变截面空心薄壁墩混凝土收缩徐变试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我省西部黄土沟壑地区,高墩连续梁是较经济的桥型。收缩和徐变是混凝土材料本身固有的时变特性,当相邻薄壁空心高墩墩顶竖向位移差别较大时,会引起连续梁较大的内力。正确估计和预测收缩徐变对高墩的影响,对工程设计与施工监控有重要意义。由于施工工艺的要求,采用现场预拌混凝土,混凝土要求流动性大,水泥和细骨料比例偏大、粗骨料比例偏小,使得商品混凝土收缩偏大,容易出现裂缝。为保证结构的安全和耐久性,对混凝土收缩应力进行研究具有重要意义。
     本文研究主要成果有:
     (1)根据收集到的国内外混凝土收缩徐变研究成果,详细讨论了混凝土收缩徐变机理和影响因素,为混凝土收缩徐变预测模型研究作了理论准备。
     (2)对国外几种典型混凝土收缩徐变预测模型对比研究发现,国外预测模型中,GL 2000模型整体上与试验数据符合最好,在需要引用国外模型进行收缩徐变计算时,推荐采用GL 2000模型或参考我国86模型的改进公式。
     (3)以西张村大桥为工程背景,以配制低收缩徐变混凝土为目的,进行了配比试验研究,成果已运用到实际工程中;针对现场实际使用的混凝土,设计了收缩试验,并计算出现场环境中混凝土徐变系数与混凝土应变,计算结果与实测结果符合较好。
     (4)通过理论计算得出了混凝土收缩应力和钢筋对收缩、徐变的影响系数,为有限元计算中考虑钢筋影响提供了参数。
     (5)以西张村大桥空心薄壁高墩为工程背景,利用有限元分析软件MIDAS建立了计算机模型,采用收缩徐变试验、施工进度等实际参数,进行了模拟分阶段施工过程仿真分析计算,计算结果直接应用于西张村大桥的高墩施工监控中,并为该地区同类型高墩设计与施工提供了直接的参考依据。
In the western loess gully region of Henan province , the high-pier continuous girder bridge is the more economical type. The shrinkage and creep are the inherent time-dependent characteristics of concrete material. When the vertical displacement of adjacent high-rise pier of thin-wall and hollow section top has larger difference , continuous beams would have given rise to internal forces. It is important to accurately estimate and predicate the effect on high-rise pier of thin-wall and hollow section which arise from shrinkage and creep for design and construction control. Due to the requirements of the construction process, the use of ready-mixed concrete at the scene is necessary. However, owing to the larger liquidity, the larger ratio of cement and fine aggregate in mixing proportion and the smaller ratio of coarse aggregate, merchandise concrete has larger shrinkage and emerges cracks easily.
     Through the forgoing research work,the major findings are as follows:
     (1)Based on the past research findings, this paper explains detailedly the mechanism of concrete shrinkage and creep, the effect factors, the calculation theories and methods. On the solid theoretical foundation, the author do the work of the selection of the prediction model of concrete shrinkage and creep.
     (2)Comparison research indicates the GL 2000 model performs best for predicting shrinkage and creep, among the four neoteric prediction models. So the GL2000 model and the improved fomula which considering the 1986 model are firstly recommended in case of lack of test data and the foreign models have to be chosen.
     (3)With Xizhangcun Bridge for engineering background, study batching technology of low-shrinkage and low-creep for concrete. The result has been applied to practical engineering. This paper designs an experiment of shrinkage of C40 concrete, calculats the shrinkage and creep coefficient in accordance with the conditions at the scene and the calculation result fit well with the measured result.
     (4)Through theoretical calculation, obtain the stress which caused by the shrinkage of concrete and influence coefficients computation of the impact on shrinkage and creep of concrete which caused by reinforced. We can take into the parameters to consider the effect of the reinforced with the finite element method.
     (5) With Xizhangcun Bridge for engineering background, this paper establishs the MIDAS module of construction supervision, does the simulation and analysis with actual parameters of the construction processes. The result is directly applied to the monitoring of the construction of the high-pier, and provids the data for the design and construction of high-rise pier of thin-wall and hollow section with the same type in this region.
引文
[1]陈强.先简支后连续结构体系的研究[D].杭州:浙江大学,2002.
    [2]杨晔,陈越峰.先简支后连续砼桥梁结构特性分析[J].绍兴文理学院学报(理学版),2004,24(7):90-92.
    [3]上官萍,房贞政,付东阳.先简支后连续桥梁结构体系的应用研究[J].福州大学学报(自然科学版),2000,28(5):77-81.
    [4]杨雪飞.高墩变形计算与控制研究[J].交通标准化,2007,162/163:83-85.
    [5]胡琳.软基上预应力砼连续梁桥设计中控制沉降的方法[J].华东公路,1991,3:24-25.
    [6]陈萌.混凝土结构裂缝的机理分析和控制[D].武汉:武汉理工大学,2006.
    [7]Thomas E.Malyszko著.苏尚本译.徐变预测法评述[J].国外桥梁,1984(2).
    [8]Z.P.Bazant.Prediction of concrete creep Effect Using Age-Adjusted Effective Modulus Method[J].ACI Journal,1972(4).
    [9]Z.P.Bazant,S.Baweja.Justification and refinements of Model B3 for concrete creep and shrinkage:2updating and theoretical basis[J].Materials and structures,1995,28:488-495.
    [10]N.J.Garder,J.W.Zhao.Creep and Shrinkage Revisited[J].ACI Materials journal,1993,90(3):236-246.
    [11]石现峰,梁志广,李建中.几种常用混凝土收缩徐变模式的比较分析[J].石家庄铁道学院学报,1998(1):8-13.
    [12]马龙.现代混凝土徐变的几个问题的探讨[D].南京:河海大学,2006.
    [13]林南薰.混凝土徐变的试验研究[J].华南工学院学报,1965(12).
    [14]惠荣炎,黄国兴,易冰若.混凝土的徐变[M].北京:中国铁道出版社,1988.
    [15]龚洛书,惠满印,杨蓓.砼收缩与徐变的实用数学表达式[J].建筑结构学报,1988(5):37-41.
    [16]苏清洪.加筋混凝土收缩徐变的试验研究[J].桥梁建设,1994(4):11-18.
    [17]卫军,赵红京.干燥地区混凝土徐变、收缩估算体系及验证[J].华中科技大学学报,2001,29(7):109-110.
    [18]吴胜兴.混凝土结构的温度应力与温度裂缝控制研究[D].南京:河海大学,1994.
    [19]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994.11.
    [20]Z.P.Bazant.Prediction of concrete creep effects using age-adjusted effective modulus method[J].ACI Journal,69:212-217.
    [21]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002.10.
    [22]蒋正武,孙振平等.国外混凝土自收缩研究进展评述[J].混凝土,2001(4):30-33.
    [23]David W.Mokarem.Development of concrete shrinkage Performance specification[D].Faculty of the Virginia Polytechnic Institute and State University,2002.5.
    [24]黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990.
    [25]吴彬,张璐明等.100MPa粉煤灰高性能混凝土的研究[J].粉煤灰,2002(3):7-9.
    [26]中国建筑科学研究院结构所.国外混凝土理论应用及研究概况[R].1978.11.
    [27]叶欧译,宋培建校.掺合料对混凝土收缩和徐变的影响[J].建工技术,1999(4):33-37.
    [28]杨小兵.混凝土收缩徐变预测模型研究[D].南京:河海大学,2004.
    [29]吕艳梅.商品混凝土混凝土收缩性能的试验研究[D].郑州:郑州大学,2004.
    [30]陈云鹤,唐崇钊,邓学钧.配筋混凝土粘弹性参数的徐变试验研究[J].工程力学,2000(10):105-110.
    [31]胡狄,陈政清.从短期试验结果预测新建预应力混凝土梁收缩和徐变的长期效应[J].中国铁道科学,2003,24(3):44-49.
    [32]杜国华,毛昌时,司徒妙龄.桥梁结构分析[M].上海:同济大学出版社,1994.
    [33]D.B.Mcdonald,Harold Roper.Accuyacy of Predication Models for Shrinkage of Concrete[J].ACI Materials Journal,1993,5/6:265-271.
    [34]Z.P.Bazant,S.Baweja.Creep and shrinkage Prediction Model for Analysis and Design of Concrete Structures-Model B3,RIIEM Recommendation[J].Materials and structures,1995,28:357-365.
    [35]汪维安.高墩大跨连续刚构桥的收缩徐变效应分析[D].长沙:长沙理工大学,2005.
    [36]杜士杰.收缩、徐变理论在工程设计中的应用[J].铁道设计标准,1998,6:14-15.
    [37]中国建筑科学研究院结构所规范室译.验证文选集(90年CEB-FIP模式规范应用指南):混凝土结构[R].北京:1993-04,28.
    [38]CEB欧洲国际混凝土委员会.中国建筑科学研究院结构所规范室译.1990年CEB-FIP模式规范(混凝土结构)[S].1991,12:57-70.
    [39]JTJ 023-85,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,1985.
    [40]丁文胜,吕志涛,孟少平,刘钊.混凝土收缩徐变预测模型的分析比较[J].桥梁建设,2004,(6):13-16.
    [41]N.J.Gardner,J.W.Zhao.Creep and Shrinkage Revisited[J].ACI Materials Journal,1993,90(3):236-246.
    [42]N.J.Gardner and M.J.Lockman.Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete[J].ACI Materials Journal,2001,98(2):159-167.
    [43]AC1 Committee 209(1992).Prediction of creep,shrinkage and temperature effects in concrete structures[S].American Concrete Institute,1992.
    [44]B.EBazantl Baweja.Justification and refinements of Model B3 for concrete creep and shrinkage:1.Statistics and sensitivity[J].Materials and Structures,1995,28:415-430.
    [45]Hubert Rusch,Dieter Jungwirth,Hubert K Hilsdorf.Creep and shrinkage:their effects on the behavior of concrete structures[M].New York,Springer-Verlag,1993
    [46]George.C.Fanourak,Yunus Ballim.Predicting creep deformation of concrete:a comparison of results from different investigations[R].Proceedings,11th FIG Symposium on Deformation Measurements,Santorini,Greece,2003.
    [47]潘立本,张苏俊.混凝土收缩与徐变的试验研究[J].河海大学学报,1997,25(5):84-89.
    [48]邹建喜,李显金,迟培云.粉煤灰混凝土的变形性能研究[J].混凝土,2003(6):38-39,49.
    [49]徐金声,薛立红.现代预应力混凝土楼盖结构[M].北京:中国建筑工业出版社,1999.
    [50]田启贤,荆秀芬.混凝土收缩徐变对比试验[J].桥梁建设,2003(2):24-26,40.
    [51]北京:北京迈达斯技术有限公司.MIDAS/CIVIL 01-Getting Strarted&Tutorials.MIDAS IT(Beijing)Co.[Z].Ltd,2003.
    [52]张方.大型混凝土箱梁裂缝研究[D].成都:西南交通大学,2004.
    [53]张巍,杨全兵.混凝土收缩研究综述[J].低温建筑技术,2003(5):4-6.
    [54]马丽媛,姚燕,田培,王玲,尚礼忠,贾祥道.国内外混凝土的收缩性能及抗裂性试验研究方法评述[J].中国建材科技,2001(1):4-6.
    [55]孙建华,王勇,姜方兵.浅析水灰比对水泥干缩因素的影响[J].江苏建材,2005(4):25-27.
    [56]杨利民,张庆波,刘北,黄兴亮.外加剂影响混凝土胶凝体系收缩性能的试验研究[J].四川建筑科学研究,2006.32(5):168-170.
    [57]张雄,韩继红,李悦.掺复合矿物外加剂混凝土的收缩性能研究[J].建筑材料学报,2003.6(2):204-207.
    [58]杨文佳,夏美珍,陈沛,陆东泉.泵送混凝土材料的收缩测定及其防治措施[J].建筑施工,2001,23(2):118-121.
    [59]喻骁.砂率变化对混凝土塑性收缩裂缝的影响[J].山西建筑.
    [60]李迎春,游有鲲,钱春香,陈春.混凝土组成成分对收缩性能的影响[J].混凝土,2002.(2):40-43.
    [61]李丽.高性能混凝土收缩与开裂规律的研究及机理分析[D].南京:东南大学,2004.
    [62]张树青,刘百臣,陈元峻.矿粉混凝土干燥收缩性能[J].低温建筑技术,2005(1):1-3.
    [63]安明哲,覃维祖,朱金铨.高强混凝土的自收缩试验研究[J].山东建材学院学报,1998,12(51):139-143.
    [64]翁家瑞,郑建岚,王雪芳.粉煤灰掺量对高性能混凝土收缩的影响[J].福州大学学报(自然科学版),2005,33(增刊):143-146,155.
    [65]刘俊斌.泵送混凝土在高墩桥梁施工中的应用[J].石家庄铁道学院学报,2003.16(增刊):68-70.
    [66]黄尚林.北江大桥薄壁墩身裂缝的预防与控制[J].公路,2006(8):259-261.
    [67]GB/T 14685-2001,建筑卵石、碎石[S].北京:中国标准出版社,2001.
    [68]GB/T 14684-2001,建筑用砂[S].北京:中国标准出版社,2001.
    [69]符芳.建筑材料[M].南京:东南大学出版社,2003.
    [70]GB/T50081-2002,普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2002.
    [71]JTJ 28-86,粉煤灰在混凝土和砂浆中应用技术规程[S].北京:中国建筑工业出版社,1986.
    [72]GBJ 146-90,粉煤灰混凝土技术应用规范[S].北京:中国计划出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700