双向地震作用立式储罐基础隔震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,对能源的依赖度日益增高,对石油和天然气尤其是石油的需求逐渐加大。为了建立油田储备和产能储备制度,实现我国战略石油储备的远期目标,建造大型储液设施成为必然的发展趋势。立式储罐是石油、石化及相关企业应用较多的储液设施,其内部多容纳易燃易爆液体,一旦在地震中产生破坏,其灾害后果十分严重,同时容易产生火灾和环境污染等严重的次生灾害,对生态环境造成严重的影响。
     本文引入基础隔震思想,推导了立式储罐基础隔震基本理论,研究了双向地震作用下基础隔震立式储罐地震响应,并进行了基础隔震体系的参数影响分析。主要研究内容如下:
     1.概述了传统抗震思想的演变过程及其不足,介绍了结构振动控制的主要方法及研究进展。介绍了隔震的基本发展历程,描述了基础隔震的分类、特点及国内外研究情况。重点阐述了储罐抗震及隔震的国内外研究进展。
     2.从流体动力学和结构动力学相关理论出发,将罐内液体运动分成晃动、液固耦联运动、刚性运动三个分量,考虑液固耦联振动对晃动分量的影响,推导储罐基础隔震基本运动方程,并验证了理论的正确性。
     3.考虑在双向地震作用下橡胶支座非线性恢复力的耦合作用,建立运动方程并计算立式储罐的地震动响应,与未考虑耦合情况下的地震响应进行对比,表明耦合作用下的地震响应较非耦合情况下的地震响应有一定减小。
     4.建立了双向地震作用及单向地震作用下的基础滑移隔震储罐运动方程,并进行了三种典型高径比储罐的地震响应分析,表明双向地震作用下的地震响应略小于单向地震作用的地震响应。
     5.研究了铅芯叠层橡胶支座基础隔震储罐在地震烈度、场地条件、隔震周期、隔震层阻尼比、高径比等因素影响下的地震动响应特性,研究了基础滑移隔震储罐在地震加速度峰值、摩擦系数、场地类别等因素的影响下的地震动响应特性。通过对两种基础隔震体系的研究,给出了基底剪力、倾覆弯矩、晃动波高的变化规律,为立式钢制储罐基础隔震设计提供参考。
     最后,对本文研究内容的总结,得出了本论文的研究成果,提出了尚需进一步研究的工作。
With the rapid development of economy in China and increasing dependence on energy, there are more and more needs of oil and natural gas gradually, especially oil. In order to build the system of oil and production capacity reserve to achieve long term goals of our strategic petroleum reserve, it is an inevitable trend to build a large storage facility. Vertical storage tanks are storage facilities which are widely used in petroleum industry, petrochemical and related enterprise. Because of the flammability and explosive, once is the storage tanks damaged in the earthquake, the effect of disasters is critical, and at the same time it is prone to serious secondary disaster such as fire and environmental pollution etc., which may cause serious effects to ecological environment.
     The theory of base isolation is introduced in this thesis and the base isolation basic theory of vertical storage tanks is deduced, seismic response of base isolation vertical storage tanks under the bi-directional is studied and parameter effect of base isolation is analyzed. Main research content is as follows:
     1. The evolution of conventional seismic and insufficient is summarized and the primary method and research progress of vibration control of structure are introduced. The basic development history of isolation is introduced and the classification is introduced, characteristics of base isolation and research are summarized. It focuses on the research progress of tanks seismic and isolation at home and abroad.
     2. Base on the theory of fluid dynamics and structural dynamics, tanks liquid motion is divided into sloshing, fluid-solid coupled motion and rigid motion. Taking into account of the fluid-solid coupled vibration effect to sloshing component, the basic motion equation of tanks base isolation is deduced and the validity of the theory is verified.
     3. Considering the coupled action of non-linear restoring force of lead rubber bearing under bi-directional earthquake, the motion equation is established and the seismic response of the vertical storage tanks is computed. Comparing with non-coupled conditions, it is concluded that the effect of seismic response of coupled action is slightly smaller.
     4. Motion equation of base sliding isolation tanks is established under single and bi-directional earthquake action. Seismic response of three typical height to diameter tanks is analyzed, it is concluded that the effect of seismic response of bi-directional earthquake action is slightly smaller.
     5. The seismic response property of lead rubber bearing base isolation tanks is researched under the influence of seismic intensity scale, site conditions, isolation period, damping ratio, height to diameter and other factors. It is also researched the seismic response property of base sliding isolation tanks under the influence of peak acceleration, friction coefficient, site categories and other factors. Through the study of two kinds of base isolation, variation rule of base shear, overturning moment and sloshing wave is given, which provides reference to base isolation design of vertical steel storage tanks.
     The results of research in this paper are summarized and the further research in depth content closely related to the work of this paper is proposed.
引文
[1]李刚,程耿东.基于性能的抗震结构设计—理论、方法与应用[M].北京:科学出版社,2004.
    [2]李国强,李杰,苏小卒.建筑结构抗震设计[M].北京:高等教育出版社,2002.
    [3]蔡金兰.浅谈建筑中抗震设计理念的发展[J].价值工程,2010,23:78.
    [4]于建,叶燎原.结构抗震设计方法的发展[J].山西建筑,2006,5:9-10.
    [5]崔利富.立式储罐三维基础隔震体系动响应分析研究[D].大庆石油学院,2008.
    [6]张朝志.工程结构抗震控制方法分析[J].辽宁省交通高等专科学校学报,2004,6(4):37~38.
    [7]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002,23(2):2-11.
    [8]孙剑平,朱啼.结构控制方法评述[J].力学进展,2000,30(4):495~501.
    [9]邹向阳,王晓天,刘丽华等.结构振动控制发展概况综述[J].长春工程学院学报,2001,2(4):10~12.
    [10]滕振超,杨宇.结构振动控制技术的发展与应用[J].油气田地面工程,2005,24(11):1-2.
    [11]赵光恒.土建结构振动控制研究进展[J].地震学刊,1999,3:35~40.
    [12]刘方,邹向阳,赵万里等.土木工程结构振动控制的概况与新进展[J].长春工程学院学报,2007,8(3):15-19.
    [13]孙树民.土木工程结构振动控制技术的发展[J].噪声与振动控制,2001,2:22-27.
    [14]孙建刚.立式储罐地震响应控制研究[D].中国地震局工程力学研究所,2002.
    [15]Yao J TP. Concept of structure control[J]. Journal of the structure division, ASECE, 1972,98(7):1567-1574.
    [16]王光远.高耸结构风振控制[C].高耸结构学术交流会,1980:80-86.
    [17]彭刚,张栋国.土木工程结构振动控制[M],武汉:武汉理工大学出版社,2002.
    [18]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [19]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科技出版社,2003.
    [20]周宏伟.结构振动控制理论及其应用[D].武汉工业大学,1990.
    [21]Yang J N, et al. Hybrid control of seismic excited bridge Structure[J]. Earth Engrg & Struct Dyn,1995,24:1437-1451.
    [22]Nagashima I, Shinozaki Y. Variable gain feedback control technique of active mass damper. and its application to hybrid structural control[J]. Earth Engrg & Struct Dyn; 1997,26:815-838.
    [23]魏琏,谢君斐.中国工程抗震研究四十年[M].北京:地震出版社,1989,7.
    [24]刘文光,周福霖等.大直径夹层橡胶隔震装置力学性能实验研究[J].世界地震工程, 1999,1:62~68.
    [25]欧进萍,王永富.设置TMD、TLD控制系统的高层建筑风振分析与设计方法[J].地震工程与工程振动,1994,2:61~75.
    [26]张敏政,丁世文,郭迅.利用水箱减振的结构控制研究[J].地震工程与工程振动,1993,1:40~48.
    [27]Kelly J M, Skinner R L, et al. Mechanisms of energy absorption in special devices for use in earthquake resistant structures [J]. Bull.N.Z.Nat.Soc.For Earthquake Engrg.,1972, 5:63-88.
    [28]Whittaker, A S, et al. Seismic testing of steel plate energy dissipation devices[J]. Earthquake Spectra,1991,7(4):563-604.
    [29]Perry C L, Fierro E A, Sedarat H. and Scholl R.E. Seismic upgrade in san Francico using Energy dissipation devices[J]. Earthquake Spectra,1993,9(3):55-56.
    [30]蔡克铨,赖俊维.挫屈束制支撑之原理及应用[C].防震减灾工程研究与进展—全国首届防震减灾工程学术研讨会论文集,2004,12:154-160.
    [31]De Matteis, G Landolfo T, Mazzolani F M. Seismic response of MR steel frames with low-yield steel shear panels[J]. Engineering Structures,2003,25:155-168.
    [32]周云,邓雪松,徐赵东.铅粘弹性阻尼器性能试验研究[J].地震工程与工程振动,2001,21(1):139~144.
    [33]Pall A S, and Marsh C. Response of friction damped braced frames[J]. Structure Div ASCE,1982,108(6):1313-1323.
    [34]Aiken I D, and Kelly J M. Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures[C]. Rep.No.UCB/EERC-90-03, Univ. of California, Berkeley, Calif.1990:860-881.
    [35]张强星,许滨.减振缓冲的俐丝绳隔振器[J].噪声与振动控制,1985,2:8.
    [36]Soong T T, Dargush G F. Passive energy dissipation system in structural engineering[M]. John Wiley & Sons Inc.,1997.
    [37]张维,杨蔚彪.低周反复荷载下二阶摩擦减振控制支撑框架的试验研究[J].建筑科学,1997,4:3-6.
    [38]谭在树,钱稼茹.钢筋混凝土框架用粘滞阻尼墙减震研究[J].建筑结构学报,1998,19(2):50-59.
    [39]刘季,李惠.液压质量控制系统(HMS)对底层大空间建筑的抗震控制[J].建筑结构学报,1997,18(2):52-58.
    [40]Constantinou M C, et al. Fluid viscous dampers in application of seismic energy dissipation and seismic Isolation[C]. Proc., ATC 17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, San Francisco,1993,2:581-592.
    [41]Nielsen E J, et al. Viscoelastic damper overview for seismic and wind application[C]. Proceeding of the First World Conf. on Struct. Control,1994,3:100-107.
    [42]Clark A J. Multiple passive tuned mass damper for reducing earthquake induced building motion[C]. Proceeding of the 9th World Conference on Earthquake Engineering, Japan, 1988,5:42-49.
    [43]Fujino Y M. Design formulas of tuned mass dampers based on a perturbation technique[J]. Earthquake Engineering and Structural Dynamics,1993,22:833-854.
    [44]Chi-chang Lin, et al. Vibration control effectiveness of passive tuned mass dampers [J]. Journal of the Chinese Institute of Engineering,1994,17(3):367-376.
    [45]Ou Jinping, and Wu Bo. Recent advances in research on and application of passive energy dissipation systems [J]. Earthquake Engineering and Engineering Vibration,1996, 16(3):206-213.
    [46]陈艾荣,项海帆.斜拉桥涡激扭转振动的被动控制[J].同济大学学报,1994,22(4):487~491.
    [47]项海帆,陈艾荣,顾明.调质阻尼器(TMD)对桥梁涡激共振的抑制[J].同济大学学报,1994,22(2):159-164.
    [48]顾明,吴炜,项海帆.大跨桥梁颤振控制的试验研究[J].同济大学学报,1996,24(2):124-129.
    [49]顾明,项海帆.杨浦大桥抖振及控制分析[J].同济大学学报,1993,21(3):307~314.
    [50]熊俊明.可控调谐液体阻尼器系统对高层建筑地震反应控制的研究[D].华南理工大学,2001.
    [51]Chaiseri P, et al. Interaction of tuned liquid damper and structure:theory, experimental verification and application, structural engineering earthquake engineering[J]. JSCE, 1989,6(2):117-125.
    [52]Kareem A. The next generation of tuned liquid dampers[C]. Proceeding of the First World Conference on Structural Control. Los Angeles,1994:701-713.
    [53]瞿伟廉,宋波,陈研桂等.TLD对珠海金山大厦主楼风振控制的设计[J].建筑结构,1995,16(3):21~28.
    [54]Cheng Wenrang, et al. Structural control of Nanjing TV tower under wind excitation[C]. U.S.A./China/Japan Trilateral Workshop on Structure,1992,10:153-162.
    [55]李爱群等.南京电视塔风振的混合振动控制研究[J].建筑结构学报,1996,17(3):9-16.
    [56]Zhu Bolong, et al. Test research on vibration control of 1:50 model structure of 459 m Shanghai radio and TV tower with water tanks[C]. U.S.A./China/Japan Trailateral Workshop on Structure,1992,10:749-760.
    [57]建筑抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,2001.
    [58]周锡元.建筑结构抗震设防策略的发展[J].工程抗震,1997,1:1~3.
    [59]Kobori T, Koshika, et al. Seismic-response-controlled structure with active mass driver system. Part I:design [J]. Earth Engrg & Struct Dyn,1991,20:133-149.
    [60]Spencer B F, Jr Michael K. Sain. Controlling Buildings:A New Frontier in Feedback[J]. Speeial Issue of the IEEE Control, Systems Magazine on Emerging Technology,1997, 17(6):1-30.
    [61]李桂青,邹祖军.结构振动控制评述[J].地震工程与工程振动,1987,7(1):83-93.
    [62]Rohman M A, Leiphloz H H E. Stochastic control of structures [J]. Struct,1981, 107(7):1313-1325.
    [63]Roorda J. Tendon control in tall structures [J]. Structure Div ASCE,1975,101(3): 505-521.
    [64]Yang J N, Giannopouls F. Active control of two-cable-stayed bridge[J]. Engrg Mech, 1979,105(5):795-810.
    [65]Rohman M A, Leiphloz H H E. Active control of flexible structures [J]. Structure Div ASCE,1978,104(8):1251-1266.
    [66]Rohman M A, Leiphloz H H E. Active control tall buildings[J]. Struct Engrg,1983, 109(3):628-645.
    [67]Honsner G W. Structural control:past present and future[J]. Engrg Mech. ASCE,1997, 9(123):897-971..
    [68]Yang J N, et al. Sliding mode control for nonlinear hysteretic structures [J]. Journal of Engineering Mechanics,1995,12(121):1330-1339.
    [69]Nishitani A, and Yamada N. H$ structural response control with reduced-order controller[C]. Proceeding of the First World Conf. on Struct. Control. LosAngeles, 1994:413-420.
    [70]Yoshida K, et al. LQG Control and H8 control of vibration isolation for multi-degree of freedom systems[C]. Proceeding of the First World Conf. on Struct. Control. LosAngeles, 1994:380-387.
    [71]Kobori T, Takahashi M, Nasu T, et al. Seismic response controlled structure with active variable stiffness system[J]. Earthquake Engineering and Structural Dynamics,1993, 22:925-941.
    [72]袁雪松.半主动变阻尼控制器对结构振动控制的理论与试验研究[D].哈尔滨工业大学,2001.
    [73]刘季,孙作玉.结构可变阻尼半主动控制[J].地震工程与工程振动,1997,17(2):92-95.
    [74]Abe M. Semi-active tuned mass dampers for seismic protection of structures[J]. Earthquake Engineering and Structural Dynamics,1996,25:743-749.
    [75]Lou J Y K, et al. Active tuned liquid damper for structural control[C]. Proceeding of the First World Conf. on Struct. Control, Los Angeles,1994:206-217.
    [76]瞿伟谦,项海帆.ER智能材料在结构震动控制中的应用[J].地震工程与工程振动,1998,18(3):49~55.
    [77]Symans M D, Constantinou M C. Semi-active control systems for seismic protection of structures:a state-of-the-art review[J]. Engineering Structures,1999,21:469-487.
    [78]Spencer B F Jr. and Hu Y X. Earthquake engineering frontiers in the new millennium[M]. A. A. Balkem Publisher. Lisse/Abingdon/Exton(pa)/Tokyo,2001.
    [79]Craig J I, et al. Active-passive damping for structural response attention in building using cladding[C]. Proceeding of ATC-17-1 Seminar on Seis-mic Isolation, Passive Dissipation, and Active Control, San Francisco,1993,2:70-79.
    [80]Kaw amura S, et al. Hybrid isolation system using friction-control sliding bearing[C]. Proceeding of the Tenth World Conference on Earthquake Engineering. Madrid, Spain, 1992,7:93-101.
    [81]Spencer B F Jr, and song T T. New applications and development of active, semi-active and hybird control techniques for seismic and non-seismic vibration in the usa. proceedings of international post-smirt conference seminar on seminar on seismic isolation[C]. Passive Energy Disspation and Active Contronl of Vibration of Structures, 1999,8:302-316.
    [82]文佳,魏世宏,朱浪涛,隔震技术原理及存在问题分析[J].重庆科技学院学报(自然科学版),2007,9(2):29-30.
    [83]唐家祥.我国第一个隔震建筑的设计规范[J].建筑结构,2002,32(1):67~70.
    [84]张鹏程,赵鸿铁,薛建阳等.中国古建筑的防震思想[J].世界地震工程,2001,17(4):1-6.
    [85]武田寿一.建筑物隔震防振与控振[M].纪晓惠,陈良,鄢宁译.北京:中国建筑工业出版社,1997.
    [86]谭平,周福霖.隔震技术的研究与工程应用[J].施工技术,2008,37(10):5-8.
    [87]王优龙.日本隔震技术的发展现状[J].工程抗震,1991,(1):44~47.
    [88]李顺群,张业民等.土木工程结构中隔震技术的发展[J].辽宁工学院学报,2001,21(5):64~65.
    [89]岳宏亮,姚维盛等.简析结构隔震技术的特点及适用性[J].广西大学学报(自然科学版),2007,6:80~82.
    [90]段文峰,孙润香.建筑结构隔震现状的探讨[J].吉林建筑工程学院学报,2002,19(4):1-2.
    [91]徐忠根,胡敏茵,周福霖.房屋建筑中间层隔震研究[J].工程抗震与加固改造,2004,(5):23-27.
    [92]蓝文武,韦树英.巨型钢框架悬挂结构体系减震半主动控制的研究[D].广西大学, 2005.
    [93]李宏男,李忠献,祁皑,贾影.结构振动与控制[M].北京:中国建筑工业出版社,2005,8.
    [94]日本免震构造协会.图解隔震结构入门[M].叶列平泽.北京:科学出版社,1998.
    [95]CECS 126.叠层橡胶支座隔震技术规程[S].2001.
    [96]王杜良.抗震结构设计[M].武汉:武汉理工大学出版社,2007,5.
    [97]傅育安.橡胶与结构隔震[J].世界地震工程,1986,12:22~23.
    [98]徐礼华,刘祖德,茜平一.基础隔震技术及其应用[J].土工基础,1999,13(3):10~11.
    [99]邸元.基础隔震结构地震反应研究[D].同济大学,1995,9.
    [100]Hsiag-Chuan Tsai, James M Kelly. Seismic response of heavily damped base isolation system[J]. Earthquake Engrg and Structural Dymamics,1993,22.
    [101]刘延芳,叶爱君.减隔震技术在桥梁结构中的应用[J].世界地震工程,2008,24(2):133.
    [102]王文斌,赵小霞,陈玉元.建筑物基础隔震技术的进展[J].内陆地震,2006,20(2):173.
    [103]邓长根,何永超.日本建筑结构隔震减震研究新进展[J].世界地震工程,2002,18(3):168~173.
    [104]何建平,王汝恒,刘勇.建筑基础隔震体系的应用发展研究[J].工程建设与设计,2006,6:41~45.
    [105]郭家明.建筑隔震技术的发展与应用[J].淮海工学院学报,1999,8(3):69~70.
    [106]张涛,张富有.基础隔震技术国内外研究新进展[J].西部探矿工程,2003,12:118~120.
    [107]Nagarajaiah S, Reinborn A M, Constantinou M C. Nonlinear dynamic analysis 3-d base isolation structures[J]. Journal of structural Engineering, ASCE,1991, 117(9):2035-2054.
    [108]Nagarajaiah S, Reinborn A M, Constantinou M C. Torsional-coupling in sliding base isolated structures[J]. Journal of structural Engineering, ASCE,1993,119(1):130-149.
    [109]Jangid R S, Datta T K. Seismic response of torionally coupled structure with elasto-plastic base isolation[J]. Engineering Structures,1994,26(4):256-262.
    [110]Jangid R S, Datta T K. Nonlinear response of torionally coupled base isolated structure[J]. Journal of structural Engineering, ASCE,1994,120(1):1-2.
    [111]曾德民,苏经宇,樊水荣,马东辉.建筑基础隔震技术的发展和应用概况[J].工程抗震,1996,9:37-41.
    [112]黄永林.基础隔震研究与应用的回顾与前瞻[J].地震学刊,1998,4:58-64.
    [113]刘德馨.滑动摩擦基础隔震房屋实用设计方法[J].四川建筑科学研究,1992,6.
    [114]唐家祥.建筑基础隔震[M].武汉:华中理工大学出版社,1992.
    [115]周福霖.多层和高层建筑结构减震控制新体系[J].工程抗震,1994,9:10-13.
    [116]肖登奎,戴朝晖.建筑结构基础隔震技术的发展[J].建筑技术开发,2002,29(5):1-2.
    [117]刘文光,周福霖,庄学真等.大直径夹层橡胶隔震装置力学性能试验研究[J].世界地震工程,1999,(2):62~68.
    [118]杨迪雄.空间非对称框架结构的控振研究[D].西安:西安理工大学,2001.
    [119]祁皑,林于东.改进的基础隔震结构地震作用简化计算方法[J].地震工程与工程振动,2006,(1):152~157.
    [120]王永岗,吕英民,张对红等.储液罐抗震研究[J].油气储运,1999,18(6):1-7.
    [121]温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展[J].力学进展,1995,25(1):60~71.
    [122]第一机械工业部主编.工业设备抗震鉴定标准[S].北京:中国建筑工业出版社,1979.
    [123]美国石油学会标准API Standard 650[S].1980.
    [124]日本工业标准.JISB850[S].1979.
    [125]Yamada M. Elephant's foot bulge of cylindrical steel tank shells[J]. JIIPI,1980,18(6).
    [126]韦树莲.地震时储液罐产生“象足”式破坏的机理[J].石油化工设备技术,1985,2:23~24.
    [127]Cambra F J. A study of liquid storage tank seismic uplift behavior[C]. Proceeding of the International Symposium on Lifeline Earthquake Eng. Portland,1983:47-58.
    [128]孙建刚.大型立式储罐隔震:理论、方法及实验[M].北京:科学出版社,2009,12.
    [129]王振.立式浮放储罐三维地震反应分析及试验研究[D].哈尔滨工程大学,2006,6.
    [130]土木学会新泻震害调查委员会编.新泻地震震害调查报告[R].东京:土木学会新泻震害调查委员会,1966.
    [131]陈贵清,邢金瑞.储液罐的抗震研究史[J].科技信息,2009,33:812-813.
    [132]Hoskins L M and Jacobsen L S. Water pressure in a tank caused by a simulated earthquake[J]. Bull. Seism. Soc. Am.,1934,20(2):24-32.
    [133]Housner G W. Dynamic pressure on accelerated fluid containers[J]. Bull. Seism. Soc. Am.,1957,47(1):15-35.
    [134]Edwards N W. A procedure for dynamic analysis of thin welled liquid storage tanks subjected to lateral ground motions[D]. University of Michigan,1969.
    [135]Wunderlich W, Springer H, Gobel W. Discretization and solution techniques for liquid filled shells of revolution under dynamic loading[C]. Proceeding of IUTAM/IACM Sym.on Discretization Meth.in struct. Mech., Vienna, Austria,1989:145-155.
    [136]Tedesco J W, Landis D W, Kostem C N. Seismic analysis of cylindrical liquid storage tank[J]. Comput.Struct.,1989,32(5):1165-1174.
    [137]Velesos A S. Seismic effects in flexible liquid storage tanks[C]. Proceeding of the 5th WCEE, Rome, Italy,1974,1630-1639.
    [138]Veletsos A S, Yang J Y. Dynamics of fixed-base liquid storage tanks[C]. US-Japan Seminar for Earthq. Eng. Res. With Emphasis on Lifeline System, Tokyo, Japan, 1976:317-341.
    [139]Haroun M A. Vibration studics and tests of liquid storage tanks[J]. Earthq. Eng. Str. Dyn.,1983,11:179-206.
    [140]Wozniak R S, Mitchell W W. Basis of seismic design provisions for welded steel oil storage tanks [C]. Proceeding of Session on advances in Storage Tank Design, API Refining Dept.,Toronto. Canada,1978:485-493.
    [141]Peek R, Jennings P C. Simplified analysis of unanchored tanks[J].Earthq. Eng. Struct. Dyn.,1988,16:1073-1085.
    [142]Peek R, El-Bkaily M. Postbuckling behavior of unanchored steel tanks under lateral loads[J]. ASME J Pres. Ves. Tech.,1991,113:423-428.
    [143]Clough D P. Experimental evaluation of seismic design methods for broad cylindrical tanks[R]. EERC, University of Calif., Berkeley, Report No. UCB/EERC-77/10,1977.
    [144]Natsiavas S. Simplified models for the dynamic response of tall unanchored liquid containers[J]. ASME J. Pres. Ves. Tech.,1990,112:126-131.
    [145]Barton D C, Parker J V. Finite element analysis of the sersmic response of anchored and unanchored liquid storage tanks[J]. Earthq. Eng. Struct. Dyn.,1987,15:299-322.
    [146]蔡国琰,曲乃泗,赖国璋.贮液罐结构水弹性抗震分析[J].大连工学院学报,1979,3:86~100.
    [147]Wing Kam Liu. Finte element procedures for fluid-structure interaction and application to liquid storage tank[J]. Nulear engineering and Design,1981,65:221-238.
    [148]周敏.储液容器非线性动态分析[D].清华大学,1989.
    [149]仇伟德,蔡强康.地震作用下刚性旋转壳贮液罐液体的动力响应[J].地震工程与工程振,1983,3(1):72-87.
    [150]曹志远,张佑启.结构和内部流体相互作用问题的半解析方法[J].应用数学和力学,1985,6(1):1-8.
    [151]项忠权,李清林.立式储罐抗震[M].北京:地震出版社,1990.
    [152]徐微,项忠权.在地面水平振动作用下储液罐的辐射阻尼[J].地震工程与工程振动,1992,2(12):29-38.
    [153]中国石化总公司抗震办公室.设备抗震(设备抗震学术会议报告汇编)[R].地震 出版社,1987,12.
    [154]温德超等.在激励下储液罐提离的非线性耦联振动的实验研究[J].实验力学,1990,4(5):407-412.
    [155]温德超等,储液罐模型由提离引起的失稳及强度破坏的实验研究[J].哈尔滨工业大学学报,1990增刊:152~158.
    [156]温德超.储液端提离的实验研究和多重非线性藕合的三维静动力分析[D].大连理工大学,1992,1.
    [157]周利剑.水平地震激励下立式储罐与地基相互作用动力响应分析[D].哈尔滨工程大学,2006,6.
    [158]孙建刚,宫克勤,齐含兵等.水平地震作用下无锚固储罐应力与应变响应分析[J].地震工程与工程振动,2007,27(3):110-115.
    [159]郑天心,王伟,吴灵宇.考虑液体晃动和罐底提离储液罐的研究[J].哈尔滨工业大学学报,2007,39(2):173-176.
    [160]Chalhoub M S, Kelly J M. Shake table test of cylindral water tank in base isolated structures[J], Journal of Structural Engineering, ASCE,1990,116(7):1451-1472.
    [161]Tajirian F E. Seismic isolation of critical components and tank[C].Proc.,ATC-17-1 Seminar on Seismic Isolation,1993 Passive Energy Dissipation, and Active Control. San Francisco, Calif.,1993,1:233-244.
    [162]Zayas V S, Low D S. Application of seismic isolation to industrial tanks[J]. Pressure Vessels and piping on f., ASME/JSME, Hawaii,1995,319:268-273.
    [163]Kim N S. Lee D GPseudynamic test for evaluation of seismic performance of base-isolated liquid storage tanks[J]. Engineerring Structure,1995,17(3):198-208.
    [164]Shrimali M K, Jangid R S. Seismic response of liquid storage tanks isolated by sliding bearings[J]. Engineerring Structure,2002,24(7):907-919.
    [165]Shrimali M K, Jangid R S. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation [J]. Nuclear Engineering & Design,2002,217 (1/2): 1-20.
    [166]Shrimali M K, Jangid R S. A comparative study of performance of various solation systems for liquid storage tanks [J]. International Jounal of Stuctual Stability and Dynamics,2002,2(4):573-591.
    [167]Shrimali M K, Jangid R S. Seismic response of base-isolated liquid sorage tanks[J]. Journal of Vibration & Control,2003,9(10):1201-1217.
    [168]Shrimali M K, Jangid R S. Seismic analysis of base-isolated liquid storage tanks[J]. Journal of Sound & Vibration,2004,275(1/2):59-75.
    [169]孙建刚.立式储罐动响应若干问题研究[R].哈尔滨工程大学,2005.
    [170]孙建刚,齐晗兵,王莉莉.立式储罐橡胶隔震工程应用设计研究[J].大连民族学 院学报,2006,34(5):4-7.
    [171]孙建刚,袁朝庆,郝进峰.橡胶基底隔震储罐地震模拟试验研究[J].哈尔滨工业大学学报,2005,37(6):806~809.
    [172]孙建刚,郝进峰,王振.储罐基底隔震振型分解反应谱计算分析研究[J].哈尔滨工业大学学报,2005,37(6):649~651.
    [173]孙建刚,周抚生,郝进峰.立式储罐橡胶基底隔震体系的研究[J].地震工程与工程振动,1999,19(3):320~323.
    [174]孙建刚,吕睿,郝进峰.立式储液容器自复位隔震体系研究[J].地震工程与工程振动,2000,20(1):141~148.
    [175]孙建刚,袁朝庆,郝进峰等.立式钢制圆柱储液容器基底隔震的地震动仿真计算[J].大庆石油学院学报,2000,24(2):64-67.
    [176]孙建刚,王振,袁朝庆.储罐隔震设计简化分析方法[J].地震工程与工程振动,2001,21(2):157~160.
    [177]孙建刚,张丽,袁朝庆.立式储罐基底隔震动力反应特性分析[J].地震工程与工程振动,2001,21(3):140~144.
    [178]孙建刚,周丽,袁朝庆等.立式钢制圆柱储罐的动提离控制[J].大庆石油学院学报,2001,25(3):102~105.
    [179]孙建刚,袁朝庆,郝进峰.圆柱储液容器提离控制研究[J].哈尔滨工业大学学报,2001,33(6):763~768.
    [180]孙建刚.立式储罐隔震结构的一种控制体系[J].世界地震工程,1998,14(1):34-41.
    [181]孙建刚,郝进峰,张文福等.采用滚动隔震体系的立式储液罐(敞口)振动的模型试验研究[J].大庆石油学院学报,1998,22(3):101~105.
    [182]孙建刚,郝进峰,张云峰.储液罐液固耦联振动固有特性有限元分析[J].大庆石油学院学报,1998,22(3):96~100.
    [183]孙建刚,郝进峰,袁朝庆等.储罐地震响应耗能减震研究[J].哈尔滨工业大学学报,2001,33(6):763-768.
    [184]沈志强.SMA-橡胶支座动力响应分析及其应用[D].哈尔滨工程大学,2009,6
    [185]祝英山.建筑抗震设计[M].中国电力出版社,2006,9.
    [186]丰定国.工程结构抗震[M].地震出版社,2002,10.
    [187]柳柄康,沈小璞.工程结构抗震设计[M].武汉:武汉理工大学出版社,2005,11.
    [188]Hamada M, lzumi H, Sato S. Bahavior of underground tanks during earthquakes[C]. Proceeding of the 5th Japan Earthq. Eng. Sym.,1975:63-69.
    [189]孙建刚,蒋峰,张荣花.隔震立式储罐地震反应谱分析[J].世界地震工程,2009,25(2):130-138.
    [190]孙建刚,王向楠,赵长军.立式储罐基底隔震的基本理论[J].哈尔滨工业大学学报,2010,42(4):639-643.
    [191]胡敏良,吴雪茹.流体力学[M].武汉:武汉理工大学出版社,2008,6.
    [192]包世华.结构动力学[M].武汉:武汉理工大学出版社,2005,10.
    [193]贾图壁.以柔克刚:橡胶垫隔震新技术[J].城市住宅,2008,6:49.
    [194]Constantinou M C. Seismic protective systems seismic isolation and damping systems[C]. EMD Specialty Conf., SCE, Atlanta, Georgia,1999:412-419.
    [195]尚守平.结构抗震设计[M].北京:高等教育出版社,2003,1.
    [196]侯鹏.夹层橡胶基础隔震结构动力分析[D].西南交通大学,2003,11.
    [197]周福霖、金建敏、宋宝清等.橡胶支座第3部分:建筑隔震橡胶支座GB20688.3-2006[S].中国标准出版社,2007,10.
    [198]刘文光,周福霖,庄学真.铅芯夹层橡胶隔震垫各种相关性能及长期性能的研究[J].华南建设学院西院学报,1997,7(1):12~19.
    [199]薛素铎,赵均,高向宇.建筑抗震设计[M].北京:科学出版社,2003,8.
    [200]Yi-Kwei Wen. Method for random vibration of hysteretic system[J]. Journal of the Engineering Mechanics Division, ASCE,1976,102(EM2):249-263.
    [201]Yi-Kwei Wen. Equivalent Linearization for Hysteretic System Under Random Excitation[J]. Jouranl of Applied Mechanics, ASME,1980,47(1):150-154.
    [202]Park Y J, Wen Y K, Ang A H-S. Random vibration of hysteretic systems urnder bi-directional ground motions[J]. Earthquake Engineering and Structural Dynamics, 1986, (14):543-557.
    [203]陈玲莉.工程结构动力分析数值方法[M].西安:西安交通大学出版社,2006,9:138~140.
    [204]陈增荣,高卫国.数值分析[M].北京:电子工业出版社,2002,5.
    [205]王能超.数值分析简明教程[M].武汉:华中科技大学出版社,2009,9.
    [206]Zhou Xiyuan etc. Optimum design of resilience-friction-slide base isolation system for low cost buildings[C]. WCEE,1996:187-196.
    [207]Kelly J M. Aseismic base isolation:review and bibliography[J]. Soil Dyn. Earthquake Engng.1986,5(3):212-226.
    [208]Motaghel N, Khodaverdian M. Dynamies of resilient friction base isolator(R-FBI)[J]. Earthquake Engrg. Struet. Dyn.1987,15(3):379-390.
    [209]Zayas V A, Low S S, Mashin S A. A simple pendulum technique for aehieving seismic isolation[J]. Earthquake Spectra,1990:6(2):317-333.
    [210]张云峰.立式储罐并联隔震基础研究[D].大庆石油学院,2009,6.
    [211]郝进峰.柔性基底减震耗能立式钢制储罐的研究[D].大庆石油学院,2008,7.
    [212]马卫华,郝婷,李晓芝.隔震技术与应用[J].唐山学院学报,2005,18(3):104~106.
    [213]李红梅.基础摩擦滑移隔震结构分析[D].河北农业大学,2001,6.
    [214]高菲.建筑物基础滑移隔震性能的研究[D].辽宁工程技术大学,2003,2.
    [215]张文芳,李爱群,程文瀼,税国斌.建筑物滑移隔震研究现状及新进展[J].1997,27增刊:45-49.
    [216]万歌,李忠献.建筑结构滑移隔震的研究及发展应用[J].天津建设科技,2001,4:17~20.
    [217]霍晓鹏.一种新型滑移隔震体系的理论分析与研究[D].西安建筑科技大学,2007,5.
    [218]林勇.基础滑移隔震体系的地震反应谱研究[D].西安建筑科技大学,2006,5.
    [219]熊仲明等.基础滑移隔震房屋的计算研究[J].土木工程学报,1995,5(28):21~30.
    [220]廖健敏,王清敏等.基础滑移隔震房屋动力特性的试验研究[J].建筑结构,2000,30(11):17~19.
    [221]韩淼,王秀梅.基础隔震技术的研究现状[J].北京建筑工程学院学报,2004,20(2):11~13.
    [222]周锡元,吴育才.工程抗震新发展[M].北京:清华大学出版社,2002,9.
    [223]吴世跃.我国建筑物减震隔震研究现状与发展[J].山西焦煤科技,2010,3:45-48.
    [224]樊水荣,苏经宇,曾德民,马东辉.建筑基础滑移隔震技术及其应用[J].1997,3:39-40.
    [225]刘开康.一村镇土坯结构摩擦滑移隔震技术研究[D].大连理工大学,2010,5:11~15.
    [226]李永贵.双向水平地震作用下基底摩擦滑移隔震体系的动力反应分析[D].昆明理工大学,2005,6:12~17.
    [227]李红梅.基础摩擦滑移隔震结构分析[D].河北农业大学,2001,6:5-11.
    [228]岳宏亮.基础摩擦滑移隔震体系若干实用技术开发与研究[D].广西大学,2007,6:32~38.
    [229]霍晓鹏.一种新型滑移隔震体系的理论分析与研究[D].西安建筑科杖大学,2007,5:14~15.
    [230]Den Hartog J P. Forced vibrations with combined coulomb and viscous friction[J]. Trans ASME APM-53-9,1931:107-115.
    [231]Mcmillan A J. A non-linear friction model for self-exeited vibrations [J]. Journal of Sound and Vibration,1997,205(3):323-335.
    [232]Hinriehs N, Obstreich M, Popp K. On the modeling of friction oscillators[J]. Journal of Sound and Vibration,1998,216(3):435-459.
    [233]Mostaghel N, Davis T. Representations of coulomb friction for dynamic analysis[J]. Earthquake engineering and structural dynamics,1997,26(5):541-548.
    [234]赵桂峰,李大望,张晓萍.动力计算中符号函数连续化的精度分析[J].世界地震工程,2005,21(1):108~110.
    [235]樊剑,滑移隔震结构的非线性动力特性研究及其引导[D].华中科技大学 2001,1.
    [236]李守华,聚四氟乙烯在建筑工程中的应用[J].电力建设,1983,6:72-76.
    [237]Constantinou M C, Caccese J, Harris H G. Frictional characteristics of Teflon-steel interface under dynamic conditions [J]. Earthquake engng. struct.dyn.,1987, 15(6):751-759.
    [238]Hwang J S, Chang K C. Quasi-static and dynamic sliding characteristics of Teflon-stainless steel interfaces [J]. Engineering Structures,1990,116(10):2747-2761.
    [239]樊爱武.滑移隔震结构的滑移位移研究[D].华中科技大学,2005,1.
    [240]张智慧.滑移隔震结构滑移元件损伤的地震反应分析研究[D].西安建筑科技大学,2010,5.
    [241]Shrimali M K, Jangid R S. Seismic response of liquid storage tanks isolated by sliding bearings[J]. Engineering Structures,2002,24(02):909-921.
    [242]中国石油天然气集团公司.立式圆筒形钢制焊接油罐设计规范GB50341—2003[S].北京:中国计划出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700