人体肝癌发生过程中P27泛素—蛋白酶体降解相关因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究肝细胞癌(HCC)发生过程中不同阶段细胞周期负调控因子P27蛋白泛素-蛋白酶体途径降解相关因子的表达及相互关系,以探讨HCC发生的分子生物学机制。方法:应用免疫组织化学方法检测正常肝组织、慢性肝炎、肝硬化、癌周肝硬化和肝癌共80例标本中的Cyclin E、Skp2和泛素表达情况,并用图像分析系统进行定量分析。结果:Cyclin E和泛素主要定位于胞核,Skp2蛋白在肝硬化、癌周肝硬化组主要定位于胞浆,肝癌组则以定位于胞核为主。三种蛋白的胞核表达均以肝癌组最强,明显高于其它各组(P<0.05),其中Cyclin E、Skp2蛋白表达从正常肝组织、肝硬化、癌周肝硬化到肝癌组有逐渐增强的趋势(Cyclin E阳性单位均值分别为20.8、22.8、27.5、48.6;Skp2阳性单位均值分别为15.8、23.7、29.5、48.2),并且Cyclin E与肝癌分级成正相关关系(r=0.4468,P<0.05)。慢性肝炎组Cyclin E、Skp2、泛素呈较高表达,仅次于肝癌组,且与正常肝组织、肝硬化、癌周肝硬化组间差异有统计学意义(P<0.05)。三种蛋白核表达之间互成正相关关系。结论:肝癌发生过程中泛素-蛋白酶体途径降解增强可能是导致P27蛋白低表达的重要机制,而其降解可能需要以Skp2蛋白核输入相关因子的作用发挥为前提。Skp2蛋白高表达可能是先于p27低表达发生的事件。Cyclin E表达与肝癌分级成正相关。
Objective: To investigate the expressions and correlations of three factors associated with the ubiquitin-mediated proteolysis of the p27 protein in human hepatocarcinogenesis, and to identify the molecular mechanism of hepatocarcinogenesis. Methods: By using immunohistochemistry, Cyclin E, Skp2 and Ubiquitin proteins were evaluated in the tissues of chronic hepatitis, liver cirrhosis, paratumor cirrhosis, HCC, and normal liver tissues (80 sample, totally). And the expressions of the three proteins were quantitatively measured by using Image Analysis System. Results: Mainly Cyclin E and Ubiquitin proteins locate in nucleus. There were two staining patters in the expression of Skp2 protein. One was nuclear staining patterns in HCC and chronic hepatitis, another was cytoplasmic staining in liver cirrhosis and paratumor cirrhosis. In nucleus, the expressions of these proteins were the highest in HCC, and proteins levels were noted to be higher in else groups (P<0.05). And from normal liver tissues, liver cirrhosis, paratumor cirrhosis to HCC, the expressions of Cyclin E and Skp2 protein were gradually increased. Respectively, in the four groups the means of Positive Unit were 20.8, 22.8, 27.5 and 48.6 (Cyclin E); 15.8, 23.7, 29.5 and 48.2 (Skp2). In HCC, the Cyclin E protein expression was positively correlated with histological grade (r=0.4468, P<0.05). Furthermore, in chromic hepatitis, the expressions of Cyclin E, Skp2 and Ubquitin proteins were only lower than those in HCC, and there were significant
引文
1. Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular carcinoma. Clin Liver Dis, 2005, 9(2): 191-211
    2. Sakamoto M, Hirohashi S, Shimosato Y. Early stages of multistep hepatocarcinogenesis: adenomatous hyperplasia and early hepatocellular carcinoma. Hum Pathol, 1991, 22(2): 172-8
    3. Buetow KH, Murray JC, Israel JL, et al. Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci USA, 1989, 86(22): 8852-6
    4.曾益新主编.《肿瘤学》.北京:人民卫生出版社,1999.103
    5. Ito Y, Matsuura N, Sakon M, et al. Expression and prognostic roles of the G1-S modulators in hepatocellular carcinoma: p27 independently predicts the recurrence. Hepatology, 1999, 30(1): 90-9
    6. Fiorentino M, Altimari A, D'Errico A, et al. Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma. Clin Cancer Res, 2000, 6(10): 3966-72
    7.陈爱军,孟庆华,龙兵等.P27蛋白在结肠直肠癌中的表达与预后的关系.癌症,2002,21(10):1075-7
    8. Harada K, Supriatno, Yoshida H, et al. Low p27Kip1 expression is associated with poor prognosis in oral squamous cell carcinoma. Anticancer Res, 2002, 22(5): 2985-9
    9. Nitti D, Belluco C, Mammano E, et al. Low level of p27(Kip1) protein expression in gastric adenocarcinoma is associated with disease progression and poor outcome. J Surg Oncol, 2002, 81(4): 167-75; discussion 175-6
    10. Anastasiadis AG, Calvo-Sanchez D, Franke KH, et al. p27KIP1-expression in human renal cell cancers: implications for clinical outcome. Anticancer Res, 2003, 23(1A): 217-21
    11. Filipits M, Puhalla H, Wrba F. Low p27Kip1 expression is an independent prognostic factor in gallbladder carcinoma. Anticancer Res, 2003, 23(1B): 675-9
    12. Jin L, Oian X, Kulig E, et al. Transforming growth factor-beta, transforming growth factor-beta receptor Ⅱ, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol, 1997, 151(2): 509-19
    13. Tannapfel A, Grund D, Katalinic A, et al. Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer, 2000, 89(4): 350-5
    14. Esposito V, Baldi A, De Luca A, et al. Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res, 1997, 57(16): 3381-5
    15.李景和,文继舫,徐进.转化生长因子β_1和p27~(Kip)mRNA在胃粘膜癌变中的变化.湖南医科大学学报,2000,25(3):259-61
    16. Hui AM, Sun L, Kanai Y, et al. Reduced p27Kip1 expression in hepatocellular carcinomas. Cancer Lett, 1998, 132(1-2): 67-73
    17. Shirane M, Harumiya Y, Ishida N, et al. Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem, 1999, 274(20): 13886-93
    18. Sheaff RJ, Groudine M, Gordon M, et al. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev, 1997, 11(11): 1464-78
    19. Nguyen H, Gitig DMKoff A. Cell-free degradation of p27(kip1), a G1 cyclin-dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol, 1999, 19(2): 1190-201
    20. Tsvetkov LM, Yeh KH, Lee SJ, et al. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol, 1999, 9(12): 661-4
    21. Muller D, Bouchard C, Rudolph B, et al. Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene, 1997, 15(21): 2561-76
    22. Montagnoli A, Fiore F, Eytan E, et al. Ubiquitination of p27 is regulated by Cdkdependent phosphorylation and trimeric complex formation. Genes Dev, 1999, 13(9): 1181-9
    23. Edmondson H. Tumor of the liver and intrahepatic bile ducts. Atlas of tumor pathology, Section 7, Fascide 25, Armed Forces Institute of Pathology, Washington DC. 1958
    24.曹立宇,张洪福,龚西榆.大肠肿瘤中p53和bc1-2蛋白的表达.临床与实验病理学杂志,2000,16(3):214-6
    25. van der Zee AG,Hollema H,Surmeijer AJ,et al.Value of P-glycoprotein,glutathione Stransferase pi,c-erbB-2,and p53 as prognostic factors in ovarian carcinomas.J Clin Oncol,1995,13(1):70-8
    26. Polyak K, Lee MH, Erdjument-Bromage H, et al. Cloning of p27Kip1, a cyclindependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994, 78(1): 59-66
    27. Rivard N, L'Allemain G, Bartek J, et al. Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (GO state) in fibroblasts. J Biol Chem, 1996, 271(31): 18337-41
    28. Russo AA, Jeffrey PD, Patten AK, et al. Crystal structure of the p27Kip1 cyclindependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature, 1996, 382(6589): 325-31
    29. De Bondt HL, Rosenblatt J, Jancarik J, et al. Crystal structure of cyclin-dependent kinase 2. Nature, 1993, 363(6430): 595-602
    30.宋聚民,高敏,李慎廉.细胞周期抑制剂p27~(Kip)对乳腺癌的预后意义.国外医学生理病理科学与临床分册,2002,6(9):110-2
    31. Lloyd RV, Erickson LA, Jin L et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol, 1999, 154(2): 313-23
    32. Poon RY, Toyoshima H, Hunter T. Redistribution of the CDK inhibitor p27 between different cyclin.CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell, 1995, 6(9): 1197-213
    33. Hengst L, Reed SI. Translational control of p27Kip1 accumulation during the cell cycle. Science, 1996, 271(5257): 1861-4
    34. Sherr CJ. Cancer cell cycles. Science, 1996, 274(5293): 1672-7
    35. Worm J, Bartkova J, Kirkin AF, et al. Aberrant p27Kip1 promoter methylation in malignant melanoma. Oncogene, 2000, 19(44): 5111-5
    36. Dijkers PF, Medema RH, Pals C, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol, 2000, 20(24): 9138-48
    37. Yang W, Shen J, Wu M, et al. Repression of transcription of the p27(Kip1) cyclindependent kinase inhibitor gene by c-Myc. Oncogene, 2001, 20(14): 1688-702
    38. Devoy A, Soane T, Welchman R, et al. The ubiquitin-proteasome system and cancer. Essays Biochem, 2005, 41:187-203
    39. Carrano AC, Eytan E, Hershko A, et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999, 1(4): 193-9
    40. Ohta TFukuda M. Ubiquitin and breast cancer. Oncogene, 2004, 23(11): 2079-88
    41. Loda M, Cukor B, Tam SW, et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med, 1997, 3(2): 231-4
    42.肖丙燚,李桂源.泛素-蛋白酶体通路.中南大学学报(医学版),2004,29(2):230
    43. Ohashi R, Gao C, Miyazaki M, et al., Enhanced expression of cyclin E and cyclin A in human hepatocellular carcinomas. Anticancer Res, 2001, 21 (1B): 657-62
    44.朱晓峰,吕会增.Skp2在人类恶性肿瘤中的研究进展.国外医学肿瘤学分册,2004,31(1):7-10
    45. Masuda TA, Inoue H, Sonoda H, et al. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res, 2002, 62(13): 3819-25
    46. Signoretti S, Di Marcotullio L, Richardson A, et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest, 2002, 110(5): 633-41
    47. Yang G, Ayala G, De Marzo A, et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res, 2002, 8(11): 3419-26
    48. Kudo Y, Kitajima S, Sato S, et al. High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res, 2001, 61(19): 7044-7
    49. Nelsen CJ, Hansen LK, Rickheim DG, et al. Induction of hepatocyte proliferation and liver hyperplasia by the targeted expression of cyclin E and skp2. Oncogene, 2001, 20(15): 1825-31
    50. Hershko D, Bornstein G, Ben-Izhak O, et al. Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer, 2001, 91(9): 1745-51
    51. Keating JT, Cviko A, Riethdorf S, et al. Ki-67, cyclin E, and pl6INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol, 2001, 25(7): 884-91
    [1] POLYAK K, KATO J Y, SOLOMON M J, et el. p27~(Kip1), a cyclin-cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest [J]. Genes Dev, 1994, 8 (1): 9-22
    [2] POLYAK K, LEE M H, ERDJUMENT B H, et al. Cloning of p27~(Kip1), a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimito- genic signals [J]. Cell, 1994, 78 (1):59-66
    [3] WROM J, BARTKOVA J, KIRKIN A F, et al. Aberrant p27 promoter methylation in malignant melanoma [J]. Oncogene, 2000, 19 (44): 5111-5
    [4] DIJKERS P F, MEDEMA R H, PALS C, et al. Forkhead transcription factor FKHRL1 modulates cytokine-dependent transcriptional regulation of p27 [J]. Mol Cell Biol, 2000, 20 (24): 9138-48
    [5] YANG W, SHEN J, WU M, et al. Repression of transcription of the p27 cycle-dependent kinase inhibitor gene by c-myc [J]. Oncogene, 2001, 20 (14): 1688-1702
    [6] ZHANG H, KOBAYASHI R, GALAKTIONOV K, et al. p19kip1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase [J]. Cell, 1995, 82 (6): 915-925
    [7] FERO M, RIVKIN M, TASCH M, et al A syndrome of multi-organ hyperplasia with features of gigantism, tumorigenesis and female sterility in p27~(Kip1)-deficient mice [J]. Cell, 1996, 85 (5):733-744
    [8] PARK M S, ROSAI J, NGUYEN H T, et al. p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice [J]. Proc Natl Acad Sci USA, 1999.96 (11): 6382-6387
    [9] KOSSATZ U, DIETRICH N, ZENDER L, et al. Skp2-dependent degradation of p27~(Kip1) is essential for cell cycle progression [J]. Genes Dev, 2004, 18 (21): 2602-2607
    [10] FERO M L, RANDEL E, GURLEY K E, et al. The murine gene p27Kip1 is haplo-insufficient for tumour suppression [J] Nature, 1998, 369 (6707): 177-180
    [11] MUTSOKSR S, LENFERINDA E G, LAW B, et al. ErbB2/neu-induced, cyclin D1-dependent transformation is accelerated in p27-haploinsufficient mammary epithelial cells but impaired in p27-null cells [J]. Mol Cell Biol, 2002, 22 (7): 2204-2219
    [12] TANNAPEL A, GRUND D, KATALIMIC A, et al. Decreased expression of p27 protein is associated with tumor stage in hepatocellular carcinoma [J]. Int-j-Cancer, 2000, 89 (4): 350-355
    [13] FIORENTINO M, ALTIMARI A, D'ERRICO A, et al. Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma [J]. Clin Cancer Res, 2000, 6 (10): 3966-3972
    [14] KAWAMATA N, MOROSETTI R, MILLER C W, et al. Molecular analysis of the cyclin-dependent kinase inhibitor gene p27~(Kip1) in human malignancies [J]. Cancer Res, 1995, 55 (11): 2266-2269
    [15] SIGNORETTI S, DI MARCOTULLIO L, RICHARDSON A, et al. Oncogenie role of the ubiqitin ligase subunit Skp2 in human breast cancer [J]. J Clin Invest, 2002, 110 (5): 633-641
    [16] LATRES E, CHIARLE R, SCHULMAN B, et al. Role of the T-box protein Skp-2 in lymphomngenesis [J]. Proc Natl Acad Sci USA, 2001,98 (5): 2515-2520
    [17] HERSHKO D, BORNSTEIN G, BEN IZHAK O, et al. Inverse relation between levels of p27~(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas [J]. Cancer, 2001,91 (9): 1745-1751
    [18] KUDO Y, KITAJIMA S, MIYAUCHI M, et al. High expression of S-phase kinase-interacting protein 2, human F-box protein, correlstes with poor prognosis in oral squamous cell carcinomas [J]. Cancer Ras, 2001,61 (19): 7044-7047
    [19] MASUDAT A, INOUEH, Sonoda H, et al. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis [J]. Cancer Res, 2002, 62 (13): 3819-3825
    [20] GSTAIGER M, JORDAN R, LIM M, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA, 2001,98 (9): 5043-5048
    1. Polyak K, Kato JY, Solomon MJ, et al. p27Kipl, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev, 1994. 8(1): 9-22
    2. Polyak K, Lee MH, Erdjument-Bromage H, et al. Cloning of p27Kipl, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994. 78(1): 59-66
    3. Ekholm SV, Reed SI. Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol, 2000.12(6): 676-84
    4. Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol, 2000.183(1): 10-7
    5. Esposito V, Baldi A, De Luca A, et al. Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res, 1997. 57(16): 3381-5
    6. Jin L, Qian X, Kulig E, et al. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kipl expression in nontumorous and neoplastic human pituitaries. Am J Pathol, 1997.151(2): 509-19
    7. Sherr CJ. Cancer cell cycles. Science, 1996. 274(5293): 1672-7
    8. Dijkers PF, Medema RH, Pals C, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIPl). Mol Cell Biol, 2000. 20(24): 9138-48
    9. Worm J, Bartkova J, Kirkin AF, et al. Aberrant p27Kipl promoter methylation in malignant melanoma. Oncogene, 2000.19(44): 5111-5
    10. Yang W, Shen J, Wu M, et al. Repression of transcription of the p27(Kipl) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene, 2001. 20(14): 1688-702
    11. Shirane M, Harumiya Y, Ishida N, et al. Down-regulation of p27(Kipl) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem, 1999.274(20): 13886-93
    12. Muller D, Bouchard C, Rudolph B, et al. Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene, 1997. 15(21): 2561-76
    13. Sheaff RJ, Groudine M, Gordon M, et al. Cyclin E-CDK2 is a regulator of p27Kipl. Genes Dev, 1997.11(11): 1464-78
    14. Montagnoli A, Fiore F, Eytan E, et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev, 1999. 13(9): 1181-9
    15. Carrano AC, Eytan E, Hershko A, et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999.1(4): 193-9
    16.Reynisdottir I, Massague J. The subcellular locations of pl5(Ink4b) and p27(Kipl) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev, 1997. 11(4): 492-503
    17.0rend G, Hunter TRuoslahti E. Cytoplasmic displacement of cyclin E-cdk2 inhibitors p21Cipl and p27Kipl in anchorage-independent cells. Oncogene, 1998.16(20): 2575-83
    18. Soucek T, Yeung RS, Hengstschlager M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc Natl Acad Sci U S A, 1998. 95(26): 15653-8
    19. Tomoda K, Kubota Y, Kato J. Degradation of the cyclin-dependent-kinase inhibitor p27Kipl is instigated by Jab1. Nature, 1999.398(6723): 160-5
    20. Zeng Y, Hirano K, Hirano M, et al. Minimal requirements for the nuclear localization of p27(Kipl), a cyclin-dependent kinase inhibitor. Biochem Biophys Res Commun, 2000. 274(1): 37-42
    21. Rodier G, Montagnoli A, Di Marcotullio L, et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. Embo J, 2001.20(23): 6672-82
    22. Ishida N, Hara T, Kamura T, et al. Phosphorylation of p27Kipl on serine 10 is required for its binding to CRM1 and nuclear export. J Biol Chem, 2002. 277(17): 14355-8
    23. Fujita N, Sato S, Katayama K, et al. Akt-dependent phosphorylation of p27Kipl promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem, 2002. 277(32): 28706-13
    24. Fujita N, Sato S, Tsuruo T. Phosphorylation of p27Kipl at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J Biol Chem, 2003. 278(49): 49254-6
    25. Tsvetkov LM, Yeh KH, Lee SJ, et al. p27(Kipl) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol, 1999. 9(12): 661-4
    26. Nguyen H, Gitig DM, Koff A. Cell-free degradation of p27(kipl), a G1 cyclin-dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol, 1999. 19(2): 1190-201
    27. Ganoth D, Bornstein G, Ko TK, et al. The cell-cycle regulatory protein Cks 1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol, 2001.3(3): 321-4
    28. Hao B, Zheng N, Schulman BA, et al. Structural basis of the Cksl-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell, 2005.20(1): 9-19
    29. Zhang Q, Tian L, Mansouri A, et al. Inducible expression of a degradation-resistant form of p27Kip1 causes growth arrest and apoptosis in breast cancer cells. FEBS Lett, 2005. 579(18): 3932-40
    30. Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell, 1996. 85(5): 707-20
    31. Kotake Y, Nakayama K, Ishida N, et al. Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J Biol Chem, 2005.280(2): 1095-102
    32. Ishida N, Kitagawa M, Hatakeyama S, et al. Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J Biol Chem, 2000. 275(33): 25146-54
    33.钟政荣,沈继龙.14-3-3蛋白与调亡.国外医学生理病理科学与临床分册,2004.24(5):435-8
    34. Tzivion G, Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem, 2002. 277(5): 3061-4
    35. Yaffe MB, Rittinger K, Volinia S, et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell, 1997. 91(7): 961-71
    36. Rittinger K, Budman J, Xu J, et al. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell, 1999. 4(2): 153-66
    37. Hirano K, Zeng Y, Hirano M, et al. Sequence requirement for nuclear localization and growth inhibition of p27Kip1R, a degradation-resistant isoform of p27Kip1. J Cell Biochem, 2003.89(1): 191-202
    38. Dingwall C, Laskey RA. Nuclear targeting sequences--a consensus? Trends Biochem Sci, 1991.16(12): 478-81
    39. Sekimoto T, Fukumoto M, Yoneda Y. 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). Embo J, 2004. 23(9): 1934-42
    40. Gorlich D, Mattaj IW. Nucleocytoplasmic transport. Science, 1996. 271(5255): 1513-8
    41. Kohler M, Ansieau S, Prehn S, et al. Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. FEBS Lett, 1997.417(1): 104-8
    
    42. Tsuji L, Takumi T, Imamoto N, et al. Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissue- specific expression. FEBS Lett, 1997. 416(1): 30-4
    
    43. Kuersten S, Ohno M, Mattaj IW. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol, 2001.11(12): 497-503
    
    44. Liang J, Zubovitz J, Petrocelli T, et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated Gl arrest. Nat Med, 2002. 8(10): 1153-60
    
    45. Shin I, Yakes FM, Rojo F, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kipl) at threonine 157 and modulation of its cellular localization. Nat Med, 2002. 8(10): 1145-52
    
    46. Viglietto G, Motti ML, Bruni P, et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kipl) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med, 2002. 8(10): 1136-44
    
    47. Tomoda K, Kubota Y, Arata Y, et al. The cytoplasmic shuttling and subsequent degradation of p27Kipl mediated by Jabl/CSN5 and the COP9 signalosome complex. J Biol Chem, 2002. 277(3): 2302-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700