大跨度上承式钢管混凝土拱桥施工过程线形控制及稳定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土拱桥是大跨拱桥的一种比较理想的结构形式,也是我国近年来桥梁建筑发展的新技术,能较好地解决修建桥梁所需求的用料省、施工简便、承载能力大等诸多问题。但随着跨度的增加,首先遇到的技术难题就是施工问题。由于吊装节段重量的限制,吊装节段必须增多,这就给拱肋吊装施工提出了新的问题:怎样在多节段拱肋吊装施工中,使最后合龙的拱肋满足设计要求的合龙精度。由于拱桥自身的受力特点,一旦拱肋合龙,就无法再对拱肋的线形进行调整,而合龙后的拱轴线形将决定成桥后的受力状态,因此应重视拱肋吊装中拱轴线线形的优化,确保钢管混凝土拱桥建成后的轴线和设计轴线相吻合,保证拱桥受力最合理。
     钢管拱桥结构型式复杂,在设计计算、施工过程模拟和反分析等结构仿真计算中常常面临参数最优化的问题,运用非线性规划的方法去处理具有明显的优势。针对支井河特大桥的特殊斜拉扣挂系统,将最优化理论引入正装迭代计算中,提出迭代优化算法,应用于拱肋吊装过程的线形控制和索力优化。设置合理的优化变量、约束条件和目标函数,可建立可测控变量与控制目标之间的函数关系。应用扣索一次张拉到位、预抬高控制的思想,将索力优化分散到各个施工阶段单独进行,依靠线形偏差修正和外部嵌套的循环实现总体线形的控制。该算法用于拱桥吊装施工的模拟,考虑了扣索垂度等非线性影响后,一轮优化得到的预抬高和扣索索力即可基本满足线形控制的要求。为克服这种方法难以调整主拱肋内力和预抬高量可能偏大的缺陷,并注意到合龙前后拆除扣索的程序差异会对拱肋的线形、内力产生影响,提出修正的拆扣方案,并对几种可行方案进行了分析和优化比选,确定一个最佳的更利于施工控制的方案。
     另外,稳定性也成为制约钢管混凝土拱桥发展的主要因素之一。钢管混凝土使得拱肋轻质高强化的同时,也带来了拱肋刚度减小的问题,使得其稳定问题日渐突出。经验表明:在很多情况下,施工过程中的稳定性要低于成桥以后的稳定性,因此对施工过程中的整体稳定性分析要通过科学的计算予以确认和评价。这一点在支井河特大桥的长悬臂、长施工期的情况下尤为突出。本文在静力分析的基础上运用线弹性和非线性稳定理论,针对悬臂合龙阶段的特殊受力状态,对支井河特大桥的拱肋吊装施工期的稳定性进行了细致的计算分析,包括线弹性、几何非线性、材料非线性和双重非线性屈曲分析。并且还考虑了初始缺陷、风荷载以及扣索非保向力的影响,提出了一些有实际意义的结论。
Concrete-Filled Steel Tubular arch bridge is one of the ideal forms for long-span arch bridge, and it's also a newly developed bridge engineering technology of our country. It can preferably solve many problems in bridge construction, for instance: material economization, simple and convenient construction, high bearing capacity etc. But with the bridge span increasing, the first technical problem we encounter is the matter of construction. Limited by the weight of erecting section, the number of the sections has to be increased, so a new question is brought forward to erection: how to ensure arch rib satisfying the precision required by design after final closure in multi-section erecting process. Because of the bearing peculiarity of the arch bridge, in case the arch rib is completely joined, the alignment of the rib can not be adjusted here from. However, the joined alignment of arch rib shall determine the stress of the completive bridge, so alignment control during rib erecting must be attached importance to in order to ensure the final arch axis tallying with the designed axis and bearing state of the arch bridge being most reasonable.
     Steel arch bridge structure embodies complex types and a legion of influencing factors, and in the meantime we frequently face the problems of parameter optimization in design calculation, construction process simulation and back analysis etc. Great advantage will be gained when the method of nonlinear programming is exercised. Aiming at the special cable-stay system of Zhijinghe Bridge, optimum theory is import in advancing calculation method and iterative optimization method is introduced into alignment control and cable-force calculation of erection stage. Via reasonable design variable, constraints and optimization function set up, the relationship between measure-controllable variables of the structure and control objective is established. With appliance of the idea of once-tension and precambers control, cable force optimization is separated into parts that performed in every construction stage, and alignment differences are modified and exterior loops are performed to ensure the alignment control. Using this method in simulation of arch bridge erection, after taking nonlinear effect like droop of cable etc into account, precambers and the cable forces ascertained in the first round optimization can basically meet the demand of alignment control. In order to overcome the limitations of this method that hard to refine the internal force of the arch rib as well as possibly too large precambers, taking notice of the influence on alignment and internal force of the rib by procedure differences of cable-removing before and after the closure, modified cable-removing schemes are brought forward which are analyzed and compared with each other, and then a best scheme with easier control is determined.
     On the other hand, stability has also been a restriction to the development of CFST arch bridge. CFST makes the arch rib lightweight and high-strength, but at one time it decreases the stiffness of the rib, causing stability problem more and more prominent. It has been indicated by experience that, in many cases, the stability of the bridge under construction is lower than that after construction, so the overall stability analysis during construction process should be affirmed and evaluated through scientific calculation. This point is particularly important in the conditions of long cantilever and construction period of Zhijinghe Bridge. Based on the static analysis, linear and nonlinear stability theories are applied. Aiming at the special bearing state of cantilever-closure phase, detailed calculation and analysis for stability of the Zhijinghe Bridge during erecting period are carried out including linear buckling analysis, geometrical, material and double nonlinear analysis. Original disfigurement, wind loading as well as the effect of non-oriented conservative loading of the cable is considered, and some practical conclusions are advanced in the end.
引文
[1]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999
    [2]陈宝春.钢管混凝土拱桥发展综述[J].桥梁建设,1997(2)
    [3]陈宝春.钢管混凝土拱桥实例集[M].北京:人民交通出版社,2002
    [4]Johnson R P.Composite Structures of Steel and Concrete[M].London:Granada,1975
    [5]钟善桐.钢管混凝土结构(第三版)[M].清华大学出版社,2003
    [6]周念先.桥梁方案比选[M].同济大学出版社,1997
    [7]王庭英.钢管混凝土桥梁钢(管)结构制造与安装[M].北京:人民交通出版社,2003
    [8]陈宝春.钢管混凝土拱桥结构设计探讨[C].第十四届全国桥梁学术会议论文集.南京,2000:505-510
    [9]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [10]孙忠飞.我国钢管混凝土技术及其桥梁的发展[J].城市道桥与防洪,1997(3)
    [11]中华人民共和国经济贸易委员会.钢—混凝土组合结构设计规程(DL/T-5085-1999)[S].北京:中国电力出版社,1999
    [12]中国工程建设标准标准协会标准(CECS28:90).钢管混凝土设计与施工规程[S]。北京:中国计划出版社,1992
    [13]李艳明,肖飞.丫髻沙大桥主桥竖转施工控制技术[J].铁道标准设计,2001,(6):30-32
    [14]庄卫林,黄道全,谢邦珠等.丫髻沙大桥转体施工工艺设计[J].桥梁建设,2000,1:37-42
    [15]何雨微,刘三元.大跨径钢管混凝土拱桥缆索吊装施工方案选择[J].武汉交通科技大学学报,2000,(6):630-633
    [16]张春新,苏辉,杨齐海.秭归青干河大桥主桥钢管拱桁架节段吊装施工[J].桥梁建设,2001,(4):38-40
    [17]郑皆连.特大跨径RC拱桥悬拼合拢技术的探讨[J].中国公路学报,1999,12(1):42-49
    [18]张开银,刘三元,何雨微.塔架/扣架一体化施工技术研究[J].武汉交通科技大学学报,2000:611-614
    [19]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [20]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000
    [21]张海龙.桥梁的结构分析·程序设计·施工监控[M].北京:中国建筑工业出版社,2003
    [22]周水兴,江礼忠,曾忠等.拱桥节段施工斜拉扣挂索力仿真计算研究[J].重庆交通学院学报,2000,(3):8-12
    [23]周水兴,张敏,周建庭.钢管混凝土拱桁架架设斜拉扣索最优扣点探讨[J].重庆交通学院学报,2000,(4):1-4
    [24]周水兴,顾安邦,李炎等.钢管砼拱桁架架设斜拉扣挂索力仿真计算研究[C].中国公路学会桥梁和结构工程学会1999年桥梁学术讨论会,北京:人民交通出版社,1999
    [25]周水兴,蔡净,熊洪滨.定长扣索法安装拱桁架节段控制索力计算[J]。工程力学,200l(增刊):838—842
    [26]周水兴.浙江三门健跳大桥拱肋安装与施工控制计算[J].重庆交通学院学报,2002,2(21):2-5
    [27]张建民,郑皆连,秦荣.大跨度钢管混凝土拱桥吊装过程的优化计算方法[J].桥梁建设,2002,(1):52-58
    [28]张建民,郑皆连,秦荣.钢管混凝土拱桥节段施工中的扣索索力调整计算[J].中外公路,2002,(4):44-47
    [29]席少霖,赵凤治.最优化计算方法[M].上海:上海科学技术出版社,1983
    [30]D M Himmelblau.实用非线性规划[M].张义燊等译.北京:科学出版社,1981(D M Himmelblau.Applied Nonlinear Programming[M].Translated by ZHANG Yishen.New York:McGraw-Hill,1981.(in Chinese))
    [31]孙国正.优化设计及应用[M].北京:人民交通出版社,1992
    [32]孙文瑜,徐成贤,朱德通.最优化方法[M].北京:高等教育出版社,2004
    [33]张光澄.最优化计算方法[M].成都:成都科技大学出版社,1989
    [34]Beley J D,Broudiscou C,Guillaume P,et al.Application de la methode des derivees d'ordre eleve a l'optimisation des structures[J].Revue Europeenne des Elements Finis,1996,5(5-6):537-567
    [35]More J J,Wright S J.Optimization Software Guide[M].Philadelphia:SIAM,1993:13
    [36]袁海庆,范小春,范剑锋等.大跨度钢管混凝土拱桥拱肋吊装预测的迭代前进算法[J].中国公路学报,2003,16(3):48—51
    [37]张治成,叶贵如,王云峰。大跨度拱桥钢管拱肋悬拼中的扣索索力优化计算[J].中国市政工程,2003(4):25—27
    [38]ANSYS.Inc.Theory Release 9.0[M],USA,2004
    [39]张立明.Algor、Ansys在桥梁工程中的应用方法和实例[M].北京:人民交通出版社,2003
    [40]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002
    [41]博弈创作室.ANSYS9.0经典产品高级分析技术与实例详解[M].北京:中国水利水电出版社,2005
    [42]张治成,叶贵如,陈衡治.大跨度钢管砼拱桥拱肋吊装中的扣索索力计算[J].浙江大学学报(工学版),2004,38(5):610-614
    [43]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,1996
    [44]颜全胜,韩大建.解放大桥钢管混凝土系杆拱桥的非线性稳定[J].华南理工大学学报,1999,27(11):98-103
    [45]王元清,姜波,石永久,张勇.大跨度钢管混凝土拱桥施工稳定性分析[J].铁道科学与工程学报,2006,3(5):1-5
    [46]赵河清,徐亮,杨惠林,刘世忠.大跨度上承式钢管混凝土拱桥的稳定性分析[J].公路交通科技,2006,23(11):82—85
    [47]卜一之,单德山,赵雷.大跨度钢管混凝土拱桥非线性分析[J].桥梁建设,2001,(5):85—91
    [48]赵雷,杜正国.大跨度钢筋混凝土劲性骨架施工阶段稳定性分析[J].西安交通大学学报,1994,29(4):447-451
    [49]赵雷,张金平,彭俊生,杜正国.大跨度钢筋混凝土拱桥施工阶段稳定性分析的非线性问题[J].四川建筑科学研究院,1995,(4):7—10
    [50]赵雷,张金平.大跨度拱桥施工阶段稳定性分析若干问题的探讨[J].铁道学报,1995,17(1):77-84
    [51]Papangelis J P,Trahair N S.Prebuckling deflections and flexural-torsional buckling of arches[J].Engineering and Structures,1995,121(9):1313-1322
    [52]Plaut R H,Hou A.Deflections,vibrations,and stability of a pair of learning Arches[J].Engineering and Structures,1998,124(7):748-753
    [53]颜全胜,骆宁安,韩大建等.大跨度拱桥的非线性与稳定分析[J].华南理工大学学报(自然科学版),2000,28(6):64-67
    [54]赵长军,王锋君,陈强等.大跨度钢管混凝土拱桥空间稳定分析[J].公路,2001,(2):15-18
    [55]戴公连,李德建.桥梁结构空间分析设计方法与应用[J].北京:人民交通出版社,2001
    [56]崔军,王景波,孙炳楠.大跨度钢管混凝土拱桥非线性稳定性分析[J].哈尔滨工业大学学报,2003,35(7):876-878
    [57]项海帆,姚玲森.高等桥梁结构理论[M].北京:人民交通出版社,1991
    [58]龙驭球,包世华等编.结构力学[M].北京:高等教育出版社(第二版),1996
    [59]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社,1991
    [60]华孝良,徐光辉等.桥梁结构的非线性分析[M]。北京:人民交通出版社.1997
    [61]Alexander C.Principles of Structural Stability Theory[M].Englewood Cliffs:Prentice-Hall,1974
    [62]Gerard Ⅰ.Elementary Stability and Bifurcation Theory[M].New York:Springer -Verlag,1989
    [63]中交公路规划设计院.公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社,2004
    [64]小西一郎。戴振藩译.《钢桥(第四分册)》[M].北京:人民铁道出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700