基于光纤光栅的新型传感技术和高温器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是一种重要的无源光纤器件,在光纤通信、光纤传感及其它光纤技术领域中有着重要的应用,它的出现是光纤技术领域的一个里程碑。本论文针对新型光纤光栅传感技术和高温光纤光栅制作技术,开展了深入的理论和实验研究。
     本论文首先介绍了光纤的历史背景和光纤光栅的发展历程;然后介绍了光纤光栅在通信和传感中的应用,讨论了光纤光栅传感的分类和市场前景,并对光纤光栅传感的研究热点进行总结。
     接着探讨了光纤的光敏性;介绍了光纤光栅的理论分析工具(包括衍射理论,耦合模理论和传输矩阵法);介绍了光纤光栅的分类,并给出了各种不同类型光纤光栅的光谱;简述了几种常见的光纤光栅制作技术以及本实验室的载氢装置和光纤光栅制作系统。
     本论文研究和发展了一种基于光热光纤布拉格光栅的新型流速/流量传感技术。光热光纤光栅是一种新型光栅器件,其特殊的光热转换机制和波长光调谐特性使得光热光纤光栅具备许多独特的应用。在分析光热光纤温度分布和热线测速技术的基础上,提出了基于光热光纤布拉格光栅的全光纤型气体流速传感器和微流控芯片流量传感器,结合光纤光栅解调技术,详细研究了不同条件下传感器的波长响应、灵敏度、响应时间,实现了高分辨率、高灵敏的流速/流量传感。
     本论文还提出了基于光热光纤长周期光栅的带主动温度补偿的折射率传感器。通过对光热光纤长周期光栅的温度、折射率以及波长光调谐等特性进行实验研究,从理论上证明该传感器的主动温度补偿的可行性,并在实验上实现了温度不敏感的折射率传感。
     论文最后系统地研究了高温再生光纤布拉格光栅,并在此基础上提出了一种新的高温光栅制作方法,即在高温下对再生光纤布拉格光栅进行粘弹性调谐时可以使用特定的温度分布来定制光栅的周期分布,永久地调谐出不同波长和带宽的高温光纤光栅。利用这一方法,在实验上将使用均匀周期相位掩模板制作的一个窄带均匀光栅,永久地调谐成宽带啁啾光栅,并且其中心波长和宽带任意可调。同时,利用再生光栅技术和粘弹性调谐技术,将使用均匀周期相位掩模板制作的含有三个相同波长的光纤光栅阵列,永久地调谐成三个不同波长的光纤光栅阵列,并且其波长间距任意可调,适用于准分布式高温传感。
     本论文理论和实验研究并重,研究新型光纤光栅传感技术和高温光纤光栅制作技术,对推动光纤光栅技术及其应用的发展具有良好的意义。
Fiber gratings, as key passive fiber components, have a wide range of applications in optical fiber communication, optical fiber sensing and other fiber-optic technologies. The emergence of fiber gratings marks a technical milestone in the fiber-optic field. This thesis mainly focuses on the novel fiber grating sensing technology and the fabrication technique of high temperature fiber gratings. Comprehensive studies on these topics have been conducted both theoretically and experimentally.
     To begin with, a brief overview of the historical background of fiber and the development of fiber grating technology are given. The applications of fiber gratings in communication and sensing are introduced, and the classification of fiber grating sensing and its market prospect are discussed. The recent research topics on fiber grating sensing technology are also summarized.
     Then, a brief discussion on the photosensitivity of fiber is given. The basic theoretical analysis tools of fiber gratings, including diffraction theory, coupled-mode theory and transfer matrix method, are introduced. The classification of fiber grating is summarized and several typical kinds of fiber gratings are briefly introduced along with their typical spectra. Brief introduction on the fabrication techniques for fiber gratings, the hydrogen-loading setup and the fabrication system used in this thesis, is also given.
     After that, novel flow speed/rate sensing technology based on laser-heated fiber Bragg gratings (LHFBGs) is studied and developed. LHFBGs are novel components and have some special properties, e.g. photothermal conversion, laser-control wavelength tuning, which enable many unique applications. Based on analyzing the thermal distribution of the LHFBG and the hot-wire anemometry, LHFBG-based all-fiber air speed sensor and microfluidic flow rate sensor are proposed and experimentally demonstrated. By employing an FBG interrogator, the wavelength response, sensitivity and response time of these sensors are investigated in detail under different conditions, and high-resolution, high-sensitive flow speed/rate sensing is achieved.
     Furthermore, a fiber-optic refractive-index sensor based on laser-heated fiber long-period gratings (LHFLPGs) with active temperature compensation is proposed and experimentally demonstrated. Experimental investigation of the temperature sensitivity, refractive-index sensitivity and the wavelength tuning feature of the LHFLPGs, is well conducted. In theory, the proposed sensor is proved to be feasible, and temperature-insensitive refractive-index sensing is achieved experimentally.
     Finally, high temperature regenerated fiber Bragg gratings (RFBGs) are systematically studied. A novel fabrication technique for high temperature RFBGs is presented-during the viscoelastic tuning of the RFBG under high temperature, it is possible to employ a particular temperature profile to customize the profile of the grating period, enabling permanently tuned RFBGs with different wavelength and bandwidth. Using this technique, a narrowband uniform grating produced by uniform phase mask is permanently tuned into a broadband chirped grating, with arbitrary bandwidth and central wavelength. By employing the viscoelastic tuning technique, FBG array with three gratings with the same wavelength, is also permanently tuned into another FBG array with three different wavelengths, which is applicable to quasi-distributed high temperature sensing.
     In conclusion, novel fiber grating sensing technology and the fabrication technique of high temperature fiber gratings are investigated both theoretically and experimentally in this thesis, which would contribute to the development of the fiber grating technology and its applications.
引文
[1]HECHT J. City of light:the story of fiber optics [M]. New York:Oxford University Press, 1999.
    [2]VAN HEEL A C S. A new method of transporting optical images without aberrations [J]. Nature, 1954, 173(4392):39.
    [3]高锟(许迪锵译).潮平岸阔:高锟自述[M].成都:四川文艺出版社,2007.
    [4]KAO K, HOCKHAM G A. Dielectric-fibre surface waveguides for optical frequencies [J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(7):1151-1158.
    [5]MAURER R D, SCHULTZ P C. Fused silica optical waveguide:U.S., US3659915 A [P/OL].2 May 1972[24 April 2014]. http://www.google.com.hk/patents/US3659915.
    [6]MIYA T, TERUNUMA Y, HOSAKA T, et al. Ultimate low-loss single-mode fibre at 1.55 μm [J]. Electronics Letters,1979,15(4):106-108.
    [7]刘源,黄丽艳,雷学义.超低损耗光纤是超长站距光通信的新选择[J].电力系统通信,2011,32(6):35-38.
    [8]BERGH R, KOTLER G, SHAW H. Single-mode fibre optic directional coupler [J]. Electronics Letters,1980,16(7):260-261.
    [9]MILLER C M. Fixed and temperature tuned fiber fabry-perot filters:U.S., US5212745 [P/OL].18 May 1993[24 April 2014]. https://www.google.com/patents/US5212745.
    [10]MEARS R, REEKIE L, JAUNCEY I, et al. High-gain rare-earth-doped fiber amplifier at 1.54 μm; proceedings of the Optical Fiber Communication Conference, 1987 [C]. Optical Society of America.
    [11]DESURVIRE E, SIMPSON J R, BECKER P. High-gain erbium-doped traveling-wave fiber amplifier [J]. Optics Letters, 1987, 12(11):888-890.
    [12]LAWSON C, KOPERA P, HSU T, et al. In-line single-mode wavelength division multiplexer/demultiplexer [J]. Electronics Letters, 1984, 20(23): 963-964.
    [13]JACKSON K P, NEWTON S A, MOSLEHI B, et al. Optical fiber delay-line signal processing [J]. IEEE Transactions on Microwave Theory and Techniques,1985,33(3):193-210.
    [14]HILL K, FUJII Y, JOHNSON D, et al. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication [J]. Applied Physics Letters,1978,32(10):647-649.
    [15]舒学文.光纤光栅及其在光子信息技术中的应用[D].武汉;华中理工大学,2000.
    [16]王义平.新型长周期光纤光栅特性研究[D].重庆;重庆大学,2003.
    [17]刘伟升.光纤光栅传感与光纤光栅激光器的应用研究[D].杭州;浙江大学,2011.
    [18]MELTZ G, MOREY W W, GLENN W. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Optics Letters, 1989,14(15): 823-825.
    [19]KASHYAP R, ARMITAGE J, WYATT R, et al. All-fibre narrowband reflection gratings at 1500 nm [J]. Electronics Letters,1990,26(11):730-732.
    [20]HILL K, MALO B, BILODEAU F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask [J]. Applied Physics Letters,1993,62(10):1035-1037.
    [21]ANDERSON D, MIZRAHI V, ERDOGAN T, et al. Production of in-fibre gratings using a diffractive optical element [J]. Electronics Letters,1993, 29(6):566-568.
    [22]MENDEZ A. Fiber Bragg grating sensors:a market overview; proceedings of the Third European Workshop on Optical Fibre Sensors,2007 [C]. International Society for Optics and Photonics.
    [23]BLAKE J, KIM B, SHAW H. Fiber-optic modal coupler using periodic microbending [J]. Optics Letters,1986,11(3):177-179.
    [24]HILL K, MALO B, VINEBERG K, et al. Efficient mode conversion in telecommunication fibre using externally written gratings [J]. Electronics Letters,1990,26(16):1270-1272.
    [25]VENGSARKAR A M, LEMAIRE P J, JUDKINS J B, et al. Long-period fiber gratings as band-rejection filters [J]. Journal of Lightwave Technology, 1996, 14(1):58-65.
    [26]BHATIA V, VENGSARKAR A M. Optical fiber long-period grating sensors [J]. Optics Letters,1996,21(9):692-694.
    [27]VENGSARKAR A M, BERGANO N S, DAVIDSON C R, et al. Long-period fiber-grating-based gain equalizers [J]. Optics Letters,1996,21(5):336-338.
    [28]ERDOGAN T. Fiber grating spectra [J]. Journal of Lightwave Technology, 1997,15(8):1277-1294.
    [29]ERDOGAN T. Cladding-mode resonances in short-and long-period fiber grating filters [J]. JOSAA,1997,14(8):1760-1773.
    [30]HILL K O. Photosensitivity in optical fiber waveguides:From discovery to commercialization [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2000,6(6): 1186-1189.
    [31]GILES C. Lightwave applications of fiber Bragg gratings [J]. Journal of Lightwave Technology,1997,15(8):1391-1404.
    [32]TOMLINSON W. Evolution of passive optical component technologies for fiber-optic communication systems [J]. Journal of Lightwave Technology, 2008,26(9):1046-1063.
    [33]M NDEZ A. Overview of Trends in Optical Fiber Sensors; proceedings of the The 14th OptoElectronics and Communications Conference (OECC 2009), HongKong,2009 [C].2009.
    [34]2013-2018 ElectroniCast forecast of global market consumption of Fiber Optic Sensors [J/OL] 2014, http://www.electronicastconsultants.com/.
    [35]KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors [J]. Journal of Lightwave Technology,1997,15(8):1442-1463.
    [36]KERSEY A, BERKOFF T. Fiber-optic Bragg-grating differential-temperature sensor [J]. IEEE Photonics Technology Letters, 1992,4(10):1183-1185.
    [37]KERSEY A, BERKOFF T, MOREY W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection [J]. Electronics Letters,1992,28(3):236-238.
    [38]GUO T, SHAO L, TAM H-Y, et al. Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling [J]. Optics Express,2009,17(23):20651-20660.
    [39]GUAN B-O, TAM H-Y, LIU S-Y. Temperature-independent fiber Bragg grating tilt sensor [J]. IEEE Photonics Technology Letters, 2004, 16(1): 224-226.
    [40]XU M, REEKIE L, CHOW Y, et al. Optical in-fibre grating high pressure sensor [J]. Electronics Letters,1993,29(4):398-399.
    [41]LIU W, GUO T, WONG A C-L, et al. Highly sensitive bending sensor based on Er 3+-doped DBR fiber laser [J]. Optics Express, 2010, 18(17):17834-17840.
    [42]WANG Y, RAO Y. Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously [J]. Electronics Letters, 2004,40(3):164-166.
    [43]GUO T, IVANOV A, CHEN C, et al. Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling [J]. Optics Letters, 2008,33(9):1004-1006.
    [44]BETZ D C, THURSBY G, CULSHAW B, et al. Acousto-ultrasonic sensing using fiber Bragg gratings [J]. Smart Materials and Structures, 2003, 12(1): 122.
    [45]FISHER N, HENDERSON P, JACKSON D. The interrogation of a conventional current transformer using an in-fibre Bragg grating [J]. Measurement Science and Technology,1997,8(10):1080.
    [46]FALCIAI R, MIGNANI A, VANNINI A. Long period gratings as solution concentration sensors [J]. Sensors and Actuators B: Chemical, 2001, 74(1): 74-77.
    [47]PATRICK H J, KERSEY A D, BUCHOLTZ F. Analysis of the response of long period fiber gratings to external index of refraction [J]. Journal of Lightwave Technology, 1998,16(9):1606.
    [48]LI H-N, LI D-S, SONG G-B. Recent applications of fiber optic sensors to health monitoring in civil engineering [J]. Engineering Structures, 2004, 26(11):1647-1657.
    [49]CHAN T H, YU L, TAM H-Y, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation [J]. Engineering Structures,2006,28(5):648-659.
    [50]KERSEY A D. Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry [J]. IEICE Transactions on Electronics, 2000,83(3):400-404.
    [51]SHLYAGIN M G, MIRIDONOV S V, SPIRIN V V, et al. Fiber Bragg grating sensor for liquid hydrocarbon detection; proceedings of the Symposium on Applied Photonics, 2000 [C]. International Society for Optics and Photonics.
    [52]REILLY D, WILLSHIRE A J, FUSIEK G, et al. A fiber-Bragg-grating-based sensor for simultaneous AC current and temperature measurement [J]. IEEE Sensors Journal,2006,6(6):1539-1542.
    [53]TAM H-Y, LIU S-Y, GUAN B-O, et al. Fiber Bragg grating sensors for structural and railway applications; proceedings of the Photonics Asia 2004, 2005 [C]. International Society for Optics and Photonics.
    [54]RAO Y-J, WEBB D J, JACKSON D A, et al. In-fiber Bragg-grating temperature sensor system for medical applications [J]. Journal of Lightwave Technology,1997,15(5):779-785.
    [55]FISHER N E, WEBB D J, PANNELL C N, et al. Medical ultrasound detection using fiber Bragg gratings; proceedings of the Photonics East (ISAM, VVDC, IEMB), 1999 [C]. International Society for Optics and Photonics.
    [56]CUSANO A, PILLA P, CONTESSA L, et al. High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water [J]. Applied Physics Letters, 2005,87(23):234105.
    [57]常飞,韩庆,尚柏林.光纤技术在军用飞机结构健康监控中的研究[J].科学技术与工程,2008,8(10):2641-2646.
    [58]李东明.干涉型光纤光栅水听器关键技术研究[D].杭州;浙江大学,2013.
    [59]EZBIRI A, KANELLOPOULOS S, HANDEREK V. High resolution instrumentation system for fibre-Bragg grating aerospace sensors [J]. Optics Communications,1998,150(1):43-48.
    [60]BETZ D, STAUDIGEL L, TRUTZEL M N. Test of a fiber Bragg grating sensor network for commercial aircraft structures; proceedings of the 15th Optical Fiber Sensors Conference Technical Digest,2002,2002 [C]. IEEE.
    [61]FERRARO P, DE NATALE G. On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring [J]. Optics and Lasers in Engineering,2002,37(2):115-130.
    [62]ZHOU K, CHEN X, ZHANG L, et al. High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings [J]. Electronics Letters,2004,40(4): 232-234.
    [63]RINDORF L, JENSEN J B, DUFVA M, et al. Photonic crystal fiber long-period gratings for biochemical sensing [J]. Optics Express,2006,14(18): 8224-8231.
    [64]FAN X, WHITE I M, SHOPOVA S I, et al. Sensitive optical biosensors for unlabeled targets:A review [J]. Analytica Chimica Acta,2008,620(1):8-26.
    [65]RAO Y-J. In-fibre Bragg grating sensors [J]. Measurement Science and Technology,1997,8(4):355.
    [66]GUAN B-O, TAM H-Y, TAO X-M, et al. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating [J]. IEEE Photonics Technology Letters,2000,12(6):675-677.
    [67]ZHANG A P, SHAO L-Y, DING J-F, et al. Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature [J]. IEEE Photonics Technology Letters, 2005,17(11):2397-2399.
    [68]XIANG-KAI Z, YUN-JIANG R. Simultaneous static strain, temperature and vibration measurement using an integrated FBG/EFPI sensor [J]. Chinese Physics Letters,2001,18(12):1617.
    [69]ZENG X, RAO Y, WANG Y, et al. Transverse load, static strain, temperature and vibration measurement using a cascaded FBG/EFPI/LPFG sensor system; proceedings of the 15th Optical Fiber Sensors Conference Technical Digest, 2002 [C]. IEEE.
    [70]HUANG S, OHN M. Phase-based Bragg intragrating distributed strain sensor [J], Applied Optics,1996,35(7):1135-1142.
    [71]VOLANTHEN M, GEIGER H, COLE M, et al. Measurement of arbitrary strain profiles within fibre gratings [J]. Electronics Letters, 1996, 32(11): 1028-1029.
    [72]DUCK G, OHN M M. Distributed Bragg grating sensing with a direct group-delay measurement technique [J]. Optics Letters,2000,25(2):90-92.
    [73]CHEN D, LIU W, JIANG M, et al. High-resolution strain/temperature sensing system based on a high-finesse fiber cavity and time-domain wavelength demodulation [J]. Journal of Lightwave Technology,2009,27(13):2477-2481.
    [74]GAO S, ZHANG A P, TAM H-Y, et al. All-optical fiber anemometer based on laser heated fiber Bragg gratings [J]. Optics Express, 2011, 19(11): 10124-10130.
    [75]RINDORF L, BANG O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating [J]. Optics Letters, 2008, 33(6): 563-565.
    [76]CORRES J M, DEL VILLAR I, MATIAS I R, et al. Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly [J]. Optics Letters, 2007,32(1):29-31.
    [77]KERSEY A, MOREY W, BERKOFF T. Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection [J]. Optics Letters, 1993,18(1):72-74.
    [78]KERSEY A D, BERKOFF T, MOREY W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter [J]. Optics Letters,1993,18(16):1370-1372.
    [79]YUN S H, RICHARDSON D, KIM B Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser [J]. Optics Letters, 1998,23(11): 843-845.
    [80]FERREIRA L, SANTOS J, FARAHI F. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings [J]. IEEE Photonics Technology Letters,1997,9(4):487-489.
    [81]DAVIS M, KERSEY A. All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler [J]. Electronics Letters,1994, 30(1):75-77.
    [82]GAGLIARDI G, SALZA M, AVINO S, et al. Probing the ultimate limit of fiber-optic strain sensing [J]. Science,2010,330(6007):1081-1084.
    [83]WEIS R S, KERSEY A D, BERKOFF T A. Four-element fiber grating sensor array with phase-sensitive detection; proceedings of the 1994 North American Conference on Smart Structures and Materials, 1994 [C]. International Society for Optics and Photonics.
    [84]RAO Y, ZHANG L, BENNION I, et al. Combined spatial-and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection [J]. Optics Letters,1995,20(20): 2149-2151.
    [85]BERKOFF T, KERSEY A. Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection [J]. Photonics Technology Letters, IEEE,1996,8(11):1522-1524.
    [86]DOBB H, KALLI K, WEBB D J. Temperature-insensitive long period grating sensors in photonic crystal fibre [J]. Electronics Letters,2004,40(11): 657-658.
    [87]LUO J, LIU B, KAI G, et al. Temperature insensitive wheel-type FBG pressure sensor; proceedings of the Fundamental Problems of Optoelectronics and Microelectronics Ⅲ,2007 [C]. International Society for Optics and Photonics.
    [88]ERDOGAN T, MIZRAHI V, LEMAIRE P, et al. Decay of ultraviolet-induced fiber Bragg gratings [J]. Journal of Applied Physics, 1994, 76(1): 73-80.
    [89]HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview [J]. Journal of lightwave technology,1997,15(8):1263-1276.
    [90]涂峰.光敏光纤与光纤光栅器件研究[D].武汉;华中科技大学,2009.
    [91]HOSONO H, ABE Y, KINSER D L, et al. Nature and origin of the 5-eV band in SiO2: GeO 2 glasses [J]. Physical Review B,1992,46(18):11445.
    [92]HAND D, RUSSELL P S J. Photoinduced refractive-index changes in germanosilicate fibers [J]. Optics Letters,1990,15(2):102-104.
    [93]TSAI T-E, WILLIAMS G M, FRIEBELE E J. Index structure of fiber Bragg gratings in Ge-SiO2 fibers [J]. Optics Letters,1997,22(4):224-226.
    [94]ATKINS R M, MIZRAHI V. Observations of changes in UV absorption bands of singlemode germanosilicate core optical fibres on writing and thermally erasing refractive index gratings [J]. Electronics Letters,1992,28(18): 1743-1744.
    [95]NIAY P, BERNAGE P, LEGOUBIN S, et al. Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres:writing and erasing experiments using pulsed or cw uv exposure [J]. Optics Communications,1994,113(1):176-192.
    [96]BERNARDIN J P, LAWANDY N. Dynamics of the formation of Bragg gratings in germanosilicate optical fibers [J]. Optics Communications,1990, 79(3):194-199.
    [97]许鸥.基于光纤光栅的光纤激光器、滤波器和倾斜光纤光栅的研究[D].北京;北京交通大学,2009.
    [98]DOUAY M, XIE W, TAUNAY T, et al. Densification involved in the UV-based photosensitivity of silica glasses and optical fibers [J]. Journal of Lightwave Technology,1997,15(8):1329-1342.
    [99]POUMELLEC B, GUENOT P, RIANT I, et al. UV induced densification during Bragg grating inscription in Ge:SiO2 preforms [J]. Optical Materials, 1995,4(4):441-449.
    [100]CHIANG K S, SCEATS M G, WONG D. Ultraviolet photolytic-induced changes in optical fibers:the thermal expansion coefficient [J]. Optics Letters, 1993,18(12):965-967.
    [101]KASHYAP R. Fiber bragg gratings [M]. New York: Academic press, 1999.
    [102]DONG L, CRUZ J, TUCKNOTT J, et al. Strong photosensitive gratings in tin-doped phosphosilicate optical fibers [J]. Optics Letters,1995,20(19): 1982-1984.
    [103]DONG L, CRUZ J, REEKIE L, et al. Enhanced photosensitivity in tin-codoped germanosilicate optical fibers [J]. IEEE Photonics Technology Letters,1995,7(9):1048-1050.
    [104]BILODEAU F, MORSE T, KILIAN A, et al. Ultraviolet-light photosensitivity in Er-Ge-doped optical fiber [J]. Optics Letters,1990, 15(20):1138-1140.
    [105]HILL K O, MALO B, BILODEAU F, et al. Photosensitivity in Eu2+: A12O3-Doped-Core Fiber: Preliminary Results and Application to Mode Converters; proceedings of the Optical Fiber Communication, San Diego, California, 1991/02/18,1991 [C]. Optical Society of America.
    [106]BROER M, CONE R, SIMPSON J R. Ultraviolet-induced distributed-feedback gratings in Ce3+-doped silica optical fibers [J]. Optics Letters,1991,16(18):1391-1393.
    [107]DONG L, ARCHAMBAULT J, TAYLOR E, et al. Photosensitivity in tantalum-doped silica optical fibers [J]. Journal of the Optical Society of America B,1995,12(9):1747-1750.
    [108]LEMAIRE P J, ATKINS R, MIZRAHI V, et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO 2 doped optical fibres [J]. Electronics Letters, 1993, 29(13): 1191-1193.
    [109]STONE J. Interactions of hydrogen and deuterium with silica optical fibers:A review [J]. Journal of Lightwave Technology, 1987,5(5):712-733.
    [110]MIZRAHI V, LEMAIRE P J, ERDOGAN T, et al. Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania - doped channel waveguides [J]. Applied Physics Letters, 1993,63(13):1727-1729.
    [111]LEMAIRE P J. Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases [J]. Optical Engineering, 1991,30(6):780-789.
    [112]BILODEAU F, HIBINO Y, ABE M, et al. Photosensitization of optical fiber and silica-on-silicon/silica waveguides [J]. Optics Letters, 1993, 18(12): 953-955.
    [113]EBENDORFF-HEIDEPRIEM H. Progress in photosensitivity of glasses fundamentals and overview; proceedings of the 1st International Workshop on Glass and the Photonics Revolution,2002 [C].
    [114]BOM M, WOLF E. Principles of optics,7th ed. [M]. New York:Pergamon, 1980.
    [115]PERAL E, CAPMANY J. Generalized Bloch wave analysis for fiber and waveguide gratings [J]. Journal of Lightwave Technology,1997,15(8): 1295-1302.
    [116]POLADIAN L. Graphical and WKB analysis of nonuniform Bragg gratings [J]. Physical Review E, 1993,48(6):4758.
    [117]BOUZID A, ABUSHAGUR M A. Scattering analysis of slanted fiber gratings [J]. Applied Optics,1997,36(3):558-562.
    [118]YARIV A. Coupled-mode theory for guided-wave optics [J]. IEEE Journal of Quantum Electronics,1973,9(9):919-933.
    [119]YARIV A, NAKAMURA M. Periodic structures for integrated optics [J]. IEEE Journal of Quantum Electronics,1977,13(4):233-253.
    [120]LAM D, GARS IDE B K. Characterization of single-mode optical fiber filters [J]. Applied Optics,1981,20(3):440-445.
    [121]MIZRAHI V, SIPE J E. Optical properties of photosensitive fiber phase gratings [J]. Journal of Lightwave Technology,1993,11(10):1513-1517.
    [122]SIPE J, POLADIAN L, STERKE C. Propagation through nonuniform grating structures [J]. JOSAA,1994,11(4):1307-1320.
    [123]ERDOGAN T, SIPE J. Tilted fiber phase gratings [J]. JOSA A,1996,13(2): 296-313.
    [124]HUANG W, HONG J. A transfer matrix approach based on local normal modes for coupled waveguides with periodic perturbations [J]. Journal of Lightwave Technology,1992,10(10):1367-1375.
    [125]KOGELNIK H. Filter Response of Nonuniform Almost - Periodic Structures [J]. Bell system Technical journal,1976,55(1):109-126.
    [126]YAMADA M, SAKUDA K. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach [J]. Applied Optics,1987, 26(16):3474-3478.
    [127]MILLER G A, ASKINS C G, FRIEBELE E J. Modified F-matrix calculation of Bragg grating spectra and its use with a novel nonlinear index growth law [J]. Journal of Lightwave Technology,2006,24(6):2416-2427.
    [128]ALBERT J, SCH LZGEN A, TEMYANKO V, et al. Strong Bragg gratings in phosphate glass single mode fiber [J]. Applied Physics Letters,2006,89(10): 1127.
    [129]ROGOJAN R M, SCH LZGEN A, PEYGHAMBARIAN N, et al. Photo-thermal gratings in Er3+/Yb3+-doped core phosphate glass single mode fibers [J]. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OS A Technical Digest (Optical Society of America, 2007), paper BTuC3, 2007,
    [130]SCH LZGEN A, LI L, SUZUKI S, et al. Recent advances in phosphate glass fiber and its application to compact high-power fiber lasers; proceedings of the Fiber Lasers Ⅴ: Technology, Systems, and Applications, 2008 [C]. International Society for Optics and Photonics.
    [131]XIONG Z, PENG G, WU B, et al. Highly tunable Bragg gratings in single-mode polymer optical fibers [J]. Photonics Technology Letters, IEEE, 1999,11(3):352-354.
    [132]DAVIS D, GAYLORD T, GLYTSIS E, et al. Long-period fibre grating fabrication with focused CO 2 laser pulses [J]. Electronics Letters,1998,34(3): 302-303.
    [133]HWANG I K, YUN S H, KIM B Y. Long-period fiber gratings based on periodic microbends [J]. Optics Letters,1999,24(18):1263-1265.
    [134]LOWDER T L, SMITH K H, IPSON B L, et al. High-temperature sensing using surface relief fiber Bragg gratings [J]. Photonics Technology Letters, IEEE,2005,17(9):1926-1928.
    [135]DING W, ANDREWS S, MAIER S. Surface corrugation Bragg gratings on optical fiber tapers created via plasma etch postprocessing [J]. Optics Letters, 2007,32(17):2499-2501.
    [136]LIU Y, MENG C, ZHANG A P, et al. Compact microfiber Bragg gratings with high-index contrast [J]. Optics Letters, 2011,36(16):3115-3117.
    [137]LUO W, KOU J-L, CHEN Y, et al. Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor [J]. Applied Physics Letters, 2012, 101(13):133502.
    [138]ALBERT J, HILL K O, MALO B, et al. Apodisation of the spectral response of fibre Bragg gratings using a phase mask with variable diffraction efficiency [J]. Electronics Letters,1995,31(3):222-223.
    [139]MALO B, THERIAULT S, JOHNSON D, et al. Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask [J]. Electronics Letters, 1995,31(3):223-225.
    [140]OUELLETTE F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides [J]. Optics Letters,1987,12(10):847-849.
    [141]LOH W, LAMING R.1.55 μm phase-shifted distributed feedback fibre laser [J]. Electronics Letters,1995,31(17):1440-1442.
    [142]NASU Y, YAMASHITA S. Multiple phase-shift superstructure fibre Bragg grating for DWDM systems [J]. Electronics Letters, 2001,37(24):1471-1472.
    [143]KASHYAP R, WYATT R, CAMPBELL R. Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating [J]. Electronics Letters,1993,29(2):154-156.
    [144]GUO T, TAM H-Y, KRUG P A, et al. Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling [J]. Optics Express, 2009,17(7):5736-5742.
    [145]ALBERT J, SHAO L Y, CAUCHETEUR C. Tilted fiber Bragg grating sensors [J]. Laser & Photonics Reviews,2013,7(1):83-108.
    [146]DAI Y, CHEN X, XU X, et al. High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift [J]. IEEE Photonics Technology Letters,2005,17(5):1040-1042.
    [147]IBSEN M, EGGLETON B, SCEATS M, et al. Broadly tunable DBR fibre laser using sampled fibre Bragg gratings [J]. Electronics Letters, 1995,31(1): 37-38.
    [148]YANG J, TJIN S C, NGO N Q. Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating [J]. IEEE Photonics Technology Letters, 2004,16(4):1026-1028.
    [149]OUELLETTE F, KRUG P, STEPHENS T, et al. Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings [J]. Electronics Letters,1995,31(11):899-901.
    [150]DIX C, MCKEE P. High accuracy electron-beam grating lithography for optical and optoelectronic devices [J]. Journal of Vacuum Science & Technology B, 1992,10(6):2667-2670.
    [151]TENNANT D, KOCH T, MULGREW P, et al. Characterization of near-field holography grating masks for optoelectronics fabricated by electron beam lithography [J]. Journal of Vacuum Science & Technology B,1992,10(6): 2530-2535.
    [152]CURRAN J E. Production of surface patterns by chemical and plasma etching [J]. Journal of Physics E:Scientific Instruments, 1981,14(4):393.
    [153]ZHANG Q, BROWN D, REINHART L, et al. Tuning Bragg wavelength by writing gratings on prestrained fibers [J]. IEEE Photonics Technology Letters, 1994,6(7):839-841.
    [154]PROHASKA J, SNITZER E, RISHTON S, et al. Magnification of mask fabricated fibre Bragg gratings [J]. Electronics Letters, 1993, 29(18): 1614-1615.
    [155]KASHYAP R. Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks [J]. Electronics Letters, 1998, 34(21):2025-2027.
    [156]COLE M, LOH W, LAMING R, et al. Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask [J]. Electronics Letters, 1995,31(17):1488-1490.
    [157]LOH W, COLE M, ZERVAS M, et al. Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique [J]. Optics Letters, 1995,20(20):2051-2053.
    [158]STUBBE R, SAHLGREN B, SANDGREN S, et al. Novel technique for writing long superstructured fiber Bragg gratings [J]. Photosensitivity and quadratic nonlinearity in glass waveguides:fundamentals and applications, 1995,22(
    [159]MALO B, HILL K, BILODEAU F, et al. Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques [J]. Electronics Letters, 1993,29(18): 1668-1669.
    [160]LIU S, TAM H, DEMOKAN M. Low-cost microlens array for long-period grating fabrication [J]. Electronics Letters,1999,35(1):79-81.
    [161]RAO Y-J, WANG Y-P, RAN Z-L, et al. Characteristics of novel long-period fiber gratings written by focused high-frequency CO2 laser pulses; proceedings of the Asia-Pacific Optical and Wireless Communications Conference and Exhibit, 2001 [C]. International Society for Optics and Photonics.
    [162]LIN C, WANG L. Loss-tunable long period fibre grating made from etched corrugation structure [J]. Electronics Letters,1999,35(21):1872-1873.
    [163]SAVIN S, DIGONNET M, KINO G, et al. Tunable mechanically induced long-period fiber gratings [J]. Optics Letters,2000,25(10):710-712.
    [164]FUJIMAKI M, OHKI Y, BREBNER J L, et al. Fabrication of long-period optical fiber gratings by use of ion implantation [J]. Optics Letters,2000, 25(2):88-89.
    [165]邵理阳.光纤光栅器件及传感应用研究[D].杭州;浙江大学,2008.
    [166]LYNNWORTH L, LIU Y. Ultrasonic flowmeters:Half-century progress report, 1955-2005 [J]. Ultrasonics,2006,44(e1371-e1378.
    [167]ANKLIN M, DRAHM W, RIEDER A. Coriolis mass flowmeters:Overview of the current state of the art and latest research [J]. Flow Measurement and Instrumentation,2006,17(6):317-323.
    [168]NGUYEN N. Micromachined flow sensors—a review [J]. Flow measurement and Instrumentation,1997,8(1):7-16.
    [169]LIM J, YANG Q, JONES B, et al. DP flow sensor using optical fibre Bragg grating [J]. Sensors and Actuators A: Physical,2001,92(1):102-108.
    [170]TAKASHIMA S, ASANUMA H, NIITSUMA H. A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique [J]. Sensors and Actuators A: Physical,2004,116(1):66-74.
    [171]ZHAO Y, CHEN K, YANG J. Novel target type flowmeter based on a differential fiber Bragg grating sensor [J]. Measurement,2005,38(3): 230-235.
    [172]LATKA I, BOSSELMANN T, ECKE W, et al. Monitoring of inhomogeneous flow distributions using fibre-optic Bragg grating temperature sensor arrays; proceedings of the Photonics Europe, 2006 [C]. International Society for Optics and Photonics.
    [173]CASHDOLLAR L J, CHEN K P. Fiber Bragg grating flow sensors powered by in-fiber light [J]. Sensors Journal, IEEE,2005,5(6):1327-1331.
    [174]JEWART C, MCMILLEN B, CHO S K, et al. X-probe flow sensor using self-powered active fiber Bragg gratings [J]. Sensors and Actuators A: Physical,2006,127(1):63-68.
    [175]LAMB D W, HOOPER A. Laser-optical fiber Bragg grating anemometer for measuring gas flows: application to measuring the electric wind [J]. Optics Letters,2006,31(8):1035-1037.
    [176]XU Y, TAM H, LIU S, et al. Pump-induced thermal effects in Er-Yb fiber grating DBR lasers [J]. IEEE Photonics Technology Letters, 1998,10(9): 1253-1255.
    [177]DAVIS M, DIGONNET M, PANTELL R H. Thermal effects in doped fibers [J]. Journal of Lightwave Technology, 1998,16(6):1013-1023.
    [178]BROWN D C, HOFFMAN H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers [J]. IEEE Journal of Quantum Electronics, 2001,37(2):207-217.
    [179]楼静漪,童利民.用于激光热疗的激光抽运高掺杂光纤光热头研究[J].中国激光,2002,29(9):817-820.
    [180]ZHANG W, WEBB D J, PENG G-D. Remotely tuneable optical filter based on polymer fibre Bragg grating; proceedings of the 21st International Conference on Optical Fibre Sensors (OFS21),2011 [C]. International Society for Optics and Photonics.
    [181]LAI Y, ZHANG W, ZHANG L, et al. Optically tunable fiber grating transmission filters [J]. Optics Letters, 2003,28(24):2446-2448.
    [182]DAVIS M K, DIGONNET M J. Measurements of thermal effects in fibers doped with cobalt and vanadium [J]. Journal of Lightwave Technology,2000, 18(2):161-165.
    [183]CORIC D, CHATTON R, LIMBERGER H G, et al. High resolution liquid-level sensor based on fiber Bragg gratings in attenuation fiber and optical low-coherence reflectometry; proceedings of the Optical Fiber Sensors, 2006 [C]. Optical Society of America.
    [184]CORIC D, CHATTON R, LUCHESSA Y, et al. Light-controlled reconfigurable fiber Bragg gratings written in attenuation fiber; proceedings of the National Fiber Optic Engineers Conference, 2007 [C]. Optical Society of America.
    [185]CHEN T, BURIC M P, CHEN K P, et al. Active fiber hydrogen sensors for low-temperature operation; proceedings of the Conference on Lasers and Electro-Optics,2009 [C]. Optical Society of America.
    [186]CAMPELJ S, DONLAGIC D. A thermally scanned all-fiber interferometer based on vanadium-doped fiber; proceedings of the SPIE Photonics Europe, 2012 [C]. International Society for Optics and Photonics.
    [187]MATJASEC Z, CAMPELJ S, DONLAGIC D. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers [J]. Optics Express, 2013,21(10):11794-11807.
    [188]MORISHITA Y, MATSUYAMA E, NOUCHI K, et al. Co2+-doped flatband optical fiber attenuator [J]. Optics Letters,2001,26(11):783-785.
    [189]BRUUN H. Hot-wire anemometry: principles and signal analysis [M]. Oxford University Press, Oxford,1995.
    [190]盛森芝,庄永基,刘宗彦.一种新型热线热膜流速计[J].实验流体力学,2009,23(1):89-93.
    [191]MUIRHEAD K, HORAN P, POSTE G. Flow cytometry: present and future [J]. Nature Biotechnology,1985,3(4):337-356.
    [192]RODR GUEZ-VILLARREAL A I, ARUNDELL M, CARMONA M, et al. High flow rate microfluidic device for blood plasma separation using a range of temperatures [J]. Lab on a Chip,2010,10(2):211-219.
    [193]ASHAUER M, GLOSCH H, HEDRICH F, et al. Thermal flow sensor for liquids and gases based on combinations of two principles [J]. Sensors and Actuators A: Physical,1999,73(1):7-13.
    [194]CHEN J, FAN Z, ZOU J, et al. Two-dimensional micromachined flow sensor array for fluid mechanics studies [J]. Journal of Aerospace Engineering, 2003, 16(2):85-97.
    [195]BERTHET H, JUNDT J, DURIVAULT J, et al. Time-of-flight thermal flowrate sensor for lab-on-chip applications [J]. Lab on a Chip,2011,11(2): 215-223.
    [196]LIEN V, VOLLMER F. Microfluidic flow rate detection based on integrated optical fiber cantilever [J]. Lab on a Chip,2007,7(10):1352-1356.
    [197]OOSTERBROEK R, LAMMERINK T, BERENSCHOT J, et al. A micromachined pressure/flow-sensor [J]. Sensors and Actuators A: Physical, 1999,77(3):167-177.
    [198]ENOKSSON P, STEMME G, STEMME E. A silicon resonant sensor structure for Coriolis mass-flow measurements [J]. Journal of Microelectromechanical Systems,1997,6(2):119-125.
    [199]COLLINS J, LEE A P. Microfluidic flow transducer based on the measurement of electrical admittance [J]. Lab on a Chip,2004,4(1):7-10.
    [200]CZAPLEWSKI D A, ILIC B R, ZALALUTDINOV M, et al. A micromechanical flow sensor for microfluidic applications [J]. Journal of Microelectromechanical Systems,2004,13(4):576-585.
    [201]PATRICK H, CHANG C, VOHRA S. Long period fibre gratings for structural bend sensing [J]. Electronics Letters,1998,34(18):1773-1775.
    [202]MACDOUGALL T W, PILEVAR S, HAGGANS C W, et al. Generalized expression for the growth of long period gratings [J]. IEEE Photonics Technology Letters,1998,10(10):1449-1451.
    [203]SHU X, ZHANG L, BENNION I. Sensitivity characteristics of long-period fiber gratings [J]. Journal of Lightwave Technology, 2002,20(2):255.
    [204]JUDKINS J B, PEDRAZZANI J R, DIGIOVANNI D J, et al. Temperature-insensitive long-period fiber gratings; proceedings of the Tech Dig Conf Opt Fiber Commun,1996 [C].
    [205]SHU X, GWANDU B A, LIU Y, et al. Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement [J]. Optics Letters,2001,26(11):774-776.
    [206]ZHANG Y, GAO S, ZHANG A P. Optically Heated Long-Period Grating as Temperature-Insensitive Fiber-Optic Refractive-Index Sensor [J]. IEEE Photonics Journal,2012,4(6):2340-2345.
    [207]BAKER S R, ROURKE H N, BAKER V, et al. Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber [J]. Journal of Lightwave Technology,1997,15(8):1470-1477.
    [208]MELTZ G, MOREY W W. Bragg grating formation and germanosilicate fiber photosensitivity; proceedings of the Proc SPIE 1516, International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, 1991 [C]. International Society for Optics and Photonics.
    [209]杨樟成,徐汉锋,董新永.高温光纤光栅的研究进展[J].激光与光电子学进展,2012,49(5):21-28.
    [210]ARCHAMBAULT J-L, REEKIE L, RUSSELL P S J.100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses [J]. Electronics Letters,1993,29(5):453-455.
    [211]MARTINEZ A, KHRUSHCHEV I, BENNION I. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser [J]. Electronics Letters,2005,41(4):176-178.
    [212]MIHAILOV S J, SMELSER C W, GROBNIC D, et al. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask [J]. Journal of Lightwave Technology,2004,22(1):94.
    [213]GROBNIC D, MIHAILOV S J, SMELSER C W, et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications [J]. IEEE Photonics Technology Letters, 2004, 16(11):2505-2507.
    [214]DONG L, LIU W, REEKIE L. Negative-index gratings formed by a 193-nm excimer laser [J]. Optics Letters,1996,21(24):2032-2034.
    [215]GROOTHOFF N, CANNING J. Enhanced type IIA gratings for high-temperature operation [J]. Optics Letters,2004,29(20):2360-2362.
    [216]SHEN Y, HE J, SUN T, et al. High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber: decay mechanisms involved during annealing [J]. Optics Letters, 2004, 29(6): 554-556.
    [217]SHEN Y, XIA J, SUN T, et al. Photosensitive indium-doped germano-silica fiber for strong FBGs with high temperature sustainability [J]. Photonics Technology Letters, IEEE, 2004, 16(5):1319-1321.
    [218]SHEN Y, HE J, QIU Y, et al. Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability [J]. JOSA B,2007, 24(3):430-438.
    [219]BUTOV O, DIANOV E, GOLANT K. Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures [J]. Measurement Science and Technology,2006,17(5):975.
    [220]GOLANT K M, DIANOV E M, KHRAPKO R, et al. Nitrogen-doped silica fibers and fiber-based optoelectronic components; proceedings of the Advances in Fiber Optics, 2000 [C]. International Society for Optics and Photonics.
    [221]KONDO Y, NOUCHI K, MITSUYU T, et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses [J]. Optics Letters,1999,24(10):646-648.
    [222]DAVIS D, GAYLORD T, GLYTSIS E, et al. Very-high-temperature stable CO 2-laser-induced long-period fibre gratings [J]. Electronics Letters, 1999, 35(9): 740-742.
    [223]HUMBERT G, MALKI A. Characterizations at very high temperature of electric arc-induced long-period fiber gratings [J]. Optics Communications, 2002,208(4):329-335.
    [224]HUMBERT G, MALKI A, F VRIER S, et al. Characterizations at high temperatures of long-period gratings written in germanium-free air silica microstructure fiber [J]. Optics Letters,2004,29(1):38-40.
    [225]FOKINE M. Formation of thermally stable chemical composition gratings in optical fibers [J]. Journal of the Optical Society of America B, 2002,19(8): 1759-1765.
    [226]FOKINE M. Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers [J]. Optics Letters, 2002,27(12): 1016-1018.
    [227]FOKINE M. Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers [J]. Optics Letters, 2002,27(22): 1974-1976.
    [228]FOKINE M. Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber [J]. Optics Letters, 2004,29(11): 1185-1187.
    [229]ZHANG B, KAHRIZI M. High-temperature resistance fiber Bragg grating temperature sensor fabrication [J]. IEEE Sensors Journal,2007,7(4):586-591.
    [230]TRPKOVSKI S, KITCHER D J, BAXTER G W, et al. High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber [J]. Optics Letters,2005,30(6):607-609.
    [231]BANDYOPADHYAY S, CANNING J, STEVENSON M, et al. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm [J]. Optics Letters,2008,33(16):1917-1919.
    [232]CANNING J, STEVENSON M, BANDYOPADHYAY S, et al. Extreme silica optical fibre gratings [J]. Sensors, 2008,8(10):6448-6452.
    [233]CANNING J, BANDYOPADHYAY S, STEVENSON M, et al. Regenerated gratings [J]. Journal of the European Optical Society-Rapid publications, 2009, 4(n. a.):09052.
    [234]LINDNER E, CHOJETZKI C, BR CKNER S, et al. Thermal regeneration of fiber Bragg gratings in photosensitive fibers [J]. Optics Express,2009,17(15): 12523-12531.
    [235]LINDNER E, CANNING J, CHOJETZKI C, et al. Thermal regenerated type Ha fiber Bragg gratings for ultra-high temperature operation [J]. Optics Communications,2011,284(1):183-185.
    [236]BANDYOPADHYAY S, CANNING J, BISWAS P, et al. A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing [J]. Optics Express,2011,19(2): 1198-1206.
    [237]COOK K, SMELSER C, CANNING J, et al. Regenerated femtosecond fibre Bragg gratings; proceedings of the Asia Pacific Optical Sensors Conference, 2012 [C]. International Society for Optics and Photonics.
    [238]COOK K, SHAO L-Y, CANNING J. Regeneration and helium:regenerating Bragg gratings in helium-loaded germanosilicate optical fibre [J]. Optical Materials Express,2012,2(12):1733-1742.
    [239]CHEN T, CHEN R, JEWART C, et al. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing [J]. Optics Letters,2011,36(18):3542-3544.
    [240]ASLUND M L, CANNING J, CANAGASABEY A, et al. Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings [J]. International Journal of Heat and Mass Transfer,2012,55(11): 3288-3294.
    [241]MEZZADRI F, JANZEN F C, MARTELLI C, et al. Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra optica; proceedings of the MOMAG2012-15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag),2012 [C].
    [242]LAFFONT G, COTILLARD R, FERDINAND P.9000 hours-long high temperature annealing of regenerated Fiber Bragg Gratings; proceedings of the Fifth European Workshop on Optical Fibre Sensors, 2013 [C]. International Society for Optics and Photonics.
    [243]BUENO A, KINET D, M GRET P, et al. Fast thermal regeneration of fiber Bragg gratings [J]. Optics Letters,2013,38(20):4178-4181.
    [244]WANG T, SHAO L-Y, CANNING J, et al. Temperature and strain characterization of regenerated gratings [J]. Optics Letters, 2013,38(3): 247-249.
    [245]WANG T, SHAO L-Y, CANNING J, et al. Regeneration of fiber Bragg gratings under strain [J]. Applied Optics, 2013,52(10):2080-2085.
    [246]GAO S, CANNING J, COOK K. Ultra-high temperature chirped fiber Bragg gratings produced by gradient stretching of viscoelastic silica [J]. Optics Letters,2013,38(24):5397-5400.
    [247]FOKINE M, SAHLGREN B, STUBBE R. High temperature resistant Bragg gratings fabricated in silica optical fibres; proceedings of the Proc Australian Conf on Optical Fibre Technology (ACOFT), December 1-4, 1996 [C].
    [248]FOKINE M. Photosensitivity, chemical composition gratings and optical fiber based components [D]. Stockholm; Royal Institute of Technology (KTH), 2002.
    [249]CANNING J, BANDYOPADHYAY S, BISWAS P, et al. Regenerated fibre Bragg gratings [J]. Frontiers in Guided Wave Optics and Optoelectronics, 2010,363-384.
    [250]RAINE K W, FECED R, KANELLOPOULOS S E, et al. Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers [J]. Applied Optics, 1999, 38(7):1086-1095.
    [251]SHAO L-Y, WANG T, CANNING J, et al. Bulk regeneration of optical fiber Bragg gratings [J]. Applied Optics, 2012,51(30):7165-7169.
    [252]SHAO L-Y, CANNING J, WANG T, et al. Viscosity of silica optical fibres characterized using regenerated gratings [J]. Acta Materialia, 2013,61(16): 6071-6081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700