井冈霉素与杀念菌素生物合成基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井冈霉素是从吸水链霉菌井冈变种5008(Streptomyces hygroscopicus var. jinggangensis 5008)中分离得到的一种弱碱性C7N氨基环醇类抗生素。它是一种海藻糖酶抑制剂,在中国及东南亚国家被广泛用在控制水稻叶鞘枯萎病和黄瓜幼苗枯萎病上。井冈霉素生物合成基因簇已被成功克隆并测序,这些序列信息有助于我们研究它的生物合成机理。
     我们在井冈霉素生物合成基因簇中确定了valC基因,它编码的酶与阿卡泊糖生物合成途径中的2-表-5-表-有效醇酮激酶(AcbM)同源。valC的失活使突变株丧失了合成井冈霉素的能力。用携带全长valC的质粒的互补实验使突变株ZYR-1中井冈霉素的产生得到恢复。这证明了valC在井冈霉素生物合成中的关键作用。ValC蛋白的体外实验揭示了ValC是一种新型的C7-环醇激酶,负责磷酸化有效烯酮和有效酮,但不能磷酸化2-表-5-表-有效醇酮、5-表-有效醇酮及葡萄糖。结果揭示了这个酶的新活性也证明了阿卡波糖和井冈霉素化学结构中共同的有效烯胺结构是通过不同的途径合成的。
     我们还在井冈霉素生物合成基因簇中确定了一个编码VOC超家族蛋白的基因valD。valD的失活显著降低了井冈霉素的产量,这种产量的降低可以在互补全长valD之后恢复,而互补N端或C端的ValD蛋白只能使产量部分恢复。异源表达的ValD负责催化2-表-5-表-有效醇酮异构生成5-表-有效醇酮。通过生物信息学分析发现ValD的N端区域有4个可能的活性位点H44、E107、H130和E183;C端区域也有4个可能的活性位点H229、E291、H315和E366。对ValD蛋白中8个可能的位点进行了单突变或组合突变结果显示,N端H44/E107和C端H315/E366比内部的4个氨基酸残基H130、E183、H229和E291更重要。
     我们还对基因簇中的valB、valK和valO三个基因进行基因置换。基因valB编码一个可能的核苷转移酶。我们推测ValB在井冈霉素生物合成中可能负责1-表-有效烯醇-1-磷酸的腺苷化。valB基因失活突变株丧失了产生井冈霉素的能力,而这种产量的丧失可以在互补全长基因valB后得到恢复。基因valK编码的蛋白与糖异构化酶/脱水酶具有显著的同源性。它可能负责5-表-有效醇酮C-5和C-6位的脱水反应。valK基因失活突变株丧失了合成井冈霉素的能力。这种产量丧失可在互补全长valK之后可到恢复。以上结果证明valB和valK是井冈霉素生物合成的必需基因。valO编码一个可能的磷酸酶/磷酸变位酶。我们推测它可能负责将磷酸基从C-7位转移到C-1位的羟基上。然而,valO基因失活突变株仍能产生井冈霉素,但积累了大量有效氧胺。互补全长valO之后,突变株中有效氧胺减少而井冈霉素增多。以上结果暗示了valO可能与有效氧胺和井冈霉素之间的转化有关。
     在一些抗生素产生菌中,对氨基苯甲酸(PABA)和它的前体4-氨基-4-脱氧分支酸(ADC)不仅参与初级代谢中叶酸的合成,也参与次级代谢产物抗生素的生物合成。在杀念菌素产生菌FR-008中对融合的ADC合成酶基因pabAB的缺失使得杀念菌素产量几乎完全丧失,这种产量的丧失可以通过互补克隆的pabAB或喂养外源PABA得到恢复。一个位于PKS区域上游的可能的IV型PLP依赖性酶的编码基因pabC-1的失活导致杀念菌素的产量约下降到野生型的20%。用pabC-1对大肠杆菌pabC突变株的成功互补证明了pabC-1与PABA的生物合成相关。此外,我们从同一菌株中克隆了另一个可能的IV型PLP依赖性酶的编码基因pabC-2。pabC-2的失活导致杀念菌素产量约降低到野生型水平的57%。PabC-2对大肠杆菌pabC突变株的成功互补证明了它参与PABA的生物合成。而pabC-1/pabC-2双突变株几乎完全丧失了合成杀念菌素的能力,说明pabC-2也参与了杀念菌素的生物合成。令我们吃惊的是,双突变株在基本培养基上生长明显延迟,这说明pabC-1和pabC-2都参与了初级代谢中PABA的合成。最后,我们通过检测丙酮酸的释放证明了PabC-1和PabC-1都是有功能的ADC裂解酶。到目前为止,pabC-1和pabC-2是放线菌中首先确定的两例ADC裂解酶基因。两个ADC裂解酶基因既参与细胞生长又参与杀念菌素的生物合成,是细菌中是初级代谢与次级代谢之间相互作用的一个很好的例子。
Validamycins, weakly basic C7N-aminocyclitol-containing antibiotics, were isolated from Streptomyces hygroscopicus var. jinggangensis 5008. It is a trehalase inhibitor widely used as a prime control agent against sheath blight disease of rice plants and dumping-off of cucumber seedlings in China and many other eastern Asian countries. The sequence information of the cloned biosynthetic gene cluster helps us to investigate the biosynthesis of this antibiotic.
     The gene valC, which encodes an enzyme homologous to the 2-epi-5-epi-valiolone kinase (AcbM) of the acarbose biosynthetic pathway, was identified in the validamycin biosynthetic gene cluster. Inactivation of valC resulted in mutants that lack the ability to produce validamycin A. Complementation with full-length valC restored the production of validamycin, thus suggesting a critical function of valC in validamycin biosynthesis. In vitro characterization of ValC revealed a new type of C7-cyclitol kinase, which phosphorylates valienone and validone-but not 2-epi-5-epi-valiolone, 5-epi-valiolone, or glucose-to afford their 7-phosphate derivatives. The results provide new insights into the activity of this enzyme and also confirm the existence of two different pathways leading to the same end-product: the valienamine moiety common to acarbose and validamycin.
     The gene valD, which encodes a large Vicinal Oxygen Chelate(VOC)superfamily protein, has been identified in the validamycin biosynthetic gene cluster. Inactivation of valD significantly reduced validamycin production, which was fully restored with the full-length valD and partially restored with either N-terminal or C-terminal half by complementation. Heterologously expressed ValD catalyzed the epimerization of 2-epi-5-epi-valiolone to 5-epi-valiolone. Individual and combined site-directed mutations of eight putative active site residues revealed that the N-terminal H44/E107 and the C-terminal H315/E366 are more critical for the activity than the internal H130, E183, H229 and E291.
     Three biosynthetic genes valB, valK and valO were inactivated respectively. The gene valB encodes a putative nucleotidyl transferase, which may catalyze the adenylation of 1-epi-valienol-1-phosphate. Inactivation of valB abolished validamycin biosynthesis, which was restored by complementation of full-length valB. The gene valK encodes a putative dehydratase, which may catalyze the dehydration of C-5 and C-6 of 5-epi-valiolone to generate valienone. Inactivation of valK abolished validamycin production, which was restored by complementation with cloned valK. These results indicate that valB and valK are essential for validamycin biosynthesis. The gene valO encodes a putative phosphatase/phosphohexo- mutase, which may catalyze the transfer of phosphate group from the C-7 to the C-1 hydroxyl group. However, inactivation of valO did not abolish validamycin production but resulted in significant accumulation of validoxylamine, which could be partially complemented by cloned valO. This result suggests that valO may be involved in conversion of validoxylamine to validamycin.
     In some antibiotic producers, p-aminobenzoic acid (PABA) or its immediate precursor, 4-amino-4-deoxychorismate (ADC), is involved in primary metabolism and antibiotic biosynthesis. A fused pabAB gene was identified in FR-008/candicidin biosynthetic gene cluster from Streptomyces sp. FR-008. Its deletion abolished FR-008/candicidin biosynthesis, which was restored either by complementation with cloned pabAB or feeding with exogenous PABA. A gene pabC-1 putatively encoding fold-type IV of PLP-dependent enzyme was found in the upstream PKS region, whose inactivation significantly reduced the productivity of antibiotic FR-008 to ca. 20% of the wild-type level. Its specific role for PABA formation was further demonstrated through the successful complementation of an E. coli pabC mutant. Moreover, a free standing gene pabC-2, probably encoding another fold-type IV of PLP-dependent enzyme, was cloned from the same strain. Inactivation of pabC-2 rendered antibiotic FR-008 yield to about 57% of the wild-type level in the mutant, and the complementation of the E. coli pabC mutant established its involvement in PABA biosynthesis. Furthermore, a pabC-1/pabC-2 double mutant only kept about 4% of the wild-type productivity, clearly indicating that pabC-2 also contributed to antibiotic FR-008 biosynthesis. Surprisingly, apparent retarded growth of the double mutant was observed on minimal medium, which suggested that both pabC-1 and pabC-2 were involved in PABA biosynthesis for primary metabolism. Finally, both PabC-1 and PabC-2 were proved to be functional ADC lyases through in vitro enzymatic lysis with the release of pyruvate. To date, pabC-1 and pabC-2 represent the first two functional ADC lyase genes indentified in actinomycetes. The involvement of these two ADC lyase genes in both cell growth and antibiotic FR-008 biosynthesis sets an example for the interplay between primary and secondary metabolisms in bacteria.
引文
1. Flatt, P.M., and Mahmud, T. (2007). Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 24, 358-392.
    2. Wehmeier, U.F., and Piepersberg, W. (2004). Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol 63, 613-625.
    3. Wu, X., Flatt, P.M., Xu, H., and Mahmud, T. (2009). Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic Bacterium Actinomyces sp. Lu 9419. Chembiochem 10, 304-314.
    4. Truscheit, E., Frommer, W., Junge, B., Muller, L., and Schmidt, D.D. (1981). Chemistry and biochemistry of microbialα-glucosidase inhibitors. Angew Chem Int Ed Engl 20, 744.
    5. Schmidt, D.D., Frommer, W., Junge, B., Muller, L., Wingender, W., Truscheit, E., and Schafer, D. (1977). alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin. Naturwissenschaften 64, 535-536.
    6. Campbell, L.K., White, J.R., and Campbell, R.K. (1996). Acarbose: its role in the treatment of diabetes mellitus. Ann Pharmacother 30, 1255-1262.
    7. Zhang, C.S., Stratmann, A., Block, O., Bruckner, R., Podeschwa, M., Altenbach, H.J., Wehmeier, U.F., and Piepersberg, W. (2002). Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway. J Biol Chem 277, 22853-22862.
    8. Stratmann, A., Mahmud, T., Lee, S., Distler, J., Floss, H.G., and Piepersberg, W. (1999). The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose. J Biol Chem 274, 10889-10896.
    9. Zhang, C.S., Podeschwa, M., Altenbach, H.J., Piepersberg, W., and Wehmeier, U.F. (2003). The acarbose-biosynthetic enzyme AcbO from Actinoplanes sp. SE 50/110 is a 2-epi-5-epi-valiolone-7-phosphate 2-epimerase. FEBS Lett 540, 47-52.
    10. Kawamura, N., Sawa, R., Takahashi, Y., Isshiki, K., Sawa, T., Naganawa, H., and Takeuchi, T.(1996). Pyralomicins, novel antibiotics from Microtetraspora spiralis. II. Structure determination. J Antibiot (Tokyo) 49, 651-656.
    11. Kawamura, N., Sawa, R., Takahashi, Y., Sawa, T., Naganawa, H., and Takeuchi, T. (1996). Pyralomicins, novel antibiotics from Microtetraspora spiralis. III. Biosynthesis of pyralomicin 1a. J Antibiot (Tokyo) 49, 657-660.
    12. Naganawa, H., Hashizume, H., Kubota, Y., Sawa, R., Takahashi, Y., Arakawa, K., Bowers, S.G., and Mahmud, T. (2002). Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18. J Antibiot (Tokyo) 55, 578-584.
    13. Thomas, M.G., Burkart, M.D., and Walsh, C.T. (2002). Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem Biol 9, 171-184.
    14. Dorrestein, P.C., Yeh, E., Garneau-Tsodikova, S., Kelleher, N.L., and Walsh, C.T. (2005). Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc Natl Acad Sci U S A 102, 13843-13848.
    15. Schlorke, O., Krastel, P., Muller, I., Uson, I., Dettner, K., and Zeeck, A. (2002). Structure and biosynthesis of cetoniacytone A, a cytotoxic aminocarba sugar produced by an endosymbiontic Actinomyces. J Antibiot (Tokyo) 55, 635-642.
    16. Tsuchida, T., Umekita, M., Kinoshita, N., Iinuma, H., Nakamura, H., Nakamura, K., Naganawa, H., Sawa, T., Hamada, M., and Takeuchi, T. (1996). Epoxyquinomicins A and B, new antibiotics from Amycolatopsis. J Antibiot (Tokyo) 49, 326-328.
    17. Wu, X., Flatt, P.M., Schlorke, O., Zeeck, A., Dairi, T., and Mahmud, T. (2007). A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. Chembiochem 8, 239-248.
    18. Torigoe, K., Wakasugi, N., Sakaizumi, N., Ikejima, T., Suzuki, H., Kojiri, K., and Suda, H. (1996). BE-40644, a new human thioredoxin system inhibitor isolated from Actinoplanes sp. A40644. J Antibiot (Tokyo) 49, 314-317.
    19. Seto, H., Orihara, N., and Furihata, K. (1998). Studies on the biosynthesis of terpenoids produced by Actinomycetes. Part 4. Formation of BE-40644 by the mevalonate and nonmevalonate pathways. Tetrahedron Lett 39, 9497-9500.
    20. Kawasaki, T., Kuzuyama, T., Furihata, K., Itoh, N., Seto, H., and Dairi, T. (2003). A relationship between the mevalonate pathway and isoprenoid production in actinomycetes. J Antibiot (Tokyo) 56, 957-966.
    21. Mahmud, T., Flatt, P.M., and Wu, X. (2007). Biosynthesis of unusual aminocyclitol-containing natural products. J Nat Prod 70, 1384-1391.
    22. Vertesy, L., Fehlhaber, H.W., and Schulz, A. (1994). The trehalose inhibitor salbostatin, a novel metabolite from Streptomyces albus ATCC 21838. Angew Chem Int Ed 33, 1844-1846.
    23. Choi, W.S., Wu, X., Choeng, Y.H., Mahmud, T., Jeong, B.C., Lee, S.H., Chang, Y.K., Kim, C.J., and Hong, S.K. (2008). Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Appl Microbiol Biotechnol 80, 637-645.
    24. Choeng, Y.H., Yang, J.Y., Delcroix, G., Kim, Y.J., Chang, Y.K., and Hong, S.K. (2007). Expression and characterization of trehalose biosynthetic modules in the adjacent locus of the salbostatin gene cluster. J Microbiol Biotechnol 17, 1675-1681.
    25. Xia, T.H., and Jiao, R.S. (1986). Studies on glutamine synthetase from Streptomyces hygroscopicus var. jinggangensis. Sci Sin B 29, 379-388.
    26. Kameda, Y., Asano, N., Yamaguchi, T., Matsui, K., Horii, S., and Fukase, H. (1986). Validamycin G and validoxylamine G, new members of the validamycins. J Antibiot (Tokyo) 39, 1491-1494.
    27. Shibata, M., Mori, K., and Hamashima, M. (1982). Inhibition of hyphal extension factor formation by validamycin in Rhizoctonia solani. J Antibiot (Tokyo) 35, 1422-1423.
    28. Asano, N., Yamaguchi, T., Kameda, Y., and Matsui, K. (1987). Effect of validamycins on glycohydrolases of Rhizoctonia solani. J Antibiot (Tokyo) 40, 526-532.
    29. Iwasa, T., Yamamoto, H., and Shibata, M. (1970). Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. J Antibiot (Tokyo) 23, 595-602.
    30. Kameda, Y., Asano, N., Yamaguchi, T., and Matsui, K. (1987). Validoxylamines as trehalase inhibitors. J Antibiot (Tokyo) 40, 563-565.
    31. Asano, N., Tanaka, K., Kameda, Y., and Matsui, K. (1991). All eight possiblemono-beta-D-glucosides of validoxylamine A. II. Biological activities. J Antibiot (Tokyo) 44, 1417-1421.
    32. Horii, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N., and Matsui, K. (1986). Synthesis and alpha-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents. J Med Chem 29, 1038-1046.
    33. Dong, H., Mahmud, T., Tornus, I., Lee, S., and Floss, H.G. (2001). Biosynthesis of the validamycins: identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. J Am Chem Soc 123, 2733-2742.
    34. Yu, Y., Bai, L., Minagawa, K., Jian, X., Li, L., Li, J., Chen, S., Cao, E., Mahmud, T., Floss, H.G., Zhou, X., and Deng, Z. (2005). Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol 71, 5066-5076.
    35. Bai, L., Li, L., Xu, H., Minagawa, K., Yu, Y., Zhang, Y., Zhou, X., Floss, H.G., Mahmud, T., and Deng, Z. (2006). Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol 13, 387-397.
    36. Jian, X., Pang, X., Yu, Y., Zhou, X., and Deng, Z. (2006). Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie Van Leeuwenhoek 90, 29-39.
    37. Singh, D., Seo, M.J., Kwon, H.J., Rajkarnikar, A., Kim, K.R., Kim, S.O., and Suh, J.W. (2006). Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). Gene 376, 13-23.
    38. Mann, J. (1987). Secondary metabolism. 2nd ed, Oxford: Clarendon Press.
    39. Vining, L.C. (1992). Secondary metabolism, inventive evolution and biochemical diversity--a review. Gene 115, 135-140.
    40.刘志恒,姜成林. (2004).放线菌现代生物学与生物技术.科学出版社.
    41. Basset, G.J., Quinlivan, E.P., Ravanel, S., Rebeille, F., Nichols, B.P., Shinozaki, K., Seki, M., Adams-Phillips, L.C., Giovannoni, J.J., Gregory, J.F., 3rd, and Hanson, A.D. (2004). Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabBprotein that is targeted to plastids. Proc Natl Acad Sci U S A 101, 1496-1501.
    42. Edman, J.C., Goldstein, A.L., and Erbe, J.G. (1993). Para-aminobenzoate synthase gene of Saccharomyces cerevisiae encodes a bifunctional enzyme. Yeast 9, 669-675.
    43. Triglia, T., and Cowman, A.F. (1999). Plasmodium falciparum: a homologue of p-aminobenzoic acid synthetase. Exp Parasitol 92, 154-158.
    44. Appling, D.R. (1991). Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J 5, 2645-2651.
    45. Porat, I., Sieprawska-Lupa, M., Teng, Q., Bohanon, F.J., White, R.H., and Whitman, W.B. (2006). Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol 62, 1117-1131.
    46. Nichols, B.P., Seibold, A.M., and Doktor, S.Z. (1989). para-aminobenzoate synthesis from chorismate occurs in two steps. J Biol Chem 264, 8597-8601.
    47. Green, J.M., and Nichols, B.P. (1991). p-Aminobenzoate biosynthesis in Escherichia coli. Purification of aminodeoxychorismate lyase and cloning of pabC. J Biol Chem 266, 12971-12975.
    48. Green, J.M., Merkel, W.K., and Nichols, B.P. (1992). Characterization and sequence of Escherichia coli pabC, the gene encoding aminodeoxychorismate lyase, a pyridoxal phosphate-containing enzyme. J Bacteriol 174, 5317-5323.
    49. Roberts, C.W., Roberts, F., Lyons, R.E., Kirisits, M.J., Mui, E.J., Finnerty, J., Johnson, J.J., Ferguson, D.J., Coggins, J.R., Krell, T., Coombs, G.H., Milhous, W.K., Kyle, D.E., Tzipori, S., Barnwell, J., Dame, J.B., Carlton, J., and McLeod, R. (2002). The shikimate pathway and its branches in apicomplexan parasites. J Infect Dis 185 Suppl 1, S25-36.
    50. Shah, J. (2003). The salicylic acid loop in plant defense. Curr Opin Plant Biol 6, 365-371.
    51. Calfee, M.W., Coleman, J.P., and Pesci, E.C. (2001). Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98, 11633-11637.
    52. Blanc, V., Gil, P., Bamas-Jacques, N., Lorenzon, S., Zagorec, M., Schleuniger, J., Bisch, D., Blanche, F., Debussche, L., Crouzet, J., and Thibaut, D. (1997). Identification and analysis ofgenes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol Microbiol 23, 191-202.
    53. Brown, M.P., Aidoo, K.A., and Vining, L.C. (1996). A role for pabAB, a p-aminobenzoate synthase gene of Streptomyces venezuelae ISP5230, in chloramphenicol biosynthesis. Microbiology 142 ( Pt 6), 1345-1355.
    54. Gil, J.A., and Hopwood, D.A. (1983). Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin-producing Streptomyces griseus. Gene 25, 119-132.
    55. Hu, Z., Bao, K., Zhou, X., Zhou, Q., Hopwood, D.A., Kieser, T., and Deng, Z. (1994). Repeated polyketide synthase modules involved in the biosynthesis of a heptaene macrolide by Streptomyces sp. FR-008. Mol Microbiol 14, 163-172.
    56. He, J., and Hertweck, C. (2003). Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem Biol 10, 1225-1232.
    57. Traitcheva, N., Jenke-Kodama, H., He, J., Dittmann, E., and Hertweck, C. (2007). Non-colinear polyketide biosynthesis in the aureothin and neoaureothin pathways: an evolutionary perspective. Chembiochem 8, 1841-1849.
    58. Arhin, F.F., and Vining, L.C. (1993). Organization of the genes encoding p-aminobenzoic acid synthetase from Streptomyces lividans 1326. Gene 126, 129-133.
    59. Chang, Z., Sun, Y., He, J., and Vining, L.C. (2001). p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology 147, 2113-2126.
    60. Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill, J., and Hopwood, D.A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147.
    61. Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., Sakaki, Y., and Hattori, M. (2001). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98, 12215-12220.
    62. He, J., Magarvey, N., Piraee, M., and Vining, L.C. (2001). The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. Microbiology 147, 2817-2829.
    63. Chen, S., Huang, X., Zhou, X., Bai, L., He, J., Jeong, K.J., Lee, S.Y., and Deng, Z. (2003). Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10, 1065-1076.
    64. Slock, J., Stahly, D.P., Han, C.Y., Six, E.W., and Crawford, I.P. (1990). An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J Bacteriol 172, 7211-7226.
    65. Botet, J., Mateos, L., Revuelta, J.L., and Santos, M.A. (2007). A chemogenomic screening of sulfanilamide-hypersensitive Saccharomyces cerevisiae mutants uncovers ABZ2, the gene encoding a fungal aminodeoxychorismate lyase. Eukaryot Cell 6, 2102-2111.
    66. Basset, G.J., Ravanel, S., Quinlivan, E.P., White, R., Giovannoni, J.J., Rebeille, F., Nichols, B.P., Shinozaki, K., Seki, M., Gregory, J.F., 3rd, and Hanson, A.D. (2004). Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J 40, 453-461.
    67. Wegkamp, A., van Oorschot, W., de Vos, W.M., and Smid, E.J. (2007). Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl Environ Microbiol 73, 2673-2681.
    68. Campelo, A.B., and Gil, J.A. (2002). The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148, 51-59.
    69. Redenbach, M., Kieser, H.M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H., and Hopwood, D.A. (1996). A set of ordered cosmids and a detailed genetic and physical map forthe 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77-96.
    70. MacNeil, D.J. (1988). Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 170, 5607-5612.
    71. Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541-1546.
    72. Janssen, G.R., and Bibb, M.J. (1993). Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124, 133-134.
    73. Sun, Y., Zhou, X., Liu, J., Bao, K., Zhang, G., Tu, G., Kieser, T., and Deng, Z. (2002). 'Streptomyces nanchangensis', a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148, 361-371.
    74.操二虎(1999).吸水链霉菌5008中静丝菌素生物合成基因簇的克隆尝试。.硕士学位论文武汉,华中农业大学.
    75.虞沂(2002).吸水链霉菌5008中井冈霉素生物合成基因簇的克隆.硕士学位论文武汉,华中农业大学.
    76. Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N., and Schoner, B.E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49.
    77. Wilkinson, C.J., Hughes-Thomas, Z.A., Martin, C.J., Bohm, I., Mironenko, T., Deacon, M., Wheatcroft, M., Wirtz, G., Staunton, J., and Leadlay, P.F. (2002). Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4, 417-426.
    78. Minagawa, K., Zhang, Y., Ito, T., Bai, L., Deng, Z., and Mahmud, T. (2007). ValC, a new type of C7-Cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. Chembiochem 8, 632-641.
    79. Smokvina, T., Mazodier, P., Boccard, F., Thompson, C.J., and Guerineau, M. (1990). Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94, 53-59.
    80. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory Manual. 2nd ed N. Y.:Cold Spring Harbor Laboratory Press.
    81. Kieser, T., Bibb, M.J., Chater, K.F., Butter, M.J., and Hopwood, D.A. (2000). Practical Streptomyces genetics: a laboratory manual. Norwich, John Innes Foundation, United Kingdom.
    82. Mahmud, T. (2003). The C7N aminocyclitol family of natural products. Nat Prod Rep 20, 137-166.
    83. Matsuo, T., Odaka, H., and Ikeda, H. (1992). Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55, 314S-317S.
    84. Goke, B., Fuder, H., Wieckhorst, G., Theiss, U., Stridde, E., Littke, T., Kleist, P., Arnold, R., and Lucker, P.W. (1995). Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 56, 493-501.
    85. Iwasa, T., Kameda, Y., Asai, M., Horii, S., and Mizuno, K. (1971). Studies on validamycins, new antibiotics. IV. Isolation and characterizatin of validamycins A and B. J Antibiot (Tokyo) 24, 119-123.
    86. Robson, G.D., Kuhn, P.J., and Trinci, A.P. (1988). Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi. J Gen Microbiol 134, 3187-3194.
    87. Mahmud, T., Lee, S., and Floss, H.G. (2001). The biosynthesis of acarbose and validamycin. Chem Rec 1, 300-310.
    88. Mahmud, T., Tornus, I., Egelkrout, E., Wolf, E., Uy, C., Floss, H.G., and Lee, S. (1999). Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety. J Am Chem Soc 121, 6973-6983.
    89. Seo, M.J., Im, E.M., Singh, D., Rajkarnikar, A., Kwon, H.J., Hyun, C.G., Suh, J.W., Pyun, Y.R., and Kim, S.O. (2006). Characterization of D-Glucoseα-1-Phosphate Uridylyltransferase (VldB) and Glucokinase (VldC) Involved in Validamycin Biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405. J Microbiol Biotechnol 16, 1311-1315.
    90. Mesak, L.R., Mesak, F.M., and Dahl, M.K. (2004). Bacillus subtilis GlcK activity requirescysteines within a motif that discriminates microbial glucokinases into two lineages. BMC Microbiol 4, 6.
    91. Veiga-da-Cunha, M., Courtois, S., Michel, A., Gosselain, E., and Van Schaftingen, E. (1996). Amino acid conservation in animal glucokinases. Identification of residues implicated in the interaction with the regulatory protein. J Biol Chem 271, 6292-6297.
    92. Ariza, A., Vickers, T.J., Greig, N., Armour, K.A., Dixon, M.J., Eggleston, I.M., Fairlamb, A.H., and Bond, C.S. (2006). Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Mol Microbiol 59, 1239-1248.
    93. Thornalley, P.J. (2003). Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31, 1343-1348.
    94. Richter, U., and Krauss, M. (2001). Active site structure and mechanism of human glyoxalase I-an ab initio theoretical study. J Am Chem Soc 123, 6973-6982.
    95. Himo, F., and Siegbahn, P.E. (2001). Catalytic mechanism of glyoxalase I: a theoretical study. J Am Chem Soc 123, 10280-10289.
    96. Cameron, A.D., Olin, B., Ridderstrom, M., Mannervik, B., and Jones, T.A. (1997). Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping. EMBO J 16, 3386-3395.
    97. Ridderstrom, M., Cameron, A.D., Jones, T.A., and Mannervik, B. (1998). Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I. J Biol Chem 273, 21623-21628.
    98. Vetting, M.W., Wackett, L.P., Que, L., Jr., Lipscomb, J.D., and Ohlendorf, D.H. (2004). Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases. J Bacteriol 186, 1945-1958.
    99. Eltis, L.D., and Bolin, J.T. (1996). Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178, 5930-5937.
    100. Martin, T.W., Dauter, Z., Devedjiev, Y., Sheffield, P., Jelen, F., He, M., Sherman, D.H., Otlewski, J., Derewenda, Z.S., and Derewenda, U. (2002). Molecular basis of mitomycin C resistance in streptomyces: structure and function of the MRD protein. Structure 10, 933-942.
    101. Dumas, P., Bergdoll, M., Cagnon, C., and Masson, J.M. (1994). Crystal structure and site-directed mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. EMBO J 13, 2483-2492.
    102. Vanbelle, C., Brutscher, B., Blackledge, M., Muhle-Goll, C., Remy, M.H., Masson, J.M., and Marion, D. (2003). NMR study of the interaction between Zn(II) ligated bleomycin and Streptoalloteichus hindustanus bleomycin resistance protein. Biochemistry 42, 651-663.
    103. Maruyama, M., Kumagai, T., Matoba, Y., Hayashida, M., Fujii, T., Hata, Y., and Sugiyama, M. (2001). Crystal structures of the transposon Tn5-carried bleomycin resistance determinant uncomplexed and complexed with bleomycin. J Biol Chem 276, 9992-9999.
    104. McCarthy, A.A., Baker, H.M., Shewry, S.C., Patchett, M.L., and Baker, E.N. (2001). Crystal structure of methylmalonyl-coenzyme A epimerase from P. shermanii: a novel enzymatic function on an ancient metal binding scaffold. Structure 9, 637-646.
    105. Leadlay, P.F. (1981). Purification and characterization of methylmalonyl-CoA epimerase from Propionibacterium shermanii. Biochem J 197, 413-419.
    106. Kuhnl, J., Bobik, T., Procter, J.B., Burmeister, C., Hoppner, J., Wilde, I., Luersen, K., Torda, A.E., Walter, R.D., and Liebau, E. (2005). Functional analysis of the methylmalonyl-CoA epimerase from Caenorhabditis elegans. FEBS J 272, 1465-1477.
    107. Bobik, T.A., and Rasche, M.E. (2003). HPLC assay for methylmalonyl-CoA epimerase. Anal Bioanal Chem 375, 344-349.
    108. Bobik, T.A., and Rasche, M.E. (2004). Purification and partial characterization of the Pyrococcus horikoshii methylmalonyl-CoA epimerase. Appl Microbiol Biotechnol 63, 682-685.
    109. Kovaleva, E.G., and Lipscomb, J.D. (2007). Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316, 453-457.
    110. Heiss, G., Muller, C., Altenbuchner, J., and Stolz, A. (1997). Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad. Microbiology 143 ( Pt 5), 1691-1699.
    111. Andujar, E., and Santero, E. (2003). Site-directed mutagenesis of an extradiol dioxygenase involved in tetralin biodegradation identifies residues important for activity or substratespecificity. Microbiology 149, 1559-1567.
    112. Happe, B., Eltis, L.D., Poth, H., Hedderich, R., and Timmis, K.N. (1993). Characterization of 2,2',3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran- and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J Bacteriol 175, 7313-7320.
    113. Pakhomova, S., Rife, C.L., Armstrong, R.N., and Newcomer, M.E. (2004). Structure of fosfomycin resistance protein FosA from transposon Tn2921. Protein Sci 13, 1260-1265.
    114. Fillgrove, K.L., Pakhomova, S., Schaab, M.R., Newcomer, M.E., and Armstrong, R.N. (2007). Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry 46, 8110-8120.
    115. Bergdoll, M., Eltis, L.D., Cameron, A.D., Dumas, P., and Bolin, J.T. (1998). All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci 7, 1661-1670.
    116. Brown, K., Pompeo, F., Dixon, S., Mengin-Lecreulx, D., Cambillau, C., and Bourne, Y. (1999). Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 18, 4096-4107.
    117. Rocchetta, H.L., Burrows, L.L., and Lam, J.S. (1999). Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63, 523-553.
    118. Graninger, M., Nidetzky, B., Heinrichs, D.E., Whitfield, C., and Messner, P. (1999). Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Typhimurium LT2. J Biol Chem 274, 25069-25077.
    119. Johnson, A.E., and Tanner, M.E. (1998). Epimerization via carbon-carbon bond cleavage. L-ribulose-5-phosphate 4-epimerase as a masked class II aldolase. Biochemistry 37, 5746-5754.
    120. Samuel, J., Luo, Y., Morgan, P.M., Strynadka, N.C., and Tanner, M.E. (2001). Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase. Biochemistry 40, 14772-14780.
    121. Lee, L.V., Poyner, R.R., Vu, M.V., and Cleland, W.W. (2000). Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase. Biochemistry 39, 4821-4830.
    122. Zhou, Y., Li, J., Zhu, J., Chen, S., Bai, L., Zhou, X., Wu, H., and Deng, Z. (2008). Incomplete beta-ketone processing as a mechanism for polyene structural variation in the FR-008/candicidin complex. Chem Biol 15, 629-638.
    123. Tewari, Y.B., Jensen, P.Y., Kishore, N., Mayhew, M.P., Parsons, J.F., Eisenstein, E., and Goldberg, R.N. (2002). Thermodynamics of reactions catalyzed by PABA synthase. Biophys Chem 96, 33-51.
    124. Ye, Q.Z., Liu, J., and Walsh, C.T. (1990). p-Aminobenzoate synthesis in Escherichia coli: purification and characterization of PabB as aminodeoxychorismate synthase and enzyme X as aminodeoxychorismate lyase. Proc Natl Acad Sci U S A 87, 9391-9395.
    125. Asturias, J.A., Liras, P., and Martin, J.F. (1990). Phosphate control of pabS gene transcription during candicidin biosynthesis. Gene 93, 79-84.
    126. Haagen, Y., Gluck, K., Fay, K., Kammerer, B., Gust, B., and Heide, L. (2006). A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonensis DSM 1042. Chembiochem 7, 2016-2027.
    127. Mavrodi, D.V., Ksenzenko, V.N., Bonsall, R.F., Cook, R.J., Boronin, A.M., and Thomashow, L.S. (1998). A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180, 2541-2548.
    128. Steffensky, M., Muhlenweg, A., Wang, Z.X., Li, S.M., and Heide, L. (2000). Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44, 1214-1222. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700