高层混合结构考虑施工过程和混凝土徐变收缩影响的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层钢框架-混凝土核心筒或高层劲性混凝土框架-混凝土核心筒混合结构,是近年来在我国迅速发展的一种新型结构体系。混合结构的一个突出问题是混凝土有徐变收缩的性质,而钢无此性质。随着时间的发展,相邻的钢与混凝土竖向构件将发生显著的竖向变形差,相应的产生较大的附加内力,影响结构的安全性和适用性。论文以国家自然科学基金项目“高层混合结构基本受力特性的研究”为依托,围绕混合结构竖向变形差的计算方法及工程对策等问题,进行了研究,取得了以下成果。
     1.首次根据静定结构分别承受常荷载和变荷载时徐变的受力和变形规律,基于力法和龄期调整的有效模量法,提出了超静定结构考虑施工过程和徐变影响的内力分析方法。该法去掉超静定结构中的多余约束,使原结构等效为一个同时承受外荷载、弹性多余力和随时间变化的徐变多余力的静定结构,称为基本结构。对基本结构分别进行承受每种力作用时的徐变分析得到相应的在多余力方向上的位移。根据多余力处的变形协调条件列出并求解力法平衡方程得到徐变多余力。本文还对一个算例进行了徐变分析,得出各相关因素对结构受力的影响。
     2.首次提出了徐变效应的位移法分析方法。位移法分析超静定结构徐变效应的关键是求单元的徐变固端力。本文根据徐变分析的力法和虚功原理,推导出杆系结构一次加载的单元徐变固端力计算公式,发现单元的徐变固端力是杆件的徐变系数和弹性杆端力的函数。根据推导出的公式,用FORTRAN语言编制了结构徐变分析的位移法计算机程序,并对一个框架算例进行了徐变分析。结果表明,结构各部分的浇筑时间差和持荷时间对结构的受力和变形影响很大。
     3.分析了目前高层建筑竖向荷载作用效应分析常用方法的缺限。考虑高层建筑结构施工过程中荷载逐层施加和施工平差的实际情况,提出了高层建筑结构较为精确的模拟施工过程的计算方法,并编制了相应的FORTRAN程序。应用该程序对高层框架和高层混合结构算例进行了分析,并与其他分析方法的计算结果进行了比较。
     4.以精确模拟施工过程法和徐变分析的位移法为基础,推导了高层建筑结构逐层施工逐层加载并考虑混凝土徐变和收缩影响时的有限元计算公式。
     5.首次根据线性徐变和迭加原理,采用ACI规范推荐的徐变和收缩计算公式,提出了钢筋混凝土轴压构件分批加载的变形计算简化方法。根据龄期调整的有效模量法,推导了配筋率对构件的徐变收缩变形影响的计算公式。
     6.以上述钢筋混凝土轴压构件分批加载的变形计算方法为基础,考虑实际的
In China, tall building hybrid structures, which are composed with steel frames and concrete core-tubes or with composite steel frames and concrete core-tubes, have been widely applied recently. A noticeable problem of this structure system is that concrete has the characteristics of creep and shrinkage while steel hasn’t. Along with the time, obvious different vertical different displacements will produce between neighbor vertical members, which should result in great additional internal forces and have big effects on the structural security and applicability. In this thesis, combined with the research project“Research on the behavior of the tall building hybrid structures”financed by the Natural Science Foundation of China (NSFC), methods to calculate different displacements of hybrid structure and corresponding engineering measures are studied. Productions obtained are as follows.
     1. According to the creep behaviors of statically determinate structure under constant load and changing load, respectively, the internal analysis method of statically indeterminate structure considering the effects of construction and creep is put forward first. This method is based on the ideas of force method and age-adjusted effective module method. By removing redundant restraints, the initial structure is equivalent to a statically determinate structure, named released structure, which subjected to loads, redundant forces obtained in elastic analysis and creep-redundant force changing with time due to the creep of structure. Displacements on the directions of redundant forces can be obtained by creep analysis of released structure under every force mentioned above. According to conformability of deformation, creep-redundant forces can be attained by resolving equilibrium equations. Effects of relevant factors on the statically indeterminate structure are presented here through a numerical example.
     2. The displacement method to analyze creep effects of structures is established first. The key problem of displacement method in creep effect analysis of statically indeterminate structures is to determinate fixed-end forces of the element. Based on the ideas of force method and virtual-work principle, calculation formulas of the fixed-end forces in element-system structures are deduced. It is found that the fixed-end forces of element are function of creep coefficient and elastic fixed-end forces of the element. According to the formulas, a computer program of displacement
引文
[1] 沈蒲生.高层建筑结构设计.北京:中国建筑工业出版社,2006:2-8.
    [2] 徐培福,傅学怡,王翠坤等.复杂高层建筑结构设计.北京:中国建筑工业出版社,2005:3-12.
    [3] 胡世德.我国高层、超高层建筑的发展和 90 年代需要解决的问题.建筑技术,1995,22(2):67-72.
    [4] 胡世德.国内外近年高层建筑的发展及所采用的施工技术.建筑技术,2001,30 (11):752-756.
    [5] 杨淑红.浅谈高层建筑.呼伦贝尔学院学报,1999,7(1):120-123.
    [6] 中华人民共和国国家标准.高层建筑混凝土结构技术规程(JGJ3-2002).北京:中国建筑工业出版社,2002:109-118.
    [7] Roeder, Charles W. Overview of hybrid and composite systems for seismic design in the United States. Engineering Structures,1998,20(4): 355-363.
    [8] Morino S. Recent developments in hybrid structures in Japan--research, design and construction. Engineering Structures,1998,20(4):336-346.
    [9] Roeder C.W.,Leon R.T,Preece F.R. Effect of composite action on the seismic performance of older steel structure. Composite Construction, ASCE Special Publication,1992:382-396.
    [10] Boyd P.F., Cofer W.R., Mclean D.I. Seismic performance of steel encased concrete columns under flexural loading. ACI Structure Journal,1995,92(3):355-364.
    [11] Liu Z., Goel S.C. Cylic load behavior of concrete-filled tubular braces. ASCE, Journal of Structure Division,1988,114(7):1488-1506.
    [12] Shahrooz B.M., Remnetter M.E., Qin F. Seismic design and performance of composite coupled walls. ASCE, Journal of Structure Engineering, 1993,119(11):3291-3309.
    [13] 杨丽,郭志恭.高层钢筋混凝土结构设计中如何考虑收缩、徐变的作用.工业建筑,1995,25(4):40-46.
    [14] 罗文斌,张保印.超高层建筑 S+RC 混合结构竖向变形差的工程对策.建筑结构学报,2000,21(6):68-73.
    [15] 谢靖中.钢-混凝土混合结构竖向差异变形研究:[同济大学博士学位论文].同济大学:同济大学土木工程学院,2003:21-119.
    [16] 周绪红,黄湘湘,王毅红等.钢框架-钢筋混凝土核心筒体系竖向变形差异的计算.建筑结构学报,2005,26(2):66-73.
    [17] 邓志恒, 秦荣.考虑施工过程收缩徐变对高层建筑结构影响理论分析.哈尔滨建筑大学学报,2002,35(5):28-31.
    [18] 邓志恒.预应力巨型框筒悬挂阻尼控制结构体系若干问题研究:[广西大学博士学位论文].广西大学:广西大学土木工程学院,2002:47-69.
    [19] 刘清.组合结构设计原理.重庆:重庆大学出版社,2002:227-266.
    [20] 惠荣炎,黄国兴,易冰若.混凝土的徐变.北京:中国铁道出版社,1988:1-208.
    [21] 周履,陈永春.收缩徐变.北京:中国铁道出版社,1994:7-60.
    [22] 日 本 土 木 工 程 手 册 — — 混 凝 土 . 滕 家 禄 ( 译 ). 北 京 : 中 国 铁 道 出 版社,1983:56-61.
    [23] 傅作新.工程徐变力学.北京:水利电力出版社,1985:1-14.
    [24] 杜 国 华 ,毛 昌 时 ,司 徒 妙 龄 .桥 梁 结 构 分 析 .上 海 :同 济 大 学 出 版 社 , 1994:137-175.
    [25] Neville A.M. 混 凝 土 的 性 能 . 李 国 泮 ( 译 ). 北 京 : 中 国 建 筑 工 业 出 版社,1983:370-445.
    [26] Bazant Z.P., Wittmann F.H. Creep and shrinkage in concrete structures. New York, John Wiley & Sons Ltd.,1982:28-72.
    [27] 朱伯芳.水工混凝土结构的温度应力与温度控制. 北京:水利电力出版社,1976:22-48.
    [28] 朱 伯 芳 . 大 体 积 混 凝 土 温 度 应 力 与 温 度 控 制 . 北 京 : 中 国 电 力 出 版社,1998:12-28.
    [29] 唐崇钊.混凝土的徐变力学与试验技术.北京:水利电力出版社,1982:1-55.
    [30] Neville A.M. Creep of plain and structural concrete. Lodon and New York:Construction Press,1983:1-39.
    [31] 谢依金 A.E(苏).水泥混凝土的结构与性能.胡春芝(译).北京:中国建筑工业出版社,1984:6-17.
    [32] 岩崎训明(日).混凝土的特性.尹家辛,李景星(译).北京:中国建筑工业出版社,1980:3-9.
    [33] Lain F., William R.H. Creep of engineering materials.New York: McGraw-Hill Book Company,1959:10-23.
    [34] Pomeroy C.D. Creep of engineering materials. London:Mechanical Engineering Pub.,1978:9-31.
    [35] ACI Committee 209. Prediction of creep, shrinkage, and temperatureeffects in concrete structures.ACI209R-92,Reapproved 1997.
    [36] Comite Euro-International Du Beton.CEB-FIP Model code 1990. Thomas Telford,1993.
    [37] Bazant Z.P. Creep and shrinkage prediction model for analysis and design of concrete structures-model B3. Materials and Structures, 1995,28:357-365.
    [38] 朱伯芳.混凝土徐变方程参数拟合的约束极值法.水利学报,1992,7:75-76.
    [39] 朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数.水利学报,1985,9:54-61.
    [40] 朱伯芳.关于混凝土徐变理论的几个问题.水利学报,1982,3:35-40.
    [41] 朱伯芳.弹性徐变体有限元分区异步长算法.水利学报,1995,7:23-27.
    [42] 朱伯芳.异质弹性徐变体应力分析的广义子结构法.水利学报,1984,2:20-24.
    [43] 朱伯芳.混凝土结构徐变应力分析的隐式解法. 水利学报,1983,5:40-46.
    [44] 朱伯芳.关于“线性徐变问题的两个定理及对计算方法的简化”一文的讨论.力学学报,1995,27(6):759-760.
    [45] 王勋文,潘家英.按龄期调整有效模量法中老化系数 χ 的取值问题.中国铁道科学,1996,17(3):12-22.
    [46] 陈永春,马国强.考虑混凝土收缩徐变和钢筋松弛相互影响的预应力损失的计算.建筑结构学报,1981,2(6):31-39.
    [47] 陈永春.混凝土徐变问题的中值系数法.建筑科学,1991,11(2):3-8.
    [48] Bazant Z.P. Prediction of concrete creep and shrinkage: past, present and future. Nuclear Engineering and Design,2001,203(1):27-38.
    [49] Nasser K. W.,Neville A. M. Creep of concrete at temperatures above normal. Nuclear Engineering and Design,1996,4(1):90-96.
    [50] Adam Mitzel. Concrete creep and shrinkage functions. Building Science, 1967,2(3):259-265.
    [51] Adam Mitzel, Mikolaj Klapoc. On the superposition of shrinkage and creep deformations. Building Science,1967,2(3):267-271.
    [52] Stefan Jasman .Rheological deformations of concrete plate elements. Building Science,1967,2(1):13-19.
    [53] Zienkiewicz O.C.,Watson M.,King I.P. A numerical method of visco-elastic stress analysis.International Journal of Mechanical Sciences,1968,10(10):807-827.
    [54] Adam Mitzel, Mikolaj Klapoc. Tests on the non-linear creep of concrete. Building Science,1968,3(1):1-6.
    [55] England G. L.,Phok M. Time-dependent stresses in a long thickcylindrical prestressed concrete vessel subjected to sustained temperature crossfall. Nuclear Engineering and Design, 1969,9(4): 488-495.
    [56] Hani M. Fahmi, Milos Polivka,Boris Bresler. Effects of sustained and cyclic elevated temperature on creep of concrete. Cement and Concrete Research,1972,2(5):591-606.
    [57] Bazant Z.P.Thermodynamics of hindered adsorption and its implications for hardened cement paste and concrete. Cement and Concrete Research, 1972,2(1):1-16.
    [58] Bazant Z.P. Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. Nuclear Engineering and Design, 1972,20(2):477-505.
    [59] Bazant Z.P.,Ali Asghari. Computation of Kelvin chain retardation spectra of aging concrete. Cement and Concrete Research,1974,4(5): 797-806.
    [60] Brian B.H.,Noel H.B. A model for the creep of concrete. Cement and Concrete Research,1975,5(6):577-586.
    [61] Gerhard T.S.,Neil C.M.. Creep of concrete under cyclically varying dynamic loads. Cement and Concrete Research,1975,5(6):565-575.
    [62] Gross H. High-temperature creep of concrete. Nuclear Engineering and Design,1975,32(1):129-147.
    [63] Walter M.H.,Ponter A.R.S. Some properties of the creep of structures subjected to non-uniform temperatures. International Journal of Mechanical Sciences,1976,18(6):305-312.
    [64] Parrott L.J. Basic creep, drying creep and shrinkage of a mature cement paste after a heat cycle. Cement and Concrete Research,1977,7(5): 597-604.
    [65] Jonasson J.-E. Analysis of creep and shrinkage in concrete and its’ application to concrete top layers. Cement and Concrete Research, 1978,8(4):441-454.
    [66] Mindess S., Young J.F.,Lawrence F.V. Creep and drying shrinkage of calcium silicate pastes I: Specimen preparation and mechanical properties. Cement and Concrete Research,1978,8(5):591-600.
    [67] Bentur A., Milestone N.B.,Young J.F. Creep and drying shrinkage of calcium silicate pastes II:Induced microstructural and chemicalchanges. Cement and Concrete Research,1978,8(6):721-732
    [68] Alexander K.M., Wardlaw J.,Ivanusec I. The influence of SO3 content of portland cement on the creep and other physical properties of concrete. Cement and Concrete Research,1979,9(4):451-459.
    [69] Wittmann F.H.,Roelfstra P.E. Total deformation of loaded drying concrete. Cement and Concrete Research,1980,10(5):601-610.
    [70] Raithby K.D., Lydon F.D. Lightweight concrete in highway bridges. International Journal of Cement Composites and Lightweight Concrete, 1981,3(2):133-146.
    [71] Bazant Z.P. Mathematical model for creep and thermal shrinkage of concrete at high temperature. Nuclear Engineering and Design,1983, 76(2):183-191.
    [72] Bazant Z.P.,Steven Zebich. Statistical linear regression analysis of prediction models for creep and shrinkage. Cement and Concrete Research,1983,13(6):869-876.
    [73] Day R.L.,Gamble B.R. The effect of changes in structure on the activation energy for the creep of concrete. Cement and Concrete Research,1983,13(4):529-540.
    [74] Jordaan I.J. Uncertainty and models for creep of concrete. Cement and Concrete Research, 1983,13(2):246-258.
    [75] Stefanou G. D. Variation of stress resultants in concrete structures due to time-dependent creep and shrinkage strains of concrete. Computers & Structures,1984,18(1):117-126.
    [76] Fola Lasisi,Osunade J.A. Factors affecting the strength and creep properties of laterized concrete. Building and Environment,1985,20 (2):133-138.
    [77] Schwesinger P.,Ehlert G.,Wolfel R. Creep of concrete at elevated temperatures and boundary conditions of moisture. Cement and Concrete Research,1987,17(2):263-272.
    [78] Foust S.H.,Chong K.P. Parametric investigations for extrapolation of a log-linear creep model. Mathematical and Computer Modelling,1988, 10(2):99-106.
    [79] Dhir R.K.,Munday J.G.L.,Ho N.Y. PFA in structural precast concrete: Engineering properties. Cement and Concrete Research,1988,18(6): 852-862.
    [80] Bazant Z.P.,Prasannan S. Solidification theory for aging creep. Cement and Concrete Research,1988,18(6):923-932.
    [81] Chern J.-C.,Young C.-H. Compressive creep and shrinkage of steel fibre reinforced concrete. Cement and Concrete Composites,1989,11(4): 205-214.
    [82] Xi Y.P.,Bazant Z.P. Sampling analysis of concrete structures for creep and shrinkage with correlated random material parameters. Probabili- stic Engineering Mechanics,1989,4(4):174-186.
    [83] Bazant Z.P., Kim J.-K. Improved prediction model for time-dependent deformations of concrete:Part1-Shrinkage. Materials and Structures, 1991,24(143):327-345.
    [84] Bazant Z.P., Kim J.-K. Improved prediction model for time-dependent deformations of concrete:Part2-Basic creep. Materials and Structures, 1991,24(144):409-421.
    [85] Bazant Z.P., Kim J.-K. Improved prediction model for time-dependent deformations of concrete:Part3-Creep at drying. Materials and Structures,1992,25(145):21-28.
    [86] Bazant Z.P., Kim J.-K. Improved prediction model for time-dependent deformations of concrete:Part4-Temperature effects. Materials and Structures,1992,25(146):84-94.
    [87] Bazant Z.P., Kim J.-K. Improved prediction model for time-dependent deformations of concrete:Part5-Cyclic load and cylic humidity. Materials and Structures,1992,25(147):163-169.
    [88] Bazant Z.P., Panula L., Kim J.-K., et al. Improved prediction model for time-dependent deformations of concrete:Part6-Simplified code-type formulation. Materials and Structures,1992,25(148):219- 223.
    [89] Bazant Z.P.,Xi Y.,Baweja S. Improved prediction model for time- dependent deformations of concrete:Part7-Short form of BP-KX model, statistics and extrapolation of short-time data. Materials and Structures,1993,26(156):567-574.
    [90] Carlton D.,Mistry N. Thermo-elastic-creep analysis of maturing concrete. Computers & Structures,1991,40(2):293-302.
    [91] Bazant Z.P., Kim J.-K. Consequences of diffusion theory for shrinkage of concrete. Materials and Structures,1991,24(143):323-326.
    [92] Jendele L.,Phillips D. V. Finite element software for creep and shrinkage in concrete. Computers & Structures,1992,45(1):113-126.
    [93] Vincent Sicard, Raoul Francois, Erick Ringot, et al. Influence of creep and shrinkage on cracking in high strength concrete. Cement and Concrete Research,1992,22(1):159-168.
    [94] Yue L.L., Taerwe L. Two-function method for the prediction of concrete creep under decreasing stress. Materials and Structures,1993,26(155): 268-273.
    [95] McDonald D.B.,Roper H. Accuracy of prediction models for shrinkage of concrete. ACI Materials Journal,1993,90(3):265-271.
    [96] Gardner N.J.,Zhao J.W. Creep and shrinkage revisited. ACI Materials Journal,1993,90(3):236-246.
    [97] Yuan Y.S. Restrained shrinkage in repaired reinforced concrete elements. Materials and Structures,1994,27(161):375-382.
    [98] Miroslava Losiewicz, David P. Halsey, S.John Dews, et al. An investi- gation into the properties of micro-sphere insulating concrete.Cons- truction and Building Materials,1996,10(8):583-588.
    [99] Hiroshi Uchikawa, Shunsuke Hanehara, Hiroshi Hirao.Influence of microstructure on the physical properties of concrete prepared by substituting mineral powder for part of fine aggregate. Cement and Concrete Research,1996,26(1):101-111.
    [100]Akihiko Kawano, Robert F. Warner. Model formulations for numerical creep calculations for concrete. Journal of Structural Engineering, 1996,122(3):284-290.
    [101]Banthia N., Yan C., Mindess S. Restrained shrinkage cracking in fiber reinforced concrete: a novel test technique. Cement and Concrete Research,1996,26(1):9-14.
    [102]Haque M.N. Strength development and drying shrinkage of high-strength concretes. Cement and Concrete Composites,1996,18(26):333-342.
    [103]Thienel K.Ch., Rostásy F.S. Transient creep of concrete under biaxial stress and high temperature. Cement and Concrete Research,1996, 26(9):1409-1422.
    [104]Miyazawa S., Monteiro P.J.M. Volume change of high-strength concrete in moist conditions. Cement and Concrete Research,1996,26(4): 1409-1422.
    [105]Bazant Z.P., Xiang Y.Y. Crack growth and lifetime of concrete under long time loading. Journal of Structural Engineering,1997, 123(4): 350-358.
    [106]Neubauer C.M., Jennings H.M., Garboczi E.J. Mappping drying shrinkage deformations in cement-based materials. Cement and Concrete Research, 1997,27(10):1603-1612.
    [107]Bazant Z.P., Hauggaard A.B., Baweja S.,et al. Microprestress-solidi- fication theory for concrete creep I:aging and drying effects. Journal of Engineering Mechanics,1997,123(11):1188-1194.
    [108]Bazant Z.P., Hauggaard A.B., Baweja S. Microprestress- solidi- fication theory for concrete creep II:algorithm and verification. Journal of Engineering Mechanics,1997,123(11):1195-1201.
    [109]Lokhorst S.J., Breugel K. Simulation of the effect of geometrical changes of the microstructure on the deformational behaviour of hardending concrete. Cement and Concrete Research,1997,27(10):1465-1479.
    [110]Fu X., Chung D.D.L. Decrease of the bond strength between steel rebar and concrete with increasing curing age.Cement and Concrete Research, 1998,28(2):167-169.
    [111]Al-Khaiat H., Haque M.N. Effect of initial curing on early strength and physical properties of a lightweight concrete. Cement and Concrete Research, 1998,28(6):859-866.
    [112]Almusallam A.A.,Maslehuddin M., Abdul-Waris M. Effect of mix proportions on plastic shrinkage cracking of concrete in hot environments.Construction and Building Materials,1998,12(6): 353-358.
    [113]Persson B. Experimental studies on shrinkage of high-performance concrete. Cement and Concrete Research,1998,28(7):1026-1036.
    [114]Robert Geist. Four-stage model for predicting creep behavior. Journal of Engineering Mechanics,1998,124(1):118-120.
    [115]Poh K.W. General creep-time equation. Journal of Materials in Civil Engineering,1998,10(2):118-120.
    [116]Alsayed S.H. Influence of superplasticizer, plasticizer, and silica fume on the drying shrinkage of high-strength concrete subjected to hot-day field conditions. Cement and Concrete Research,1998, 28(10): 1405-1415.
    [117] Kim J.-K., Lee C.-S. Prediction of differential drying shrinkage in concrete. Cement and Concrete Research,1998,28(7):985-994.
    [118]Haque M.N., Kayali O. Properties of high-strength concrete using a fine fly ash. Cement and Concrete Research,1998,28(10):1445-1452.
    [119]Bertil Persson. Quasi-Instantaneous and Long-Term Deformations of High Performance Concrete with Sealed Curing. Advanced Cement Based Materials,1998,8(1):1-16.
    [120]Baweja S., Dvorak G.J., Bazant Z.P. Triaxial composite model for basic creep of concrete. Journal of Engineering Mechanics,1998,124(9): 959-965.
    [121]Kovler K. A new look at the problem of drying creep of concrete under tension.Journal of Materials in Civil Engineering,1999,11(1):84-87.
    [122]Kayali O.,Haque M.N.,Zhu B. Drying shrinkage of fiber-reinforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research,1999,29(11):1835-1840.
    [123]Kohnl K.,Okamoto T.,Isikawa Y.,et al. Effects of artificial lightweight aggregate on autogenus shrinkage of concrete. Cement and Concrete Research,1999,29(4):611-614.
    [124]Loukili A., Abdelhafid K., Richard P. Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete. Cement and Concrete Research,1999,29(4):577-584.
    [125]Lilkov V.,Djabarov N.,Bechev G.,et al. Properties and hydration products of lightweight and expansive cements Part I:physical and mechanical properties. Cement and Concrete Research,1999, 29(4):1635-1640.
    [126]Toutanji H.A. Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Construction and Building Materials, 1999,13(4):171-177.
    [127]Cervera M.,Oliver J.,Prato O. Thermo-chemo-mechanical model for concrete I: hydration and aging. Journal of Engineering Mechanics, 1999,125(9):1018-1027.
    [128]Cervera M.,Oliver J.,Prato O. Thermo-chemo-mechanical model for concrete II: damage and creep. Journal of Engineering Mechanics, 1999,125(9):1028-1039.
    [129]Collins F.G.,Sanjayan J.G. Workability and mechanical properties ofalkali activated slag concrete. Cement and Concrete Research,1999, 29(3):455-458.
    [130]Igarashi Shin-ichi, Bentur Arnon, Kovler Konstantin. Autogenous shrinkage and induced restraining stresses in high-strength concretes.Cement and Concrete Research,2000,30(11):1701-1707.
    [131]Bakharev T.,Sanjayan J.G.,Cheng Y.-B. Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research,2000,30(9):1367-1374.
    [132]Collins F.,Sanjayan J.G. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cement and Concrete Research,2000,30(9):1401-1406.
    [133]Liu B.J.,Xie Y.J.,Zhou S.Q.,et al. Influence of ultrafine fly ash composite on the fluidity and compressive strength of concrete. Cement and Concrete Research,2000,30(9):1489-1493.
    [134]Narayanan N.,Ramamurthy K. Microstructural investigations on aerated concrete. Cement and Concrete Research,2000,30(3):457-464.
    [135]Bertil Persson. A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete. Cement and Concrete Research,2001,31(2):193-198.
    [136] Li J.Y., Yao Y. A study on creep and drying shrinkage of high performance concrete. Cement and Concrete Research,2001,31(8): 1203-1206.
    [137] Saje D.,Saje F. Autogenous shrinkage development in HPC. Bridge Materials,2001,122(2):11-20.
    [138]Pietro Lura, Klaas van Breugel,Ippei Maruyama. Effect of curing temperature and type of cement on early-age shrinkage of high- performance concrete. Cement and Concrete Research,2001,31(12): 1867-1872.
    [139]Bentur A.,Igarashi S.,Kovler K. Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cement and Concrete Research,2001,31(11): 1587-1591.
    [140]Li H.,Wee T.H.,Wong S.F. Early-age creep and shrinkage of blended cement concrete. ACI Materials Journal,2002,99(1):3-10.
    [141]Zi G.,Bazant Z.P. Continuous Relaxation spectrum for concrete creep and its incorporation into microplane model M4. Journal ofEngineering Mechanics,2002,128(12):1331-1336.
    [142] Liu G.T., Gao H.,Chen F. Q. Microstudy on creep of concrete at early age under biaxial compression. Cement and Concrete Research,2002, 32(12):1865-1870.
    [143] Yuan Y.,Wan Z.L. Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research,2002,32(7):1053-1059.
    [144] Mazloom M., Ramezanianpour A. A., Brooks J. J. Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites,2003,25(7):655-667.
    [145]Zhang M.H., Tam C.T.,Leow M.P. Effect of water-to-cementitious mater- ials ratio and silica fume on the autogenous shrinkage of concrete. Cement and Concrete Research,2003,33(10):1687-1694.
    [146]Mazzotti C., Savoia M. Nonlinear creep damage model for concrete under uniaxial compression. Journal of Engineering Mechanics,2003,129(9): 1065-1075.
    [147]See H.T.,Attiogbe E.K.,Miltenberger M.A. Shrinkage cracking characteristics of concrete using ring specimens. ACI Materials Journal,2003,100(3):239-245.
    [148]Mabrouk R., Ishida T., Maekawa K. A unified solidification model of hardening concrete composite for predicting the young age behavior of concrete. Cement & Concrete Composites,2004,26(5):453-461.
    [149]Landes J. D., Schwalbe K.-H. An analysis of creep deformation parameters.Part 1: background. Engineering Fracture Mechanics,2004, 71(16):2449-2461.
    [150]Landes J.D., Dietzel W. An analysis of creep deformation parameters.Part 2: experimental study. Engineering Fracture Mechanics, 2004, 71(16):2463-2474.
    [151]Landes J.D.,Kim D.-H.,Heerens J.,et al. An analysis of creep deformation parameters.Part 3: numerical evaluation. Engineering Fracture Mechanics,2004, 71(16):2475-2491.
    [152]Mazloom M., Ramezanianpour A.A., Brooks J.J. Effect of silica fume on mechanical properties of high-strength concrete. Cement & Concrete Composites,2004,26(3):347-357.
    [153]Bazant Z.P., Cusatis G., Cedolin L. Temperature effects on concretecreep modeled by microprestress-solidification theory.Journal of Engineering Mechanics,2004,130(6):691-699.
    [154]Benboudjema F.,Meftah F.,Torrenti J.M. Interaction between drying, shrinkage,creep and cracking phenomena in concrete. Engineering Structures,2005,27(2):239-250.
    [155]Termkhajornkit P.,Nawa T.,Nakai M., et al. Effect of fly ash on auto- genous shrinkage. Cement and Concrete Research,2005,35(3):473-482.
    [156]Holt E. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research, 2005,35(3):464-472.
    [157]龚洛书,惠满印,杨蓓.砼收缩与徐变的实用数学表达式.建筑结构学报, 1988,9(5):37-41.
    [158]高政国,赵国藩.混凝土徐变分析的双功能函数表达.建筑材料学报,2001, 4(3):250-254.
    [159]杨美良.徐变系数计算的实用数学表达式.湖南交通科技,2000,26(1):42-43.
    [160]石现峰,梁志广,李建中.几种常用混凝土收缩徐变模式的比较分析.石家庄铁道学院学报,1998,11(1):8-13.
    [161]潘立本,张苏俊.混凝土收缩与徐变的试验研究.河海大学学报,1997,25(5):84-89.
    [162]黄达海.Bazant 混凝土固化徐变理论应用分析.建筑材料学报,2001,4(4): 327-331.
    [163]卫军,赵红京.干燥地区混凝土徐变、收缩估算体系及验证.华中科技大学学报,2001,29(7):109-110.
    [164]刘忠.混凝土徐变收缩的递推 AEMM 法.重庆交通学院学报,1994,13(5):31-34.
    [165]毕波,邹小江,寿楠椿.关于混凝土徐变计算的一些讨论.郑州工业大学学报,1998,19(4):18-21.
    [166] 邹小江,寿楠椿,等.混凝土徐变系数与徐变度的对比分析.郑州工业大学学报,2001,22(1):46-48.
    [167]孙宝俊.混凝土徐变理论的有效模量法.土木工程学报,1993,26(3):66-68.
    [168]赵祖武,林南薰,陈永春.“混凝土非线性徐变理论问题”讨论. 土木工程学报,1984,17(1):85-90.
    [169]李兴贵.高拉应力作用下混凝土的徐变和徐变破坏.河海大学学报,1996,24 (4):58-64.
    [170]张浩博,黄松梅,王德法,等.混凝土受拉徐变研究.陕西水力发电,1996, 12(2):1-6.
    [171]王德法,张浩博,黄松梅.混凝土受拉徐变中破坏时间与持荷应力关系研究.西安交通大学学报,1999,33(10):104-105.
    [172]高虎,刘光廷,陈凤岐.混凝土双轴压缩徐变实验初步研究.清华大学学报(自然科学版),2001,41(11):110-113.
    [173]黄国兴,惠荣炎.混凝土的收缩.北京:中国铁道出版社,1990:97-101.
    [174]Ghali A.,Favre R. Concrete structures:stresses and deformations. London & New York:Chapman and Hall,1986:1-31.
    [175]胡狄.预应力混凝土桥梁徐变效应分析:[中南大学博士学位论文].长沙:中南大学土木与建筑工程学院,2003:1-13.
    [176]阿鲁久涅扬 H.X.蠕变理论中的若干问题.邬瑞锋译.第一版.北京:科学出版社,1961:138-186.
    [177]杨茀康,李家宝.结构力学.北京:高等教育出版社,1998:141-150.
    [178]赵西安.钢筋混凝土高层建筑结构设计.第二版.北京:中国建筑工业出版社,1995:139-141.
    [179]陈富生,邱国桦,范重.高层建筑钢结构设计.北京:中国建筑工业出版社,2000:296-297.
    [180]喻永声.考虑建造过程的多重子结构分析矩阵位移法.计算结构力学及其应用,1990,7(3):36-44.
    [181]周正茂,杨荣,郑百林.子结构法模拟建筑物的施工过程.同济大学博士生论文集 II,赵宪忠、肖晴主编,上海科学技术文献出版社,1997:166-172.
    [182]林欢.矩阵递推法在高层框架施工模拟计算中的应用.建筑结构,1989,19(1):16-21.
    [183]赵宪忠.考虑施工因素的钢筋混凝土高层建筑时变反应分析:[同济大学博士学位论文].同济大学:同济大学土木工程学院,2000:97-113.
    [184]曹志远.复杂结构分析的超级元法.力学与实践,1992,14(4):10-14.
    [185]曹志远.超级有限元法的发展与应用.北京:科学出版社,1992:1-8.
    [186]沈蒲生.高层建筑结构疑难释义.北京:中国建筑工业出版社,2003:34-35.
    [187]Savita Maru, Asfaw M., Nagpal A. K. Consistent Procedure for Creep and Shrinkage Effects in RC Frames. Journal of Structural Engineering, 2001,127(7):726~732.
    [188]史密斯 B.S.,库尔 A. 高层建筑结构分析与设计.北京:地震出版社,1993:524-539.
    [189]赵挺生,赵伟,顾祥林,张誉. 高层混凝土结构施工阶段安全性分析的简化模型. 建筑结构,2002,32(3):10-12.
    [190]方东平,张传敏,赵挺生. 基于特征参数的施工期钢筋混凝土建筑结构分析模型.清华大学学报(自然科学版),2003,43(10):1373-1375.
    [191]邹小江,寿楠椿,韩大建.高层建筑考虑施工过程的徐变收缩分析.建筑结构,2002,32(3):3-6.
    [192]竹学叶,王新民,寿楠椿.施工过程与砼徐变对建筑结构变形和内力的影响.华北水利水电学院学报,1995,16(4):57-60.
    [193]邹小江,石天庆,韩大建.高层建筑考虑施工过程徐变的简化分析法. 华北水利水电学院学报,2001,22(4):25-29.
    [194]韩璋,邹小江.高层建筑考虑施工过程徐变分析的实用方法.昆明理工大学学报,2002,27(4):118-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700