方滑枕变形处理及补偿的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方滑枕结构广泛应用在数控铣镗机床中,是完成加工的主要部件之一,也是直接承受载荷的部件。方滑枕的静动态特性直接影响整个机床的精度、加工性能和产品质量。此外其变形问题也是国内外生产移动式方滑枕数控机床厂家所必须面对的主要难题,因而对方滑枕现有的结构行研究分析,以改进与优化它的结构和提高整个机床的精度具有十分重要的现实意义和经济效益。本文以TK6920重型数控落地铣镗机床方滑枕为研究对象,利用有限元软件ANSYS作为分析工具,对其结构进行分析和优化。主要的研究内容如下:
     运用三维软件建立了重型数控落地铣镗机床方滑枕、铣轴和镗轴的三维模型。根据机床的实际工作情况对方滑枕的受力和边界约束条件等进行了分析计算,确定了本文计算铣削力载荷的计算公式。
     分析了方滑枕变形的主要原因;采用有限元软件建立了方滑枕结构的有限元模型,并对方滑枕进行了有限元静动态分析。静态分析得到了方滑枕在自重下和载荷力作用下方滑枕不同伸出量时的变形量,建立了方滑枕伸出量与变形量、方滑枕伸出部分质心变化量与变形量的数学函数关系;分析了方滑枕一定伸出长度时的变形量与刀盘直径的关系和变形量与转速的关系。模态分析得到了方滑枕的固有频率;瞬态分析得到了瞬态载荷作用下方滑枕的动态特性,并建立了变形量与时间的关系曲线。
     通过有限元静动态分析,得知方滑枕结构的静动态特性满足加工的条件要求,其强度安全系数较大,结构比较臃肿,具有一定的优化空间。将有限元方法和优化技术相结合,采用选型优化方法对方滑枕结构进行了以减重为目标以静态参数为约束的优化设计。
     阐述了方滑枕常用的变形补偿方法和原理,通过对方滑枕进行补偿,可以减小方滑枕的变形和满足机床加工的精度要求。分析了方滑枕挠度变形补偿方法,建立了拉杆拉力与方滑枕伸出量的关系曲线。
The structure of the square ram is widely used in NC boring and milling machine. It is one of major parts of completing processing and it is the part that directly receives loads. The static and dynamic properties of square ram influence the precision and processability of the whole machine tool and products’quality directly. Besides, the deformation of square ram is also a difficult problem that manufacturers of NC machine with movable type square ram must face to. So the research and analysis of the structure of square ram is very important realistic function and economic function to improve the NC machine’s precision and original structure and structural optimization design. The TK6920 NC Boring and Milling machine square ram is research object. The square ram is researched with general finite analysis software ANSYS. The main work is as follows:
     The NC boring and milling machine’s square ram and milling spindle and boring spindle solid models have been built through 3 dimension software. It analyses and calculates the loads and boundary constraint condition of square ram based on the actual working environment and adopts the milling forces calculation formula of the paper.
     The paper analyses the main causes of square ram’s deformation. The finite element models of square ram has been proposed based on the finite element software. The static and dynamic analysis of square ram have been computed. The results of static analysis show displacement of different extended length of square ram with ram-self weight or loads. The mathematical models for deformation and extended length and axial gravity variation of extended length’s ram and deformation are established. It analyses relationship about deformation and cutter diameter and deformation and rotate speed when square ram extends fixed length. The modal analysis has been performed and shows the square ram natural frequency and mode shape. The results of transient analysis show dynamic properties of square ram with transient forces and relationship about deformation and time with transient loads.
     According to results of the static and dynamic analysis, the static and dynamic properties of square ram meet the requirements of machining. Its intensity safety factor is high and it’s with optimal space for bloated structure. With combination of finite element analysis and optimization design, reducing the square ram’s weight as the optimum design and static parameters as constraint conditions, its structure is designed with type-selection optimization design method.
     It introduces general compensation methods of square ram. They can reduce deformation and meet the precision of NC machine. It analyses the deflection ram. compensation of square ram and establishes a curve of pull rod and extended length’s
引文
1徐宁安.我国重型机床制造业面临的发展机遇与挑战.数控机床市场. 2007, 7: 34~35
    2刘士玉.透过展会看机床技术发展.金属加工. 2009, 19: 19
    3杨建武.国内外数控技术的发展现状与趋势.制造技术与机床. 2008, 12: 58~59
    4徐宁安.从CIMT2005看数控卧式镗铣床与落地铣镗床的发展.产品与技术. 2005, 12(6): 98~100
    5刘士玉.通过展会看机床技术发展—CIMT2009观后感.制造技术与机床. 2009(11): 47
    6 Leete D.L. Automatic Compensation of Alignment Errors in Machine Tools. International Journal of Machine Tools and Manufacture, Des. Res. 1,1961: 293~324
    7 Schultschik R. The Components of Volumetric Accuracy, Analysis of CIRP, 1977, 25(1): 223~228
    8 Zhang G., Veale R., Charlton T., Borchardt B.and Hocken R. Error Compensation of Coordinate Measuring Machines, Annals of the CIRP. 1985, 34(1): 445~448
    9 Busch K.,Kunzmann H.and Waldele F. Calibration of Coordinate Measuring Machines. Butterworth and Co(Publishers)Ltd. 1985, 7(3): 139~144.
    10 Ferrerira, P.M., Liu C.R. An Analytical Quadratc Model for the Geometric Error of a Machine Tool. Journal of Manufacturing Systems. 1986, 5(1): 51~62
    11 Donmez M.A., Blomquist D.S., Hocken R.J., Liu C.R., and M.M.Barash. A general Methodology for Machine Tool Accuracy Enhancement by Error Compensation. Precision Engineering. 1986, 8(4): 187~196
    12 Ruegg A. A Generalized Kinematics Model for Three to Five Axis Milling Machine and Their Implementation in a CNC. Annals of the CIRP. 1992, 41(1): 547~550
    13 Lin P.D., Ehmann F.K. Inverse Error Analysis for Multi-axis Machines. Journal of Engineering for Industry, Transaction of the ASME. 1996, 118: 88~94
    14 Chen J.S., Yuan J., Ni J. Compensation of Non-Rigid Body Kinematic Effect of a Machine Center. Transaction of NAMRI. 1992, 20: 325~329
    15 Chana R., Manukid P. Geometric and Force Errors Compensation in a 3-axis CNC Milling Machine. International Journal of Machine Tools and Manufacture. 2004, 44: 1283~1291
    16北京机床研究所.机床热误差微机实时补偿技术.制造技术与机床. 1986, 8: 34~38
    17李书和.数控机床误差补偿的研究.天津大学博士学位论文1996: 8
    18李书和,张奕群,杨世民等.多轴机床空间误差的一般模型.仪器仪表学报. 1997, 18(4): 364~372
    19 Liu Youwu, LiuLibing, ZhaoXiaosong. Study of Error Compensation in NC Machine. China Mechanical Engineering. 1998, 9(12): 48~52
    20杨建国,潘志宏等.数控机床几何和热误差综合的运动学建模.机械设计与制造. 1998, 05: 31~33
    21章青,王国锋,刘又午等.数控机床误差补偿技术及应用—几何误差补偿技术.制造技术与机床. 1999, 1: 30~34
    22章青,王国锋,刘又午等.数控机床误差补偿技术及应用—载荷误差补偿技术.制造技术与机床. 1999, 2: 8~9
    23章青,赵宏林,唐华等.数控机床误差补偿技术及应用—热误差补偿技术.制造技术与机床. 1999, 3: 26~28
    24刘焕牢,李斌等.基于球杆仪数控机床误差补偿方法研究.工具技术. 2003, 39(8): 41~43
    25郝钟雄. ANSYS与CAD软件的接口问题研究.机械设计与制造. 2007, 7: 76
    26 ANSYS11.0. ANSYS Structural Analys Guid. ANSYS Inc. 2006
    27倪向阳,张建润等.高架桥式五坐标龙门加工中心整机动特性分析.精密制造及自动化. 2005(1): 24~26
    28 Dai Shu. The design of metal cutting machine tool.Beijing: Mechanical industry press. 1985: 92~94
    29孟超.大型数控落地铣镗机床主轴箱的有限元分析及优化.合肥工业大学硕士学位论文2009: 15
    30程耿东.工程结构有限元模型化知识系统.计算结构力学及应用. 1993.10: 59~64
    31蒋红平. XH715立式加工中心机械结构静动态分析与优化设计.东南大学硕士论文2007: 16
    32 Edward R C. Finite Element Analysis in Manufacturing Engineering. New York: MCGraw-hill inc. 1991: 52~54
    33蒋洪平. XH715立式加工中心床身模态分析与结构改进.制造技术与机床. 2008, 9: 86
    34 Wang Xuncheng, Shao Min. The basic principle and numerical method of finite element. Beijing:Tsinghua university press. 1998
    35 Hu Zhongwu , Analysis basis on engineering vibration, Shanghai: Shanghai Jiaotong University Press. 1999
    36 Genta G. Dynamic design, European Journal of Mechanical Engineering. 1995(3):132~138
    37 Liu Guoqing, Yang Qingdong. Engineering Application of ANSYS, Beijing: China Railway Press. 2003: 213~233
    38 GAO De-ping. The Basis of Finite Element Method for Mechanical Engineering. Xi’an: Northwest Industry University Press. 1993
    39 Xie Y M, Yang X Y, Liang Q Q. Topology Optimizationg of Structures under Dynamic Response Constraints. Journal of Soundand Vibration. 2000, 234(2): 99
    40 FOMAAS. Topology optimization of continual structures: A Review. Applied Mechanics Review vol. 54, no. 4, July 2001, 54
    41 Jimin He, Zhi Fang Fu. Modal Analysis Methods--Frequency Domain. Modal Analysis, 2001, 159~179
    42 R.Ramesh, M.A.Mannan, A.N.Poo. Error Compensation in Machine Tool—a Review PartⅠ:Geometrie, Cutting—Force Indueed and Fixture—Dependent Errors. International Journal of Machine Tools & Manufacture. 2000, 1235~1256
    43 K.C.Fan, M.J.Chen, W.M.Huang. Error compensation in CNC turning solely from dimensional measurements of previously machined parts. Annals of the CIRP. 1999(48), 1: 429~432
    44曲波,王跃宏,王泽民等.大型数控卧式铣镗床滑枕移动倾斜的导轨补偿.制造技术与机床. 2008, 10: 3~4
    45刘文志.数控卧式铣床滑枕变形有限元分析及补偿技术.制造技术与机床. 2008, 1: 66
    46王鸿博,阮卫平,王宝平等. MCMG 180 LG落地铣镗床主轴滑枕平衡补偿控制系统的设计.制造技术与机床. 2009, 5: 93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700