大跨径钢管混凝土拱桥仿真计算与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以阅海大桥(三肋五跨中承式系杆拱桥,拱肋为哑铃形截面)为工程背景,采用大型有限元计算软件MIDAS建立桥梁结构空间三维模型,对阅海大桥空钢管阶段、浇筑钢管混凝土阶段、挂横梁阶段、铺槽形板阶段、成桥阶段的静力、动力、稳定性进行仿真计算,通过线形和应力理论值与实测值的对比,表明仿真计算是成功的,可以有效的指导施工控制。
     在建立模型过程中,拱肋采用MIDAS中的施工阶段联合截面法进行模拟,该方法的理论为换算截面法,将哑铃形截面分为钢管框架、上下拱肋内混凝土、缀板内混凝土四个部分,将各个单独的混凝土截面换算为钢截面,随着实际施工阶段的进行,不断进行叠加,直至钢管混凝土浇筑完之后完成叠加。
     在各个施工阶段中,该桥中肋各控制截面的挠度基本为边肋的两倍,中肋各控制截面的应力为边肋的1.5倍左右。对阅海大桥线形、应力的理论计算结果与实测结果进行对比,理论计算结果与实测值较为吻合。
     对阅海大桥各个施工阶段稳定性进行了屈曲分析,稳定系数均远远大于4,该桥在各个施工阶段的稳定性较高,失稳模式均为面内失稳,说明其面外刚度较大,失稳控制应以面内控制为主。
     采用子空间迭代法,求解了该桥的前30阶振型,采用反应谱理论分析了该桥在8级地震作用下的响应。计算结果表明该桥柔性较好,地震对该桥的中肋和边肋的影响是相同的。计算结果可以为该桥进行动力评估提供依据。
     各个施工阶段的线形与应力均在控制范围内,施工控制良好。
Based on Yue Hai Bridge (a five-span tied arch bridge with three dumbbell-shaped arch ribs), the three-dimensional space model of the bridge is built by MIDAS finite element software. The simulation analysis of the static,dynamic,stability performance of the bridge in hollow tube stage,pouring concrete into the tube stage,hanging beams stage,the lay channel board stage and the completed bridge stage is carried out. Through contrasting the theory values with the measure ones of lineshape and stress, the consistency of the structure simulation analysis is verified .
     In the process of building model , the arch rib section is simulated by the MIDAS’s combined-section of construction phase. The method of it is conversion of the section.The rib is made up of four parts: dumbbell-shaped steel tube frame, top concrete section, middle concrete section and bottom concrete section.The sections of the concrete are converted into the steel sections. With construction stage going on, the sections are combined one by one. The combination of the sections will be completed untill the steel tube is filled by the concrete actually.
     In every stages of the construction, the displacement of the middle arch rib on the bridge control section is almost twice of the side ribs’s; the stress of the middle ribs on the control section is about 1.5 times of the side ribs’s. The lineshape and stress of theoretical results were compared with the measured results and it indicates that the theoretical results and measured are anastomosis.
     The stability of the buckling through all the bridge construction stages is analyzed. The stability factors are far greater than 4 which indacates that the bridge is very stable in every construction stage. All instability models are in plane of the bridge. It shows that it is very strong in outface. The major control of stability should be in its plane.
     The sub-space method is used to extract its first 30 vibration models. The response spectrum theory is used to analyze the bridge’s reflection in eight degree of the earthquake. The results show that the bridge flexible better. The effects of earthquake in the middle rib and side rib are the same. The results can be used for the bridge’s dynamic evaluate.
     The lineshape and the stress are controlled in an ideal limitation. Construction control is successful.
引文
[1]郑皆连.我国拱桥发展及技术进步[A].湖北省公路科技创新高层论坛论文集[C],2006:16-20
    [2]周念先.桥梁方案比选[M].上海:同济大学出版社,1996:109-110
    [3]周水兴,张永水.大跨度钢管混凝土拱桥施工控制理论与实践[J] .重庆交通学院学报,2001(增刊)
    [4]袁海庆,范小春,范剑锋等.大跨度钢管混凝土拱桥拱肋吊装预测的迭代前进算法[J] .中国公路学报,2003,16(3):48-51
    [5]袁海庆,周强新,范剑锋.钢管混凝土拱桥施工控制可视化仿真计算系统[J] .武汉理工大学学报,2003,25(10):54-56
    [6]向中富.桥梁施工控制技术[M] .北京:人民交通出版社,2001:18-36
    [7]郑皆连.特大跨径RC拱桥悬拼合拢技术的探讨[J].中国公路学报,1999,12(1):42-49
    [8]尹浩辉,吴滨生.丫髻沙大桥主拱拱肋钢管混凝土的灌注与线形控制[J] .桥梁建设,2000,(4):49-51
    [9]李艳明,肖飞.丫髻沙大桥主桥竖转施工控制技术[J] .铁道标准设计,2001,21(6):31-32
    [10]张宇峰,张劲池,吴凯等.下承式钢管混凝土系杆拱桥施工控制方法初探[J].公路,2002,9(9):53-55
    [11]张建民,郑皆连,秦荣.大跨度钢管混凝土拱桥吊装过程的优化计算方法[J].桥梁建设,2002,(1):52-58
    [12]张敏,周水兴,胡免缢.钢管混凝土拱桥施工控制原理与控制分析算法研究[J].公路交通科技,2003,20(2):39-42
    [13]张佐安,孙云,王铭琪等.巫山长江大桥拱肋钢管桁架安装的关键技术[J].公路,2003,(12):26-32
    [14]张建民,郑皆连,肖汝诚.钢管混凝土拱桥吊装过程的最优化计算分析[J].中国公路学报,2005,18(2):40-44
    [15]邓聚龙.灰色控制系统[M].广州:华南理工大学出版社,1984:309-315
    [16]李学文,毛大德.编译日本预应力混凝土斜拉桥施工精度控制方法[J].国外公路,1998,(2):33-37
    [17]林元培.卡尔曼滤波法在斜拉桥施工中的应用[J].土木工程学报,1983,61(3):7-14
    [18]方志,刘光栋,王光炯.斜拉桥施工的灰色预测控制系统[J].湖南大学学报,1997, 24(3):74-81
    [19]钟善桐.钢管混凝土结构(修订版)[M].哈尔滨:黑龙江科学技术出版社,1994:16-31
    [20] MIDAS/Civil V6.7.1 on-line manual.
    [21]郭耀杰.钢结构稳定设计[M].武汉:武汉大学出版社,2003:5-7
    [22] Huddlestor,J., Finite Deflections and Snap-through of High Circular Arches[J], Journal of Applied Mechanics, Dec., 1968
    [23] Wempner.G.,A.,and Patrick,G.,E, Finite Deflections Buckling and Post-buckling of an Arch[J],Proceedings, lth Midwestern Mechanics Conference, Vo1.15, Aug.,1969
    [24] Austin,W.,J., In-plane Bending and Buckling of Arches, Journal of Strucural Division[J], ASCE, Vol。97. No.ST5, May, 1971
    [25]赵雷,杜正国.大跨度钢筋混凝土拱桥钢管混凝土劲性骨架施工阶段稳定性分析[J].西南交通大学学报,1994,29(4):446-452
    [26]谢尚英,钱东生.劲性骨架混凝土拱桥施工阶段的非线性稳定分析[J].土木工程学报,2002,23(1):23-26
    [27]王宇,何广汉,杨永清等.钢管混凝土肋拱的横向稳定分析[J].工程力学(增刊),1998
    [28] Yong-Lin Pi, N.S Trahair, Inelastic lateral buckling strength and design of steel arches[J], Engineering Structures, 22(2000):993—1005
    [29]崔军,王景波,孙炳楠.大跨度钢管混凝土拱桥非线性稳定性分析[J].哈尔滨:哈尔滨工业大学学报,2003,35(7):876-878
    [30]贺栓海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003:80-86
    [31]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001:254-260
    [32]陈宝春.钢管混凝土拱桥应用与研究最新进展[A].第十六届全国结构工程学术会议[C],2007:395-398
    [33]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,2000:136-168
    [34]熊峰.钢管混凝土拱桥抗震性能研究[D].成都:四川大学,2001
    [35]徐亮、刘世忠.大跨度钢管混凝土拱桥的动力特性分析[J].甘肃:甘肃科技,2006,22(2):127-129
    [36]苏德沛、张辉、王连华.大跨度刚架系杆拱桥的动力特性分析[J].湖南交通科技,2007,33(2):56-58
    [37]张相庭,王志培,黄本才等.结构振动力学[M].上海:同济大学出版社,2005:47-50
    [38]孙虎平.阅海大桥两阶段施工图设计.西安:陕西省公路勘察设计院,2005
    [39]范立础,胡士德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001:107-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700