下全景环带透镜单元的设计步骤,设计制造了一套原理样机,并成功获得预期的图像。
     4.对立体信息的提取过程进行了详细介绍,给出了因入瞳漂移导致的基线长度变化的解决方案,采用多项式拟合的方法得到了快速确定入射角与基线长度的方法。在图像处理方面,给出了图像展开算法与相关点匹配算法,最后用实验验证了该系统分辨周视物体距离的能力,并给出了误差分析。
     5.提出了基于全景环带透镜的杂散光分析与抑制的方法,给出了详细的数学建模方法与抑制原则,并将其写入优化函数,设计制造了一套能够抑制杂散光的全景环带透镜,并与光学参数相同的普通全景系统进行了软件仿真与实物测试两种对照,最终都可以验证本文提出的设计原则可有效抑制全景光学系统中的杂散光。
Panoramic annular lens system is one of the specific wide angle lenses. After several reflectitons and refractitions, the rays get into the relay lens and image on one sensor. This kind of optical system can project360°field of view onto a cicular image according to the cylinder projecting principle and the size of the system keeps compact. So it has a great application potential in the fields like panorama supervisory and pipe detection.
     The CCD/COMS sensors can only obtain two-dimensional information. The distance information of the objects in the image is lost in the projecting process. To obtain three-dimensional information, the traditional methods are using two or more lenses or take several pictures in different place to restore the depth information. The traditional binocular vision system is highly developed, but the observation angle of this system is narrow. It cannot obtain the panorama view of object space. So, to satisfy some applications that need360°field of view without any dead angle, people proposed several solutions, but most of them need complicate optical structure or image processing progress.
     In this paper, a novel real-time stereo system using double co-axial PALs is proposed. The method to extract the depth information is also present. The images of two units are on the same sensor without any overlay, and one circle image is on the other's blind area. Besides, to eliminate the stray light in the experiment, some special criterions are added into the optimizing process. The simulation and real experiment both prove that the eliminating result is well.
     The detailed research contents are listed as below:
     1) The panoramic stereo imaging reaserch background, the technology of wild field of view, the category of the traditional stereo equipments, the present development situation, some typical examples and their advantages and disadvantages are introduced in the first chapter. After that, we put panoramic and stereo together and invent an optical system called panoramic stereo imaging system. This system has a particular imaging principle.
     2) The relationship of the geometry parameter and the constraint condition is established. After that, we trace the chief ray and obtain the point of intersections on the four surfaces and deduce some universal expressions. We summarize the optimizing methods and propose the evaluating criterion in the panoramic annular lens. Finally, we give some potential application field using this kind of lens.
     3) The panoramic stereo system's imaging principle is proposed and the mathematical model is established. Also, we describe the detailed process of how to deign the two panoramic annular lens units, make a prototype and capture the prospective pictures.
     4) The extracting process of depth information from the picture getting by the above optical system is proposed. We analyze the baseline change caused by the pupil shifting and the solution to this problem. Using the fitting of a polynomial, we can quickly determine the relationship between the baseline's length and the incident light angles. In the image process, we describe the ways to straighten the picture and match the feature point. In the end, we measure theprecsion of the system's spatial resolution capability by a prototype and analysis the possible sources of the testing error.
     5) A novel stray light evaluation method and some suppression principles of panoramic annular lens system in theory are proposed. By adding stray light suppression optimization function into optical software, a new panoramic annular lens system is designed. The high stray light suppression performance of this system is shown by non-sequential optical simulation software and real experiment compared with a normal panoramic annular lens system which shows its better stray light suppression performance than the normal one.
引文
[1].王永仲,鱼眼镜头光学,科学出版社,北京,2006
    [2].游素亚,徐光佑,立体视觉研究的现状与进展,中国图像图形学报,1997.1,Vol 2.No.1,17-22
    [3]. http://news.xinhuanet.com/foto/2013-08/28/m_125263900.htm
    [4]. www.panono.com/
    [5]. Dan Slater, Panoramic Phototgraphy with Fisheye Lenses, JAPP(J),1996
    [6]. Zhi Huang, Jian Bai, Xiyun Hou, A muti-spectrum fish-eye lens for rice canopy detecting,2009, Proc. SPIE, Vol.7849
    [7]. Harvey M. Spencer, J. Michael Rodgers, Optical design of a panoramic wide spectral band, infrared fisheye lens,2006, International Optical Design Conferece, Vol.6342
    [8]. Simon Thibault M. Sc, Novel Compact Panomorph Lens Based Vision System for Monitoring Around a Vehicle,2008, Proc. SPIE, Vol.7003
    [9]. Gyeong-il Kweon, A catadioptric double-panoramic lens with the equi-distance projection for a rangefinder application,2004, Proc. SPIE Vol.5613
    [10].徐玮,多视点折反射全景成像系统分析与设计,系统仿真学报,2010,Vol.22,No.2
    [11].李晓彤,岑兆丰,用于全景成像系统的一种新型光学非球面,光电工程,2001,Vol.28,No.6
    [12]. Steven Derrien Kurt Konolige, Approximating a Single Viewpoint in Panoramica Imaging Devices,2000, Robotics and Automation. Proc. ICRA'00, Vol.4,3931-3938
    [13]. Shree K. Nayar, Simon Baker, Catadioptric Image Formation,1997, Proc. DARPA Image Understanding Workshop,1431-1437
    [14]. Gyeong-il Kweon, Miton Lalkin, Design of a Mega-pixel Grade Catadioptric Panoramic Lens with the Rectilinear Projection Scheme,2006, Journal of the Optical Society of Korea. Vol.10. No.2,67-75
    [15]. Gyeong-il Kweon, Kwang Taek Kim, Folded catadioptric panoramic lens with an equidistance projection scheme,2004, APPLIED OPTICS, Vol.44 No.14,2759-2767
    [16]. Wang Peng, Dong Zaili, Implementation of spherical mirror based panoramic vision, Proc. SPIE, Vol.5253,187-190
    [17]. Stefan Gachter, Mirror Design for an Omnidirectional Camera with a Uniform Cylindrical Projection when Using the SVAVISCA Sensor,2001, Research Report
    [18]. Stefan Gachter, Motion Detection as an Application for the Omnidirectional Camera,2001, Research Report
    [19]. Christopher GEYER, Kostas Daniilidis, Paracatadioptric Camera Calibration, 2002, Vol.24, No.5,687-695
    [20].田晓东,折反射全景成像系统分析与设计,2006,仪表技术与传感器,No.4,48-50
    [21].苏莉,赵丽娜,折反射全景成像系统综述,2010,第13期,SCIENCE &TECHNOLOGY INFORMATION,437-438
    [22].曾吉勇,苏显渝,金国藩,基于双曲面折反射相机的柱面全景立体成像,光电子学(激光),2006,Vol.17,No.6
    [23]. Xianyu Su, Jiyong Zeng, Catadioptric omnidirectional system with un-distorted imaging for horizontal scene,2002, Proc. SPIE, Vol.4927
    [24]. Jiyong Zeng, Xianyu Su, Hyperboloid catadioptric omnidirectional imaging system,2002. Proc. SPIE, Vol.4927,806-812
    [25]. Jose Gaspar, Claudia Decco, Constant Resolution Omnidrectional Cameras, 2002, Proceeding of the Third Workshop on Omindirectional Vision
    [26]. Simon Baker, A Theory of Single-Viewpoint Catadioptric Image Formation, 1999, International Journal of Computer Vision 35(2),175-196
    [27]. Christonpher Geyer, Kostas Danilidis, Catadioptric Projective Geometry,2001, International Journal of Computer Vision 45(3),223-243
    [28]. Mark Fiala, Anup Basu, Panoramic stereo reconstruction using non-SVP optics, 2005, Computer Vision and Image Understanding 98,363-397
    [29]. R. Andrew Hicks, Ruzena Bajcsy, Reflective Surfaces as Computational Sensors, 1996, Conference on Computer Vision and Pattern Recognition,773-777
    [30]. http://museum.xiangshenghang.com/wooden-camera/index.asp?m=114
    [31]. http://dv.abang.com/od/dv_02_xuangou/a/02-111_p1.htm
    [32]. Shmuel Peleg, Moshe Ben-Ezra, Ominstereo:Panoramic Stereo Imaging,2001, Transactions on pattern analysis and machine intelligence, Vol.23, No.3,279-290
    [33]. Tomas Svoboda, Tomas Pajdla, Panoramic cameras for 3D computation,2000, Czech Pattern Recognition Workshop
    [34]. http://w75.dcfever.com/news/readnews.php?id=7603
    [35]. G. Kweon, K. Kim, Y. Choi, G. Kim, H. Kim and S. Yang, A catadioptric double-panoramic lens with the equi-distance projection for a rangefinder application, Proc. of SPIE 5613,29 (2004)
    [36]. G. Jang, S. Kim and I. Kweon, Single-camera panoramic stereo system with single-viewpoint optics, Opt. Lett.31(1),41-43 (2006)
    [37]. Weiming Li, Y. F. Li, Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror,2011, OPTICS EXPRESS, Vol.19, No.7
    [38].汤一平,王庆,立体全方位视觉传感器的设计,2010,仪器仪表学报,Vol.31No.7,1520-1527
    [39]. Lidong Chen, Wei Wang, Complementary-structure catadioptric omnidirectional sensor design for resolution,2011, Optical Engeering, Vol.50(3), 033201-1-033201-9
    [40]. Z. Zhu and K. D. Rajasekar, Panoramic virtual stereo vision of cooperative mobile robots for localizing 3D moving objects, in Proceedings of Omnidirectional Vision, IEEE Workshop on 2000,29-36(2000).
    [41]. G. N. E. Weech, J. A. Gilbert, and D. R. Matthys, A stereoscopic system for radial metrology, Proceedings of the 2001 SEM Annual Conference and Exposition,199-202 (2001).
    [42]. D. R. Buchele, Unitary catadioptric objective lens system,1950, Patent 2,638,033
    [43]. H. Brachvogel, Panoramic view objective using an aspherical lens,1967, Patent 3,552,820
    [44]. Rosendahl, Lens system for panoramic imagery,1981, Patent 4,395,093
    [45]. Hoogland, Panoramic imaging arrangement,1999, Patent 6,175,454
    [46]. Wallerstein, Panoramic imaging arrangement,2003, Patent 6,597,520
    [47]. Trubko, Super wide-angle panoramic imaging apparatus,2003, Patent 6,611,282
    [48]. Wallerstein, Panoramic imaging system,2006, Patent 7,019,918
    [49]. Greguss, Panoramic imaging block for three-dimensional space,1986, Patent 4,566,763
    [50]. http://www.sztnh.gov.hu/nevvaltas.html?url=hivatalrol/
    [51]. Powell, Panoramic lens,1995, Patent 5,473,474
    [52]. Ian Powell, Panoramic lens,1994, APPLIED OPTICS, Vol.33, No.31,7356-7361
    [53]. Ian Powell, Design study of an infrared panoramic optical system,1996, APPLIED OPTICS, Vol.35, No.31,6190-6194
    [54]. D. L. Lehner, A. G. Richter, Characterization of the Panoramci Annular Lens, Experimental Mechanics,1996,333-338
    [55]. Donald R. Matthys, Endoscopic measurement using radial metrology with digital correlation,1991, OPTICAL ENGINEERING, Vol.30, No.10,1455-1460
    [56]. Donald R. Matthys, John A. Gilbert, Charaterization of Optical Systems for Radial Metrology, Proceedings of the SEM Ⅸ International Congress on Experimental Mechanics,104-107 (2000)
    [57]. John A. Gilbert, Donald R. Matthys, Countour Measurement using Radial Metrology,2006 SEM Annual Conference & Exposition on Experimental and Applied Mechanics
    [58]. John A. Gibert, Endoscopic inspection and measurement,1992, Proc. SPIE, Vol.1771,106-112
    [59]. Sara B. Fair, John A. Gilbert, Development of a phase-displacement equation for panoramic interferometry,2000, APPLIED OPTICS, Vol.39, No.19,3289-3294
    [60]. D. R. Matthys, J. A. Gilbert, Panoramic Holointerferometry,1993, Experimental Mechanics,83-88
    [61]. Sara B. Fair, John A. Gilbert, Panoramic endoscopy,1992, Proc. SPIE Vol.1679, 203-207
    [62]. John A. Gilbert, Donald R. Matthys, Digital Image Correlation of Stereoscopic Images for Radial Metrology,2004 SEM X International Congress & Exposition on Experimental & Applied Mechanics
    [63]. Sara B. Fair, Out-of-plane displacement analysis using panoramic electronic speckle pattern interferometry,1999, thesis (PhD), university of Alabama
    [64]. D. R. Matthys, J. A. Gilbert, Panoramic Holointerferometry,1993, Experimental Mechanics,83-88
    [65]. Pal Greguss, Panoramic security,1991, Proc. SPIE Vol.1509,55-66
    [66]. John Gibert, Pal Greguss, Holo-interferometric pattens recorded through a panoramic annular lens,1989, Proc. SPIE, Vol.1238,412-420
    [67]. Pal Greguss, Holography and space research,1997, Proc. SPIE, Vol.3358, 388-396
    [68]. Pal Greguss, Attila Kertesz, PALIMADAR-a PAL-optic based imaging module for allround data acquisition and recording, Proc. SPIE Vol.1771,567-573
    [69]. Istvan Goricsan, PALLAS:a novel optical measurement technique in air pollutant transport studies,2000, Journal of Wind Engineering and Industrial Aerodynamics,259-270
    [70]. Mark A. Stedham, Partha P. Banerjee, The Panramci Annular Lens Attitude Determination System (PALADS),1995, Proc. SPIE, Vol.2466,108-117
    [71]. Ivan Kopilovic, Application of Panoramic Annular Lens for Motion Analysis Tasks:Survillance and Smoke Detection, Pattern Recognition,2000. Proceedings.15th International Conference on, Vol.4,714-717
    [72]. Cheryl D. Bankston, SEDS, earth, atmosphere, and space imaging system (SEASIS), Proc. SPIE, Vol.2214,257-268
    [73]. Zhigang Zhu, Edward, M. Riseman, Geometrical Modeling and Real-Time Aapplications of a Panoramic Annular Lens (PAL) Camera System,1999, Technical Report TR#99-11
    [74]. V. A. Solomatin, A panoramic video camera,2007, J. Opt. Technol.74(12), 815-817
    [75]. V. N. Martynov, T. I. Jakushenkova, New constructions of panoramic annular lenses:design principle and output characteristics analysis
    [76]. http://www.wisland-tech.com/contact-1.asp
    [77].牛爽,白剑,胶合式全景环带透镜的设计,2010.红外与激光工程,Vol.39,No.2,292-296
    [78].白剑,牛爽,全景光学环带凝视成像技术,2006,红外与激光工程,Vol.35,No.3,331-335
    [79].程惠全,全景成像透镜及其转像系统设计,2000年中国博士后学术大会论文集机械与仪表分册,90-94
    [80]. Shuang Niu, Jian Bai, Design of a panoramic annular lens with a long focal length,2007, APPLIED OPTICS, Vol.46, No.32,7850-7857
    [81].金豪,全景环形成像透镜的成像质量评价,2006,浙江大学硕士学位论文
    [82].王道义,黄大为,全景环形透镜原理与特点剖析,1998,光学技术,10-12
    [83].薛峰,基于全景成像的航道检测研究,2008,浙江大学信息学院硕士学位论文
    [84].肖潇,杨国光,全景成像技术的现状和进展,2007,光学仪器,Vol.29,No.4,84-89
    [85]. Zhao Liefeng, Feng Huajun, Panoramic optical annular staring inspection system for evaluating the inner surface of a pipe,2007, Proc. SPIE, Vol.6838
    [86]. Dong Hui, Mei Zhang, Designs for high performance PAL-based imaging systems,2012, APPLIED OPTICS, Vol.51,No.21,5310-5317
    [87]. Tao Ma, Jingchi Yu, Design of a freeform varifocal panoramic optical system with specified annular center of field of view,2011, OPTICAS EXPRESS, Vol.19 No.5,3843-3853
    [88].段其强,紧凑型红外全景镜头设计,2010,激光与光电子学进展,Vol.10,No.3788,062202-1-062202-7
    [89].王丽萍,张立超,采用多种群遗传算法的全景成像系统非球面设计,2009,光学精密工程,Vol.17,No.5,1020-1025
    [90].赵烈峰,高分辨环带成像系统特性及应用研究,2008,浙江大学博士学位 论文
    [91]. Hamid R. Fallah, Jonathan Maxwell, Higher Order Pupil Aberration in Wide Angle and Panoramic Optical Systems, Proc. SPIE, Vol.2774, No.2,342-351
    [92].牛爽,全景环带凝视成像光学系统的研究与应用,2010,浙江大学博士学位论文
    [93]. Patrice Roulet, Pierre Konen,360° endoscopy using panomorph lens technology, 2010, Proc. SPIE, Vol.7558,
    [94]. Jonathan M. Nichols, James R. Wateman, Modeling and analysis of a high-performance midwave infrared panoramic periscope, Optical Engineering, Vol.49,113202-1-113202-9
    [95].姚远,基于自由曲面的全景环带成像系统设计,2014,浙江大学硕士专业学位论文
    [96]. Andrew Buffington, Bernard V. Jackson, Wide-angle stray-light reduction for a spaceborne optical hemispherical imager,1996, APPLIED OPTICS, Vol.35, No.34,6669-6673
    [97].钟兴,反射光学系统杂散光的消除,2008,红外与激光工程,Vol.37,No.2,316-318
    [98].黄强,空间光学系统的杂散光分析,2006,红外,Vol.27,No.1,26-33
    [99].邓超,空间太阳望远镜消杂散光分析,2010,红外与激光工程,Vol.39,No.4,715-720
    [100].杨林,李达,空间太阳望远镜在紫外波段成像检测中的杂散光测量和消除,2011,光学精密工程,Vol.19,No.7,1456-1463
    [101].李晓平,沙成春,长焦距离轴三反光学系统杂散光的抑制,2011,光学精密工程,Vol.19,No.11,2603-2608
    [102].孙可,江后满,R-C系统中由表面散射引起的视场内杂散光分布,2012,国防科技大学学报,Vol.34,No.1,13-18
    [103].岑兆丰,李晓彤,光学系统杂散光分析,2007,红外与激光工程,Vol.36,No.3,300-304
    [104].王春雨,王昀,透射式系统杂散光分析,2011,第二十四届全国空间探测 学术交流会论文
    [105].张军强,星载超光谱成像仪杂散光及其测量,2010,光谱学与光谱分析,Vol.30,No.10,2861-2865
    [106].邓诗涛,李晓彤,神光Ⅲ原型装置中鬼像的近轴计算与分析,2004,光电工程,Vol.31,No.9,10-13
    [107].原育凯,光学系统杂散光消除方法,大气与环境光学学报,2007,Vol.2,No.1,6-10
    [108].李晖,李英才,光学系统黑斑法杂散光系数和PST间的联系,1996,光子学报,Vol.25,No.10,920-922
    [109].王平阳,夏新林,谈和平等.CCD相机的杂散光模拟计算与分析[J].哈尔滨工业大学学报,1999,31(5):55-59
    [110].陈永和,傅雨田,红外光学系统内部构件热辐射分析,2006,光学技术,Vo1.32增刊
    [111].苏大图,沈海龙,陈进榜等.光学测量与象质鉴定仁[M],北京:北京工业学院出版社,1988
    [112]. Tadashi Doi, Panoramic imaging lens,2003, Patent 6,646,818
    [113].8.B. R. Johnson, Analysis of diffraction reduction by use of a Lyot stop, JOSA A,4 Issue 8, pp.1376-1384 (1987)
    [114].吴宪祥,郭宝龙,基于相位相关的柱面全景图像自动拼接算法[J].光学学报,2009,29(7):1824-1829
    [115].王耀南,李树涛,计算机图像处理与识别技术[M],北京高等教育出版社,2001,91-96
    [116].朱方明,杨国光,姚炜勇等.全景环形透镜形像的线性化研究[J],光子学报,2001,30(9):1111-1114
    [117].姚炜勇,程惠全,半球全景成像系统中的非线性映射研究[J],光电工程.2001,28(1):31-35
    [118]. Keys R G. Cubic convolution interpolat ion for digital image processing [J]. IEEE Transaction on Acoust,Speech, Signal Process,1981,29 (6):1153-1160
    [119]. Lehmmm T M, Gooner C, Spitzer K.Survey:inmrpolation methods in medical image processing [J].IEEE Trans on Medical Image,1999,18(11),1049-1075
    [120].李海滨,张强,一种新的基于子线段的立体匹配算法[J],光学学报,2007,27(5),907-912
    [121].王向军,王研,基于特征角点的目标跟踪和快速识别算法研究[J],光学学报,2007,27(2),360-364
    [122]. Lowe D G. Distinctive image features from scale-invariant key points[J].International Journal of computer Vision.2004,60(2):91-110
    [123].韦虎,张丽艳,基于SIFT图像特征匹配的多视角深度图配准算法[J],计算机辅助设计与图形学学报,2010,22(4):654-661
    [124]. M. L huillier, L.Quan. Robust dense matching using local and global geometric constraints [C],15th International Conference on Pattern Recognition, Barcelona, Spain,2000,1:968-972
    [125]. G. P. Otto, T. K. Chau, A region-growing algorithm for matching of terrain images [J], Image Vision Comput,1989,7 (2):83-94
    [126]. I. Kopilovie, B. Vagvolgyi and T. Sziranyi, Application of panoramic annular lens for motion analysis tasks:Surveillance and Smoke Detection, in Proceedings of the International Conference on Pattern Recognition (ICPR'00), (Barcelona, Spain) 4,714-717(2000).
    [127]. ASAP, Optical Design Program, ASAP Reference Guide, Breault Research Organization, Inc. (2006).
    [128]. A. W. Lohmann, A New Class of Varifocal Lenses.1970, APPLIED OPTICS, Vol.9, No.7,1669-1671
    [129]. Jim Schwiegerling, Carmen Peleta-Toxqui, Minimal movement zoom lens, 2008, APPLIED OPTICS, Vol.48, No.10,1932-1935
    [130]. Siddharth S. Rege, Tomasz S. Tkaczyk, Application of the Alvarez-Humphrey concept to the design of a miniaturized scanning microscope,2004, Vol.12, No.12, 2574-2588
    [131]. Ian M. Barton, Sham N. Dixit, Diffractive Alvarez lens,2000, OPTICS LETTERS, Vol.25, No.1,
    [132]. Sergio Barbero, The Alvarez and Lohmann refractive lenses revisited,2009, OPTICS EXPRESS, Vol.17. No.11,9376-9390
    [133]. Luis W. Alvarez, Berkeley, Two-element variable-power spherical lens,1967, Patent 3,305,294
    [134]. James G. Baker, Winchester, Variable power, analytic function, optical component in the form of a pair of lateraly adjustable plates having sphaped surfaces, and optical systems including such components,1971, Patent 3,583,790
    [135]. James G. Baker, Bedford, Zoom lens, Patent 4,9254281
    [136]. Hirofumin Yoshida, Koshi Hatakeyama, Zoom lens system and image-taking apparatus having the same,2006, Patent 7,149,037
    [137]. Hirofumin Yoshida, Koshi Hatakeyama, Zoom optical system,2008, Patent 7,446,946
    [138]. Paul J. Smilie, Brian S. Dutterer, Design and characterization of an infrared Alvarez lens,2012, Opitcal Engineering, Vol.51(1),013006-1-013006-8
    [139]. R. Andrew Hicks, Christopher Croke, Designing coupled free-form surfaces, 2010, J. Opt Soc. AM, Vol.27, No.10,2132-2137
    [140]. http://publish.it168.com/2007/0709/20070709080901.shtml

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700