立枯丝核菌AG1-IA诱导玉米基因差异表达分析及防卫酶活性检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米纹枯病是由立枯丝核菌(Rhizoctonia solani Kühn)引起的真菌性病害,该病主要发生在中国和东南亚地区,表现出一定的区域性,近年来该病流行速度和蔓延趋势日渐严重,加上该病害喜温喜湿,随着全球气候变暖,在未来几年很有可能传播到其他国家和地区,成为一种世界性的流行病害。玉米是我国的主要粮食作物之一,该病害的发生已严重制约了玉米的产量和品质的提高。深入研究玉米对纹枯病的抗病机制,发掘抗病基因并对其克隆和功能分析,是加快抗病基因工程育种的有效途径。本研究利用cDNA-AFLP技术和生物信息学相结合的分析方法,通过建立相关抗病基因表达谱,从抗病基因表达的水平上探索玉米对纹枯病的系统抗病机制。
     实验所用材料为本课题组多年筛选鉴定出的高耐玉米纹枯病材料R15和高感材料478,纹枯病菌为立枯丝核菌高致病性融合菌群AG1-IA。材料种植于四川农业大学濆江农场,拔节期时采用人工嵌入法将两粒布满菌丝的麦粒接入玉米叶鞘,并保温、保湿,分别取接种后16 h、24 h、36 h、48 h、60 h的玉米接菌叶片,提取叶片的总RNA进行反转录并利用cDNA-AFLP技术分析AG1-IA诱导下高耐玉米纹枯病材料R15的基因表达谱,同时对接菌后两个存在抗病差异自交系材料的不同部位不同时间段的氧化酶活性进行分析。获得的主要结果如下:
     1.经56对AFLP选扩增引物筛选共观察到87个差异片段,选取效果较好60个进行回收,有35个可得到有效回收,将经过两次回收得到的差异片段连接载体转化到质粒中,并选送18个克隆由测序公司测序。
     2.将18个EST序列测序结果提交到Genbank进行Blast比对,5个EST序列未找到同源序列,已知基因功能的EST序列11条,已知mRNA和基因组序列各1条。13条具同源性的EST具体比对结果如下:玉米锈病抗性蛋白基因、衰老相关蛋白、gag蛋白、SNF2因子、丝氨酸/苏氨酸激酶蛋白、丝氨酸/苏氨酸磷酸化酶家族蛋白、NADH脱氢酶亚基K、NADH脱氢酶亚基2、墨西哥蜀黍颖可塑因子1、多蛋白(polyprotein)、Zea mays PCO118792mRNA sequence. Zea mays subsp. parviglumis mitochondrion, complete genome。
     3.通过对接菌后两个玉米不同抗性自交系间叶鞘及叶片两个部位的过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物酶(SOD)、苯丙氨酸解氨酶(PAL)和抗坏血酸过氧化物酶(APX)活性的测定,结果显示在抗性材料R15的叶鞘中除PAL变动不大外,POD、CAT、SOD和APX活性都有不同程度的增加,其中POD活性变化最为剧烈,接菌后的R15叶片POD、CAT和APX表现上升,SOD、PAL表现下降;高感材料478的POD、CAT在叶片与叶鞘中均表现上升,SOD叶片中上升叶鞘中下降,PAL和APX均无明显变化。总体而言POD、CAT水平与材料抗性呈正相关。结果表明上述防御酶系在植物体中的不同作用区域和作用时间,相互协作共同完成植物的抗病防御反应。
Maize banded leaf and sheath blight(BLSB), caused by Rhizoctonia solani Kühn, is a destructive disease that results in significant yield loss in most maize-growing areas in China. Although this is a regional maize disease mainly occurring in China and Southeastern Asia, for the weather of these regions, it is possible that this disease may spread to other parts of the maize BLSB, the understanding of resistance mechanism is of great importance. In this research, cDNA-AFLP was utilized to analysis gene expression profile in maize induced by AG1-ⅠA. The objective of the present research was to explore efficient methods to analyze high-throughout gene expression, and to obtain a primary gene expression profiling of the disease resistance in maize, and to understand the resistance mechanism against maize BLSB at transcriptional level.
     By use of cDNA-AFLP, a pathogen inducible gene expression profile was obtained from high tolerance maize inbreed lines of R15 and high pathogenic fungus anastomosis groups AG1-ⅠA of Rhizoctonia solani Kühn in Southwestern of China. At the jointing stage, two wheat seeds colonized by AG1-ⅠA were placed into the third sheath of the maize plants. At 12 hrs, 24 hrs, 36 hrs, 48 hrs, 60 hrs of the post-inoculation, the inoculation and non-inoculation leaves was picked down for total RNA extraction to reverse transcribing and analysised genes differential expressed. We also analysised the changes of several resistant enzymes in high tolerance maize inbreed lines R15 and high sense maize inbreed lines 478, at Ohrs, 12 hrs, 24 hrs, 36 hrs, 48 hrs, 60 hrs,72hrs of the post-inoculation in sheath and leaves. The obtained main results were as follows:
     1. By 56 combinations AFLP primer screening, 87 transcript derived fragments showed differential expression, we tried to reclaim 60 TDFs of them, 35 TDFs were succeed, then we jointd these 35 TDFs in pMD18-T vector and transformed in E coli DH5α. 18 clones were selected to sequence.
     2. All of the sequences of insertion fragments were analyzed using bioimformatical methods. 13 ESTs sequence had significant homology sequence in Genbank, the remaining 5 ESTs had no significant similarity sequence, in the 13 ESTs,11 ESTs were known genes, one mRNA sequence and one genome sequence: Zea mays rust resistance protein rp3-l(rp3-l) gene, putative senescence-associated protein, gag protein, SNF2-related, NADH dehydrogenase subunit K, NADH dehydrogenase subunit 2, Ser/Thr protein phosphatase family protein, serine/threonine kinase protein, polyprotein, teosinte glume architecture 1, Zea mays PCO118792 mRNA sequence, Zea mays subsp. parviglumis mitochondrion complete genome.
     3. The activities of peroxidase(POD), phenylalanine ammonia lyases(PAL), Ascorbate Peroxidase, superoxide dismutase(SOD) and catalase(CAT) were measured in R15 and 478 both in sheathes and leaves inoculated with AG1-ⅠA or not inoculated. The results showed that, as to resistant material(R15), the activities of POD, CAT, SOD, APX increased and PAL kept stable in sheaths, in leaves the activity of POD、CAT and APX increased, SOD、PAL decreased; as to high susceptible material(478), the activities of POD and CAT increased in both sheaths and leaves, SOD increased in leaves but decreased in sheathes, both PAL and APX had no striking change. Generally speaking, the POD and CAT activities of maize were positively related to its resistance. Experimental results suggested that these defense enzymes functioned in differential areas and courses in plant accomplished defense reactions.
引文
1.陈兵,王坤元,董国强等.水稻纹枯病菌致病性与酶活力的关系.浙江农业学报,1992,4(1):8—14
    2.陈捷,唐朝荣,高增贵等.玉米纹枯病病菌侵染过程研究.沈阳农业大学学报,2000,31(5):503-506
    3.陈捷,唐朝荣,邹庆道等.玉米纹枯病菌致病因子的研究.沈阳农业大学学报,1999,30(3):189·194
    4.程志强,吴学龙,陈旭君等.表达的hrmA蛋白质具有诱导水稻细胞产生防卫反应的活性.植物病理学报.2005,35(2):155-160
    5.付凤玲,李晚忱.用cDNA-AFLP技术构建基因组转录图谱.分子植物育种,2003,1(4):523—529
    6.高增贵.玉米内生细菌种群多样性与纹枯病生防机理的研究.沈阳农业大学,2003
    7.韩德俊,曹莉,陈耀锋等.植物抗病基因与病原茵无毒基因互作的分子基础.遗传学报,2005,32(12):1319-1326
    8.金庆超,叶华智,张敏.苯丙氨酸解氨酶活性与玉米对纹枯病抗性的关系.四川农业大学学报,2003,21(2):116-118
    9.阚贵珍.玉米纹枯病抗性遗传的研究.扬州大学硕士学位论文,2003
    10.康振生,李振岐,商鸿生.小麦条锈病吸器发育的超微结构研究.西北农业大学学报,1993,21(2):6-9
    11.李荣华.玉米纹枯病抗性机制的研究.沈阳农业大学硕士学文论文,2003
    12.李云锋,王振中,贾显禄.稻瘟菌糖蛋白激发子诱导的水稻叶片膜脂过氧化及过敏性反应.植物生理与分子生物学学报,2004,30(2):147-152
    13.刘雪梅,肖建国.小麦纹枯病菌侵染过程的组织病理学研究.菌物系统,1999,18(3):288-293
    14.戚佩坤等.吉林省栽培植物真菌病害志.科学出版社,1966 p:33
    15.唐莉.玉米纹枯病田间发生动态、阶段抗性的生化因素及种质资源抗性评价的研究.四川农业大学硕士学位论文,200 1
    16.陶家凤,谭方河.立枯丝核菌侵染玉米的研究.植物病理学报,1995,25(3):253-257
    17.童蕴慧,徐敬友,潘学彪等.水稻植株对纹枯病菌侵染反应及其机理的初步研究.江苏农业研究,2000,21(4):45-47
    18.肖炎农,李捷生,郑用链等.湖北省玉米纹枯病病原丝核菌的种类和致病性.菌物系统,2002,21(3):419-422
    19.杨华,杨俊品,荣廷昭等.玉米抗纹枯病QTL分子标记定位.科学通报,2005,50(8):772-776
    20.杨世文,刘永发,陈淑琼.玉米纹枯病发生规律及测报技术探讨.病虫测报,1992,12(4):3-5
    21.叶华智等.玉米生育阶段和叶鞘位对纹枯病抗性的影响.中国植物保护学会,第八届全国会员代表大会暨21世纪植物保护发展战略学术研讨会论文集.2001,709-713
    22.张春山,孙秀华,孙亚杰.玉米纹枯病调查研究.吉林农业科学,1992,3:37-39
    23.张志明.立枯丝核菌AG1-IA诱导玉米差异表达基因的研究.四川农业大学博士学位论文,2006
    24.赵茂俊,张志明,潘光堂等.拔节期与抽穗期玉米抗纹枯病的QTL初步定位.分子实验生物学报,2006,39(2):139-144
    25.赵茂俊,张志明,潘光堂等.玉米抗纹枯病QTL定位.作物学报,2006,32(5):698-702
    26.赵茂俊,张志明,张世煌等.玉米SSR连锁图谱的构建及抗纹枯病基因定位.高技术通讯,2005,15(5):71-76
    27.赵淑清,郭剑波.植物系统性获得抗性及其信号转导途径.中国农业科学,2003,36(7):781-787
    28.郑达.玉米纹枯病菌致病性及玉米阶段抗病性的生理生化因素研究.四川农业大学硕士学位论文,2000
    29.郑重,杨明和.蛋白质可逆磷酸化在植物-病原茵互作中的作用.植物生理学通讯,2001,37(2):173-177
    30.周文亮,程伟东,许鸿源,江禹奉,周凤珏,覃兰秋.玉米纹枯病的研究现状及问题.中国农学通报,2005,2l(6):331-336
    31. Anderson JP, Ellet B, Peer MS, et al. Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gone Expression and Disease Resistance in Arabidopsis. Plant Cell, 2004, 16:3460-3479
    32. Aoki H, Sassa T, Tamura T. Phytotoxic metabolites of Rhizoctonia solani. Nature, 1963, 200:575-579
    33. Bachem C, vander Hoeven R, De Bruijin M, et al. Visualization of differential gene expression using a novel method of RNA finger printing based on AFLP: analysis of gene expression during potato tuber development, Plant, 1996, 9:745-753
    34. Bartsev A V, Deakin W J, et al. An effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiology, 2004, 134(2): 871-879
    35. Beaks GW, Sigh H, Dickinson CH. Ultrastuctrure of host-pathogen interface of peronospora viciae in cultivars of pea which slow differret susceptibilities. Plant Pathology, 1982, 31:343-354
    36. Belkhadir Y, Nimchuk Z, Mackey D, et al. Arabidopsis RIN4 Negatively Regulates Disease Resistance Mediated by RPS2 and RPM1 Downstream or Independent of the NDR1 Signal modulator and Is Not Required for the Virulence Functions of Bacterial Type Ⅲ Effectors AvrRpt2 or AvrRpm1. Plant Cell, 2004, 16:2822-2855
    37. Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Current Opinion in Plant Biology, 2004, 7: 391-399
    38. Berthke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissue. Plant Cell, 2004, 16:332-341
    39. Beyer WF, Fridovichi I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal.Biochem., 1987, 161: 559-566
    40. Bogdanove AJ. Protein-protein interactions in pathogen recognition by plants.Plant Molecular Biology, 2002, 50:981-989
    41. Bradley D J, Kjellbom P, Lamb CJ. Elicitor-and wound induced oxidative cross-linking of a praline-rich cell wall protein:a novel,rapid defense response. Cell, 1992, 70:21-30
    42. Buchanan BB, Gruissem W, Jones RL. Biochemistry and Molecular Biology of Plants. Rockville: American Society of Plant Physiologists, 2000:1085-1099
    43. Buhot N, Gomes E, Marie-Louise Milat, et al. Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation. Molecular Biology of the Cell, 2004, 15: 5047-5052
    44. Buschges R, Hollricher K, Panstruga R, et al. The barley mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88(5):695-705
    45. Buttner D, Bonas U. Common infection strategies of plant and animal pathogenic bacteremia. Current opinion in Plant Biology, 2003,6: 312-319
    46. Cakmak I, Horst WJ. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max L.). Physiol Plant, 1991,834:463-468
    47. Caro A, Puntarulo S. Nitirc oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Plant physiology, 1998, 104: 357-364
    48. Dangl JL, Jones JD. Plant pathogens and integrated defense responses to infection. Nature, 2001,411:826-833
    49. de Pinto MC, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiol, 2002, 130: 698-708
    50. Desikan R, Griffiths R, Hancock J, et al. A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced Stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2002, 99: 16314-16318
    51. Dorweiler J, Stec A, Kermicle J et al. Teosinte glume architecture 1: A genetic locus controlling a key step in maize evolution. Science, 1993,262: 233-235
    52. Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA, 1998, 95: 10328-10333
    53. Eisen JA, Sweder KS, Hanawalt PC. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res., 1995, 23: 2715-2723
    54. Flor HH. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol, 1971, 9: 275-296
    55. Garcfa-Mata C, Lamattina L. Nitric oxide induces Stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126: 1196-1204
    56. Guo F Q, Okamoto M, Crawford NM. Identifi-cation of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 2003,302: 100-103
    57. Guo H, Ecker JR. The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 2004,7:40-49
    58. Hammond-Kosack KE, Jones JDG. Plant disease resistance genes. Annu. Rev. Physiol. Plant. Mol. Biol., 1997,48: 575-607
    59. Hann Ling Wong, Tsuyoshi Sakamoto, Tsutomu Kawasaki, et al. Down-Regulation of Metallothionein,a Reactive Oxygen Scavenger,by the Small GTPase OsRacl in Rice. Plant Physiology, 2004, 135: 1447-1456
    60. Hibino T, Lee BH, Rai AK, et al. Salt enhances photosystem I content and cyclic electron flow via NAD(P)H dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica. Aust. J. Plant Physiol, 1996,23: 321-330
    61. Huang Y, Li H, Hutchison CE, et al. Biochemical and functional analysis of CTRL, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant, 2003, 33: 221-233
    62. Jia Y, McAdams SA, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMB0, 2000, 19: 4004-4014
    63. Johal G S, Briggs SP. Reductase activity encoded by the HM1 resistance gene in maize. Science, 1992,258:985-987
    64. Kuan S, Martin W, Patrick H. Alkaline Phosphatase of the Chick, Partial Characterization of the Tissue Isozymes, Proc. Soc. Exp. Biol. Med, 1966, 122: 172-176
    65. Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 2001,411: 848-853
    66. Levine A, Tenhaken R, Dixon R, et al. H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994,79: 583 -593
    67. Li C Y, Anthony L S, Liu G H, et al. Role of B-Oxidation in Jasmonate Biosynthesis and Systemic Wound Signaling in Tomato. Plant Cell, 2005, 17: 971-986
    68. Liechti R, Farmer E E. The jasmonate pathway. Science, 2002,296: 1649-1650
    69. Linder B, Cabot RA, Schwickert T, et al. The SNF2 domain protein family in higher vertebrates displays dynamic expression patterns in Xenopus laevis embryos. Gene, 2004, 326: 59-66
    70. Marshall DS, Rush MC. Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology, 1980, 70 (10): 947-950
    71. Matsumura H, Reich S, Akiko Ito, et al. Gene expression analysis of plant host-pathogen interactions by SuperSAG. PNAS, 2003,100 (26): 15718-15723
    72. McClintock B. The significance of response of the genome to challenge. Science, 1984, 226:792-801
    73. Mcelrone, Andrew J, Reid, Chantal D, et al. Elevated CO_2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biology, 2005,11 (10): 1828-1836
    74. Modolo LV, Cunha FQ, Braga MR, et al. Nitric oxide synthase-mediated phytoalexin accumulationin soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor.Plant Physiol ., 2002, 130:1288-1297
    75. Chichkova NV, Sang Hyon Kim, Titova ES, et al. A Plant Caspase-Like Protease Activated during the Hypersensitive Response.Plant Cell, 2004, 16: 157-171
    76. Olga del Pozo, Pedley KF, Martin GB. MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO, 2004, 23: 3072-3082
    77. Ouaked F, Rozhon W, Lecourieux D et al. A MAPK pathway mediates ethylene signaling in plants. EMBO, 2003,22: 1282-1288
    78. Pieterse CMJ, van Wees SCM, Hoffland E, et al. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 1996, 8: 1225-1237
    79. Polverari A, Molesini B, Pezzotti M, et al. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol. Plant Microbe Interact, 2003, 16: 1094-1105
    80. Ramalingan et al. Chlorinated Dioxins Dibenzofurens Perspect, 1986, pp. 485-499
    81. Ronald PC. The molecular basis of disease resistance in rice. Plant Mol. Bio., 1997, 236: 113-120
    82. Rowland O, Ludwig AA, Merrick CJ, et al. Functional Analysis of Avr9/Cf-9 Rapidly Elicited Genes Identifies a Protein Kinase, ACIK1, That Is Essential for Full Cf-9-Dependent Disease Resistance in Tomato. Plant Cell, 2005, 17:295-310
    83. Sato Y, Murakami T, Funatsuki H, et al.Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany, 2001, 52: 145-151
    84. Song WY, Wang GL, Chen LL, et al. A receptor kinase-link protein encoded by the rice disease resistance gene, Xa21. Science, 270: 1804-1806
    85. Sriram S, Raguchander T, Babu S, et al. Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani. Canadian Journal of Microbiology, 20004, 6 (6): 520-524
    86. Subramaniam R, Despres C, Brisson N. A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato. Plant Cell, 1997, 9:653-6114
    87. Tanaka Y, Katada S, Ishikawa H, et al. Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol, 1997,38: 1311-1318
    88. Tanida M. Catalase activity of rice seed embryo and its relation to germination rate at a low temperature..Breerfmg.SW., 1996,46:23-27
    89. van der Hoorn RA, Jones JD. The plant proteolytic machinery and its role in defence. Current Opinion in Plant Biology, 2004, 7:400-407
    90. van't Slot KAE, van den burg HA, Kloks CPAM, et al. Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel-sheet fold. Bio. Chem., 2003,278,46: 45730-45736
    91. Vardi A, Formiggini F, Casotti R, et al. A stress Surveillance system Based on Calcium and Nitric Oxide in Marine Diatoms. PLoS Biology, 2006, 4 (3): 0411-0419
    92. Vidhyasekaran P, Samiyappan R. Host-specific toxin production by Rhizoctonia solani-the rice sheath blight pathogen. Phytopathology, 1997, 87 (12): 1258-1263
    93. Vogel JP, Raab TK, Schiff C, et al. PMR6 a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell, 2002, 14: 2095-2106
    94. Waheeta A, Sreenivasaprasad S, Chitralekha RS, et al. Induced resistance in rice to sheath blight disease. Current Science, 1987, 56:486-489
    95. Xia YJ, Hideyuki Suzuki, Borevitz J, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO, 2004,23: 980-988
    96. Xing T, Higgins VJ, Blumwnld E. Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H~+-ATPase. Plant Cell, 1996, 8: 555-564
    97. Yu DQ, Liu Y, Fan B, et al. Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiology, 1997, 110: 343-349
    
    98. Zabeau M, Vos P. Selective restriction fragment amplification a general method for DNA finger printing. European Patent Application, 1992,924026297
    
    99. Zaninotto F, Sylvain La Camera, Polverari A, et al. Cross Talk between Reactive Nitrogen and Oxygen Species during the Hypersensitive Disease Resistance Response, Plant Physiology, 2006, 141: 379-383
    
    100.Zeier J, Delledonne M, Mishina T, et al. Genetic Elucidation of Nitric Oxide Signaling in Incompatible Plant-Pathogen Interactions. Plant Physiology, 2004,136: 2875-2886
    101.Zhang S, Du H, Klessing DF. Activation of the tobacco SIP kinase by Both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytopathora spp. Plant Cell, 1998,10:435-450
    102.Zhou T, Wang Y,Chen JQ, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics, 2004,271:402-415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700