直升机旋翼气动噪声的计算及降噪方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋翼气动噪声的计算及降噪方法研究是直升机空气动力学领域具有挑战性的课题。本文一方面开展了旋翼流场CFD方法建模研究,发展了基于FWH和Kirchhoff方程的旋翼气动噪声计算方法和模型,并对旋翼气动噪声特性进行了计算和分析。另一方面,针对大气与地面对旋翼噪声的影响进行了分析,发展了直升机噪声源的分辨方法,同时针对直升机旋翼降噪新方法进行了较深入的研究。主要工作包括以下方面:
     作为前提和背景,本文首先阐述了论文的研究目的,并对旋翼流场的数值模拟、旋翼气动噪声计算、大气和地面对旋翼噪声的影响、旋翼降噪方法等研究的国内外现状进行了概述,指出了现有研究中存在的不足,提出了本文拟采用的研究方法。
     为了获得旋翼噪声计算所需的流场信息,本文第二章基于非结构嵌套网格和N-S方程,建立了一个适用于旋翼噪声计算的流场CFD方法,并进行了不同旋翼的算例验证。结合该流场计算方法,本文发展了一个新的基于FWH和Kirchhoff方程的直升机旋翼气动噪声的计算方法和模型。该模型可适合于直升机亚音速至跨音速状态的旋翼气动噪声计算。应用该方法和模型,对不同状态的旋翼噪声特性进行了研究,并分析了桨叶表面粘性力对旋翼气动噪声的影响,得到了一些有实际意义的结果。
     在上一章的基础上,本文又建立了一个新的用于分析大气吸声和地面声学效应对旋翼噪声影响的模型。该模型改进了NASA用于飞行器地面反射、吸声的传统算法。应用所建立的模型,对旋翼气动噪声在大气中传播及地面的反射、吸声影响进行了计算与分析,获得了一些新的结论。基于二维频谱分析方法,本文还发展了一种从直升机总噪声中分离出旋翼和尾桨噪声的方法,而且针对剪刀式尾桨直升机噪声信号进行了分辨研究,在此基础上分析了剪刀式尾桨的降噪机理。
     然后,本文着重开展了旋翼噪声的降噪方法研究。在对桨尖控制源的旋翼单极子和偶极子降噪方法进行研究后,推导了一种同相角参考点位于桨毂的旋翼噪声解析表达式,以此为基础,提出了一个新的利用旋翼和尾桨噪声叠加相互抵消的降噪方法。同时,建立新的用于降噪研究的桨-涡干扰噪声简化计算模型。应用该模型对旋翼桨-涡干扰噪声进行了分析,给出了出现强烈桨-涡干扰噪声辐射的飞行参数,研究了通过小范围调整飞行参数来显著降低斜下降飞行桨-涡干扰噪声的方法,得到了一些新的结论。
The calculation and debasement for rotor noise is a challenging subject in the field of helicopter aerodynamics. In this thesis, on the one hand, the CFD method for rotor flow field is modeled, and the method for the calculation of rotor aerodynamic noise is developed on the basis of FWH and Kirchhoff equations. By the method, the characteristics of the aerodynamic noise for rotors are computed and analyzed. On the other hand, the effects of the atmosphere and ground on rotor noise are analyzed, and a method for separating the overall helicopter noise is developed. Also, the new methods of helicopter rotor noise reduction are studied. The major contributions of the author’s research work are as follows:
     As the background of present work, the objectives of the research are firstly described. Then the researches and developments in the domain of numerical simulation of rotor flow field, the calculation of rotor aerodynamic noise, the effects of atmosphere and ground on rotor noise as well as the rotor noise reduction methods are briefly reviewed. The deficiencies in the current research are also pointed out, and the methods used in the present research are briefly introduced.
     In order to get the detailed information of the flow field for the rotor noise computation, a CFD method which is suitable for the calculation of rotor noise is presented based on the unstructured overset grid and N-S equation, and the comparisons with the available experimental data for different rotors are made to show the capability of the method. Then, a new model for the calculation of helicopter rotor aerodynamic noise is established based on the FWH and Kirchhoff equations, which is suitable for the calculations of subsonic and transonic rotor aerodynamic noise. The properties for rotor noise in different flight conditions are deeply studied by applying the method and model, and the effects of viscous force on the calculations for rotor aerodynamic noise are also analyzed, then some results of practical significance are obtained.
     On the basis of last chapter, a new model is established for the analysis of atmospheric absorption influence and ground acoustic effects on the rotor noise. The traditional algorithms used by NASA are improved in this model. By the developed model, the effects of atmospheric absorption as well as the ground reflection and absorption on rotor aerodynamic noise are calculated and analyzed, and some new conclusions are obtained. Afterwards, based on the 2-D frequency analysis, a method which can separate main and tail rotor noise from the helicopter overall noise is developed. The method is applied to separate the noise of the helicopter with scissors tail rotor, and the noise debasement mechanism of the scissor rotor is investigated.
     Then, the noise reduction methods are emphatically studied. The research on rotor noise reduction method, which has control sources of the monopole and dipole on the blade tips, is made. On the basis of method above, a new analytical expression for rotor noise is derived with the reference source location set on the rotor hub. From the new analytical expression, a new noise reduction method is proposed by the use of the cancellation of two noise waves of main and tail rotors. In addition, a new simplified calculation model for BVI noise is established. Applying this model, the BVI noise is analyzed, and the flight parameters causing strong BVI noise are given, then the methods for avoiding strong BVI noise by the slight adjustment of flight parameters are studied and some new conclutions are obtained.
引文
[1] Cyril P, Joelle Z, Olivier R, et al, Helicopter Rotor Noise Prediction Using ONERA and DLR Euler / Kirchhoff Methods. Journal of the AHS, 1999, 44(2):121~131.
    [2] Brentner K S, Prediction of Helicopter Rotor Discrete Frequency Noise-A Computer Program Incorporating Realistic Motions and Advanced Acoustic Formulation, NASA-TM-87721, 1986.
    [3] Brentner K S, Brès G A, Perez G, et al, Maneuvering Rotorcraft Noise Prediction: A New Code for a New Problem, Proceedings of the AHS Aerodynamics, Acoustics, and Test Evaluation Specialist Meeting, 2002.
    [4] Desopper A, Lafon P, Philippe J J, Prieur J, Effect of an Anhedral Sweptback Tip on the Performance of a Helicopter Rotor, Vertica, 1988, 12(4):345~355.
    [5]徐国华,直升机旋翼噪声分析及估算方法.硕士学位论文,南京航空学院, 1990.
    [6]彭延辉,直升机旋翼桨-涡干扰噪声研究.硕士学位论文,南京航空航天大学, 2004.
    [7] Booth E R and Wilbur, M L, Acoustic Aspects of Active-Twist Rotor Control, Proceedings of the AHS 58th Annual Forum, 2002.
    [8] Marcolini M A, et al, Control of BVI Noise using an Active Trailing-Edge Flap, Proceedings of the AHS Vertical Lift Aircraft Design Conference, 1999.
    [9] Sim B W and George A R, Development of a Rotor Aerodynamic Load Prediction Scheme for Blade Vortex Interaction Noise Study, Proceedings of the AHS 51st Annual Forum, 1995.
    [10] Schmitz F H and Yu Y H, Helicopter Impulsive Noise: Theoretical and Experimental Status, NASA-TP-84390, 1983.
    [11] Schmitz Y H, Aggarwal, H R and Boxwell D A, Prediction Measurement of a Low-Frequency Harmonic Noise of Hovering Model Helicopter Rotor, Journal of Aircraft, 2000, 37(5):786~795.
    [12] Caradonna F X, Isom M P, Subsonic and Transonic Potential Flow over Helicopter Rotor Blades, AIAA Journal, 1972, 10(12): 1606~1612.
    [13] Caradonna F X, Isom M P, Numerical Calculation of Unsteady Transonic Potential Flow Over Helicopter Rotor Blades, AIAA Journal, 1976, 14(4): 482~488.
    [14] Caradonna F X, Philippe J J, The Flow over a Helicopter Blade Tip in the Transonic Regime, Vertica, 1978, 2(3): 43~60.
    [15] Jameson A, Baker T J, Solution of the Euler Equations for Complex Configurations, AIAA-83-1929, 1983.
    [16] Agarwal R K, Deese J E, Transonic Wing-Body Calculations Using Euler Equations, Proceedings of the AIAA 21st Aerospace Sciences Meeting, 1983.
    [17] Roberts T W, Murman E M, Solution Method for a Hovering Helicopter Rotor Using the Euler Equations, AIAA-85-0436, 1985.
    [18] Caradonna F X, Desopper A and Tung C, Finite Differnence Modeling of Rotor Flows Including Wake Effects, Journal of the AHS, 1984, 29(12):26~34.
    [19] Strawn R C, Barth T J, A Finite-Volume Euler Solver for Computing Rotary-Wing Aerodynamics on Unstructured Meshes, Proceedings of the AHS 48th Annual Forum, 1992.
    [20] Rruno J C, Nuerical Simulation of Unsteady Euler Flow Around Multibladed Rotor in Forward Flight Using a Moving Grid Approach, Proceedings of the AHS 51st Annual Forum, 1995.
    [21] Liu C H, Thomas J L, Tung C, Navier-Stokes Calculations for the Vortex Wake of a Rotor in Hover, AIAA-83-1676, 1983.
    [22]招启军,徐国华,新型桨尖旋翼流场及噪声的数值模拟研究,博士学位论文,南京航空航天大学, 2005.
    [23]杨爱明,乔志德,基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算,航空学报,2001, 22(5):434~436.
    [24]许和勇,叶正寅,王刚等,基于非结构嵌套网格的旋翼前飞流场计算,西北工业大学学报,2006, 24(6):763~767.
    [25]许和勇,叶正寅,王刚等,聚合多重网格法在旋翼前飞流场计算中的应用,航空动力学报,2007, 22(2):251-256.
    [26]韩忠华,宋文萍,乔志德,基于FW-H方程的旋翼气动声学计算研究,航空学报, 2003, 24(5):400~404.
    [27]童自力,孙茂,共轴式双旋翼流动的N-S方程模拟,航空学报,1999,19(1):1~5.
    [28]曹义华,王吉飞,苏媛,Jameson/TVD格式应用旋翼翼型绕流分析,航空动力学报,2002, 17(3):297~301.
    [29] Zhao Qijun, Xu Guohua, Zhao Jinggen, Numerical Simulations of the Unsteady Flowfield of Helicopter Rotors on Moving Embedded Grids, Aerospace Science and Technology, 2005,9(2):117~124.
    [30]叶靓,招启军,徐国华,一种适合于旋翼涡流场计算的非结构自适应嵌套网格方法,空气动力学学报,2008, 26(3):214~218.
    [31] Baeder J D, Gallman J M, Yu Y H, A Computational Study of the Aeroacoustics of Rotors in Hover, AIAA-93-4450,1993.
    [32] Lowson M V, The Sound Field of Singularities in Motion, Proceedings of the Royal Society, A286:559~572, 1965.
    [33] Muller R H G, Pengel K, Wall B G, Blade Deflection Measurement at the Low Noise ERATO Rotor, Proceedings of the 26th European Rotorcraft Forum, 2000.
    [34] Lowson M V, Ollerhead J B, A Theoretical Study of Helicopter Rotor Noise, Journal of Sound and Vibration, 1969, 9(1):197~222.
    [35] Lewy S, Caplot M, Review of Some Theoretical and Experimental Studies on Helicopter Rotor Noise, Vertica, 1984, 8(4):309~321.
    [36] Ffowcs Williams J E, Hawkings D L, Sound Generated by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society, 1969, A264(1151):321~342.
    [37] Lighthill M J, On Sound Generated Aerodynamically, I: General Theory, Proceedings of the Royal Society, 1952, A211:564~587.
    [38] Farassat F, Theory of Noise Generation from Moving Bodies with an Application to Helicopter Rotors, NASA-TR-R-451, 1975.
    [39] Farassat F, Brentner K S, The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction, Journal of the AHS, 1988, 33(1):29~36.
    [40] Farassat F and Brentner K S, Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors, Journal of Sound and Vibration, 1998, 218(3):481~500.
    [41] Farassat F and Farris M, Verification and Analysis of Formulation 4 of Langley for the Study of Noise from High Speed Surfaces, Proceedings of the 5th Joint CEAS / AIAA Aeroacoustics Conference, 1999.
    [42] Farassat F, Myers M K, Extension of Kirchhoff's Formula to Radiation from Moving Surfaces, Journal of Sound and Vibration, 1988,123(3):451~461.
    [43] Weir D S, Becker L, Rutledge C, Prediction of Full System Helicopter Noise for a MDHC 500E Helicopter using the ROTONET Program, AIAA-89-1135, 1989.
    [44] Farassat F, Succi G P, The Prediction of Helicopter Rotor Discrete Frequency Noise, Vertica, 1983, 7(4):309~320.
    [45] Brentner K S, Lyrintzis A S, Koutsavdis E K, Comparison of Computational Aeroacoustic Prediction Methods for Transonic Rotor Noise Prediction, Journal of Aircraft, 1997, 34(4):531~538.
    [46] Farassat F, Derivation of Formulations 1 and 1A of Farassat, NASA-TM-2007-214853,2007.
    [47] Woo S, Oh K W, Two-Dimensional BVI Revisited using Unstructured Dynamic Meshes,Proceedings of the AHS 58th Annual Forum, 2002.
    [48] Yu Y H, Rotor Blade-Vortex Interaction Noise, Progress in Aerospace Sciences, 2000, 36:97~115.
    [49] Bogey C, Bailly C, Juv’e D, Computation of Flow Noise using Source Terms in Linearized Euler’s Equations, AIAA Journal, 2002, 40(2):235~243.
    [50] Bogey C, Bailly C, Juv’e D, Noise Investigation of a High Subsonic, Moderate Reynolds Number Jet Using a Compressible Large Eddy Simulation, Theory of Computional Fluid Dynamic, 2003,16(4):273~297.
    [51]宋文萍,韩忠华,王立群,杨爱明,乔志德,旋翼桨尖几何形状对旋翼气动噪声影响的定量计算分析,计算物理,2001, 18(6):569~572.
    [52]王同庆,李琪娜,彭锋,亚音主旋翼的噪声预测和声隐身分析,工程热物理学报,2005, 26(2):186~191.
    [53]曹义华,康鹏斌,于子文,旋翼翼型-桨尖涡干扰的数值模拟,航空动力学报,2003, 18(5):604~607.
    [54]招启军,徐国华,王适存,基于CFD/Kirchhoff方法的直升机旋翼高速脉冲噪声模拟分析,计算物理,2006, 23(2):137~143.
    [55]王华明,张强,胡章伟等,AS350B2直升机飞行噪声的试验研究,声学学报,2003, 28(2):177-181.
    [56]宋文萍,韩忠华,杨爱明等,旋翼跨声速流动气动噪声的一种高效算法,西北工业大学学报,2001, 19(4):515~519.
    [57] Evans L B, Bass H E, Sutherland L C, Atmospheric Absorption of Sound: Theoretical Predictions, Journal of Acoustic Society of America, 1972, 51(5B): 1565~1575.
    [58] Schwartz R N, Slawsky Z I, Herzfeld K F, Calculation of Vibrational Relaxation Times in Gases, Journal of Chemical Physics, 1952, 20(12):1591~1599.
    [59] Delany M E, Bazley E N, A Note on the Effect of Ground Absorption in The Measurement of Aircraft Noise, Journal of Sound and Vibration, 1971, 16(3):315~322.
    [60] Attenborough K, Acoustical Impedance Models for Out Door Ground Surfaces, Journal of Sound and Vibration, 1985, 99(4), 521~544.
    [61] William E Z, Aircraft Noise Prediction Program Theoretical Manual, NASA-TM-83199, 1982
    [62] Weir D, Jumper S, et al, Aircraft Noise Prediction Program Theoretical Manual: Rotorcraft System Noise Prediction System , NASA-TM-83199, 1995.
    [63]马大猷,沈儫,声学手册,科学出版社,1983.
    [64]杨训仁,陈宇,大气声学,科学出版社,1997.
    [65] Bryan Edwards, Charles Cox, Revolutionary Concepts for Helicopter Noise Reduction-SILENT Program, NASA-CR-2002-211650, 2002.
    [66] Chen, R T F, Hindson W S, Mueller A W, Acoustic Flight Tests of Rotorcraft Noise Abatement Approaches using Local Differential GPS Guidance, Proceedings of the AHS Specialists Conference on Rotorcraft Aeromechanical Technologies, 1995.
    [67] Schmitz F H, Reduction of Blade-Vortex Interaction (BVI) through X-force Control, Journal of the AHS, 1998, 43, (1):14~24.
    [68] Schmitz F H, Gopalan G, Sim B W, Flight Path Management and Control Methodology to Reduce Helicopter Blade-Vortex Interaction (BVI) Noise, Journal of Aircraft, 2002, 39(2):193~204.
    [69] Shahady P A, e al, The Effects of Modulated Blade Spacing on Static Rotor Acoustics and Performance, AIAA-1973-1020, 1973.
    [70] Yu Y, et al, The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) Inputs, Proceedings of the AHS 58th Annual Forum, 2002.
    [71] Jacklin S A, et al, Reduction of Helicopter BVI Noise, Vibration and Power Consumption through Individual Blade Control, Proceedings of the AHS 51st Annual Forum, 1995.
    [72] Ben W Sim, Suppressing In-plane, Low Frequency Helicopter Harmonic Noise with Active Controls, Proceedings of the AHS 64th Annual Forum, 2008.
    [73] Gopalan G, Schmitz F H, Understanding Far Field Near-in-plane High Speed Harmonic Helicopter Rotor Noise in Hover: Governing Parameters and Design Trends, Proceedings of the AHS Technical Specialists Conference, 2008.
    [74] Schmitz F H and Gopalan G, High-Speed Impulsive Helicopter Noise Reduction Possibilities Through On-Blade Acoustic Control, Proceedings of the International Forum on Rotorcraft Multidisciplinary Technology, 2007.
    [75] Kuntz M, Rotor Noise Predictions in Hover and Forward Flight using Different Aeroacoustic Methods, AIAA-96-1695, 1996.
    [76] Brentner K S, Farassat F, An Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation, AIAA Journal, 1998, 36(8):1379~1386.
    [77] Strawn R C, Biswas R, Lyrintzis A S, Helicopter Noise Predictions using Kirchhoff Methods, Proceedings of the AHS 51st Annual Forum, 1995.
    [78] Francescantonio P D, A New Boundary Intergral Formulation for the Prediction of SoundRadiation, Journal of Sound and Vibration, 1997, 202(4):491~509.
    [79] Munsky B, Gandhi F, Analysis of Helicopter Blade-Vortex Interaction Noise with Flight Path or Attitude Modification, Journal of the AHS, 2005,50(1):123~137.
    [80]叶靓,基于非结构网格的直升机旋翼流场及噪声研究,博士学位论文,南京航空航天大学, 2009.
    [81] Yang Z, Sankar L N, Smith M, Recent Improvements o a Hybrid Method for Rotors in Forward Flight, AIAA-2000-0260,2000.
    [82] Conlisk A T, Modern Helicopter Rotor Aerodynamics, Progress in Aerospace Sciences, July 2001, 37(5):419~476.
    [83] Boniface J C, Sides J, Numerical Simulation of Steady and Unsteady Euler Flows around Multi-bladed Helicopter Rotors, Proceedings of the 19th European Rotorcraft Forum, 1993.
    [84] Webster R S, Chen J P, Whitfield D L, Numerical Simulation of a Helicopter Rotor in Hover and Forward Flight, AIAA-95-0193, 1995.
    [85] Rruno J C, Numerical Simulation of Unsteady Euler Flow around Multibladed Rotor in Forward Flight using a Moving Grid Approach, Proceedings of AHS 51st Annual Forum, 1995.
    [86] Frink N T, Recent Progress Towards a Three-dimensional Unstructured Navier-Stokes Flow Solver, AIAA-94-0061, 1994.
    [87] Thompson J F,Warsi Z U A, Masitin C W, Numerical Grid Generation, North-holland,1985.
    [88] Hilgenstock A, A Fast Method for the Elliptic Generation of Three-dimensional Grids with Full Boundary Control, Proceedings of the Second International Conference, 1988.
    [89] Meakin R L, A New Method for Establishing Intergrid Communication among Systems of Overset Grids, AIAA-91-1586, 1991.
    [90] R. Lohner, et al, Overlapping Unstructured Grids, AIAA-01-0439, 2001.
    [91] Neal T F, Recent Progress Towards a Three-dimensional Unstructured Navier-Stokes Flow Solver, AIAA 94-0061,1994.
    [92] Jameson A, Schmidt W, Turkel E, Numerical Solution of the Euler Equation by Finite Volume Methods with Runge-Kutta Time Stepping Sehemes, AIAA-81-1259, 1981.
    [93] Roe P L, Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Journal of Computational Physics, 1981, 43(2):357~372.
    [94] Venkatakrishnan V, On the Accuracy of Limiters and Convergence to Steady State Solutions, AIAA-93-0880,1993.
    [95] Venkatakrishnan V, Convergence to Steady-state Solutions of the Euler Equations onUnstructured Grids with Limiters, Journal of Computational Physics, 1995, 118(1): 120~130.
    [96] Luo H, et al,A Fast Matrix-Free Implicit Method For Computing Low Mach Number Flows on Unstructured Grids, AIAA-99-3315, 1999.
    [97] Caradonna F X, Tung C, Experimental and Analytical Studies of a Model Helicopter Rotor in Hover, Vertica, 1981, 5:149~161.
    [98] Caradonna F X, Laub G H, Tung C, An Experimental Investigation of the Parallel Blade-Vortex Interaction, NASA-TM-86005, 1984.
    [99] Steijl R, Badcock K J, A CFD Framework for Analysis of Helicopter Rotors, AIAA-2005-5124,2005.
    [100] Lowson M V, Focusing of Helicopter BVI Noise, Journal of Sound and Vibration, 1996, 190(3):477~494.
    [101] Schmitz F H, Sim B W, Acoustic Phasing, Directionality and Amplification Effects of Helicopter Blade-Vortex Interactions, Journal of the AHS, 2001, 46(4):273~282.
    [102] Johnson W, Helicopter Theory, Princeton University Press, 1980.
    [103] Leishman J G, Principles of Helicopter Aerodynamics, Cambridge University Press, 2006.
    [104] Strawn, R C, Ahmad J, Duque E P N, Rotorcraft Aeroacoustics Computations with Overset Grid CFD Methods, Proceedings of the AHS 54th Annual Forum, 1996.
    [105] Bolen L N, Bass H E, Effect of Ground Cover on the Propagation of Sound through the Atmosphere, Journal of the Acoustical Society of America, 1981, 69(31):950~954.
    [106] Rasmussen K B, Sound Propagation over Grass Covered Ground, Journal of Sound and Vibration, 1981, 78(4):247~255.
    [107] Jong M T, Methods of Discrete Signal and System Analysis, McGraw-Hill, 1982.
    [108]俞卞章,数字信号处理,西北工业大学出版社,2002.
    [109] Coton F N and Marshall J S, Galbraith R A, Helicopter Tail Rotor Orthogonal Blade-Vortex Interaction, Progress in Aerospace Sciences, 2004, 40(7): 453~486.
    [110] Natsukik K, et al, Validation of a Helicopter Noise Prediction System, Proceedings of the AHS 56th Annual Forum, 2000.
    [111] Schmitz F H, Yu Y H, Helicopter Impulsive Noise: Theoretical and Experimental Status, Journal of Sound and Vibration, 1986, 109(3),361~422.
    [112] Siegert R U, Nouals C, Damongeot A, Study of Helicopter Noise Signals Using Time-Frequency Analysis Methods, AIAA-93-4357, 1993.
    [113] Xu G H, Wang S C, Zhao J G, Experimental and Analytical Investigation on AerodynamicCharacteristics of Helicopter Scissors Tail Rotor, Chinese Journal of Aeronautics, 2001, 12(4):193~199.
    [114] Odilyn L, Santa M, Farassat F, et al, Two-dimensional Fourier Transform Analysis of Helicopter Flyover Noise, Proceedings of the AHS 55th Annual Forum, 1999.
    [115] Jay C H, Miamee A G, A New Class of Processes With Application to Helicopter Noise, Journal of Sound and Vibration, 1990, 142(2):191~202.
    [116] George A R, Chou S T, A Comparative Study of Tail Rotor Noise Mechanisms, Proceedings of the AHS 41st Annual Forum, 1985.
    [117]刘紫英,张清泰,祝龙石,直升机噪声测试与探测研究,中国宇航学会特种装备专业委员会第七次学术交流会,1994.
    [118] Lowson M V, Ollerhead J B, A Theoretical Study of Helicopter Rotor Noise, Journal of Sound and Vibration,1969, 9(2):197~222.
    [119]倪先平,直升机手册,航空工业出版社,2003.
    [120] Gopalan G, Schmitz F H, Flight Path Control of Helicopter Blade-Vortex Interaction Noise in the Presence of Wind, Proceedings of the AHS 57th Annual Forum, 2000.
    [121] Schmitz F H, Gopalan G, Sim B C, Flight Trajectory Management to Reduce Helicopter Blade-Vortex Interaction (BVI) Noise with Head/Tailwind Effects, Proceedings of the 26th European Rotorcraft Forum, 2000.
    [122]徐国华,王适存,具有后掠桨尖的旋翼气动特性计算方法,空气动力学学报,1999, 17(3):356~361.
    [123] Splettstoesser W R, Schultz K J, Martin R M, Rotor Blade-Vortex Interaction Impulsive Noise Source Localization, AIAA Journal, 1990, 28(4), 593~600.
    [124] Gervais M, and Schmitz F H, Tiltrotor BVI Noise Reduction through Flight Trajectory Management and Configuration Control, AIAA-2002-2544, 2002.
    [125] Perez G, A New Aerodynamic and Acoustic Computation Chain for BVI Noise Prediction on Unsteady Flight Conditions, Proceedings of the AHS 60th Annual Forum, 2004.
    [126] Hindson, W S, Chen R T, Operational Tests for Noise Abatement Approaches for Rotorcraft Using Differential GPS for Guidance, Journal of the AHS, 1998, 43(4):352~359.
    [127] Ng N, Hillier R, Numerical Investigation of the Transonic Blade-Vortex Interaction, AIAA-97-1846, 1997.
    [128] McCluer M S, Helicopter Blade-Vortex Interaction Noise with Comparisons to CFD Calculations, NASA-TM-110423, 1996.
    [129] Thom A, Duraisamy K, High Resolution Computation of the Aerodynamics and Acoustics of Blade-Vortex Interaction, Proceedings of the 34th European Rotorcraft Forum, 2008.
    [130] Beddoes T S, A Wake Model for High Resolution Airloads, Proceedings of International Conference on Rotorcraft Basic Research, 1985.
    [131] Sim B Wand, Schmitz F H, Acoustic Phasing and Amplification Effects of Single Rotor Helicopter Blade-Vortex Interactions, Proceedings of the AHS 55th Annual Forum, 1998.
    [132] Schmitz F H, Sim B W, Radiation and Directionality Characteristics of Advancing Side Blade-Vortex Interaction (BVI) Noise, Proceedings of the 6thAIAA/CEAS Aeroacoustics Conference, AIAA-2000-1922, 2000.
    [133] Booth E R, Experimental Observations of Two-dimensional Blade-Vortex Interaction, AIAA Journal, 1990, 28(8):1353~1359.
    [134] Boxwell D A and Schmitz F H, Full-Scale Measurements of Blade-Vortex Interaction Noise, Journal of AHS, 1982, 27(1):11~27.
    [135] Landgrebe, A F and Bellinger E D, An Investigation of the Quantitative Applicability of Model Helicopter Rotor Wake Patterns Obtained From a Water Tunnel, USAAMRDL-TR-71-69, 1971.
    [136] Gopalan G, Guasi-static Acoustic mapping of Helicopter Blade Vortex Interaction Noise, University of Maryland, Doctor of Philosophy, 2004.
    [137] Leishman J G, Sound Directivity Generated by Helicopter Rotors using Wave Tracing Concepts, Journal of Soundand Vibration, 1999, 221(3):415~441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700