兔粪堆肥控制参数研究及其微生物群落变化的PCR-DGGE分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验采用主动通风方式,以兔粪和菌渣为原料进行室内高温堆肥试验。设置了2个试验组和2个纯兔粪对照组,在为期51d的堆肥过程中,研究了堆体温度、含水率、pH、总有机碳、总氮、总磷、总钾、种子发芽指数、细菌群落总数和大肠杆菌菌群数的变化规律及其影响因素。利用PCR-DGGE分子生物学方法研究了在堆肥高温发酵过程中微生物群落结构动态及其变化规律,并分析了微生物群落结构演替与理化指标之间的关系,从而进一步了解兔粪高温发酵的作用机制。旨在为兔粪高温堆肥过程中的辅料选择、配方确定以及控制各种影响因素等提供科学依据,从而探索一种兔粪无害化、减量化和资源化利用的高效实用的堆肥方法,为规模化兔场兔粪堆肥处理提供技术储备。试验结果表明:
     1、兔粪高温堆肥生产中,利用兔粪和菌渣按2.6:1混合,初始水分控制在55%-60%,进行堆肥能正常发酵,且能达到无害化处理的目的,在生产中可以此为参考对兔粪进行堆肥生产有机肥料。
     2、在整个堆制过程中,兔粪菌渣混合堆肥和纯兔粪堆肥的TOC相对含量和C/N持续下降,TN相对含量则持续升高,TP、TK的绝对含量基本不变,这与其他畜禽粪便堆肥规律相似。细菌总数整体呈下降趋势,纯兔粪组下降趋势不明显;大肠杆菌在堆肥高温期大部分死亡,在腐熟阶段少量苏醒繁殖。
     3、整个堆肥过程中,试验组和对照组的pH分别为8.70和8.73;C/N分别为22.53和17.86;随着堆肥化的进行抑制种子发芽的物质被慢慢消除,在37天以后种子发芽指数全部达到0.8以上,以上各指标均基本符合国家堆肥腐熟的标准。
     4、利用PCR-DGGE技术对堆肥微生物的群落结构进行了研究,发现堆肥过程中微生物群落结构的演替比较清楚。DGGE指纹图谱显示堆肥细菌的变化规律:“升高-降低-平稳”,在高温阶段有比较丰富的优势细菌群落。
     5、在整个堆制期间,DGGE指纹图谱多样性与传统培养细菌结果并不十分吻合;对照组的细菌多样性指数平均为1.82,略高于试验组1.74,表明,对照组中细菌群落数多于试验组,但其优势菌群不如试验组明显;堆体中微生物主要来源于兔粪中的土著微生物,所以二者的DGGE条带相似度在50%以上;兔粪高温堆肥中细菌多样性与堆体温度变化趋势相似而与C/N比变化趋相反。
     6、试验中对照组除pH值变化与试验组差异较大外,其它参数变化均与试验组趋于一致。50℃以上的高温期能持续9天,大肠杆菌和GI值也符合堆肥腐熟的要求,TN、TP水平略高于试验组。说明生产中如调节好初始水分,采用被动通风堆肥方式,即可以利用兔粪不加辅料进行堆肥,这样可以使兔粪堆肥更加简单,成本更低。
The mushroom residue were used as the auxiliary organic materials in the rabbit manure composting experiment, and in which aeration windrow composting process was adopted. Two trial groups(mushroom residue-rabbit manure) and two control group (pure rabbit manure), were set up respectively,composting process of about 51 days. The temperature of piles, moisture content, pH,total organic carbon content, total kjeldahl nitrogen content,C/N,total phosphorus content,total potassium content,seed germination index(GI), general bacterial population and then E.coli population of were studied.Use of the biological technique of Denaturing Gradien Gel Electrophoresis understand the development and variation of the microbial structures during the composting,the relationship between the physical characteristic,chemical parameters and the succession of microbial communities, further studies the mechanism of thermophilic fermentation during rabbit manure composting.The experiment in order to understand the physical characteristic and chemical parameters influencing composting and the auxiliary organic materials selecting provide scientific basis for rabbit manure composting. Explored rabbit manures resources,minimization,using the sound of effective channel and provide theoretical basis for rabbit manure composting treatment on large rabbit farms. The following results have been obtained:
     1. Rabbit manure and mushroom residue cooperation ratio were 2.6:1, initial moisture content of piles was maintained to 55%-60% during the composting, compost pile temperature arrived at the normal fermentation temperature in composting process athe results taken as reference in the actual production.
     2. Test groups and control groups total organic canbon and C:N ratio were showed downtrend, total kjeldahl nitrogen relative content was increased, total phosphorus and total potassium was maintained to unchangeableness throughout the experiment,similar trend was observed with respect to other domestic animal manure. Test groups the decrease general bacterial population in the process while the decrease was not obvious in control groups.the E.coli were mass mortality in the high temperature period,bacterial reproduction in the cooling-maturity period.
     3. Total organic carbon,pH,C:N ratio and seed germination index can applied to maturity evaluation of composting productions well.Test groups and control groups,pH were 8.70 and 8.73,C:N ratio were 22.53 and 17.86,the seed germination index above to 0.8, all parameters which indicate the compost was complete mature.
     4. PCR-DGGE was used to analyzed the structure of the microbial communities. The result showed that the successional of microbial communities of the compost was obviously during the composting. Denaturing gradien gel electrophoresis patterns showed that:the composting process in the quantities of becateria change in ghe ternd was "higher-lower-constancy",in the high temperature period the quantity of microbial was more.
     5. In the whole composting process, quantity of microbial became more and more,this result accrod with the results by conventional culture. The average shannon-weaver index of bacteria in control groups were higher than test groups (1.82 versus 1.72 to bacteria diversity),showed that bacterial communities in the control group more than in the test groups, but the dominant bacteria were significantly better than test groups. The control groups and the test groups similarity coefficient were above 50% due to the piles microbial from rabbit manure indigenous microbial The bacterial number change tendency was similar to the trend of temperature and opposite tend with the C:N ratio.
     6. In addition,the change of pH in control group and test groups quite different, other parameters were in line with test group. Control group duration of 50℃high temperature period 9 days, E.coli and GI is also consistent with the requirements of compost maturity, total kjeldahl nitrogen and total phosphorus slightly higher than the test group.The results also showed that the raw rabbit manure could be directly used in composting after moisture content was adjusted to a proper range, and the process was not only simple but also low cost.
引文
[1]李庆康,吴雷等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251-254.
    [2]朱凤连,周静,马友华等.养殖业污染及其发展趋势分析[J].江西农业学报,2008(20) :129-132.
    [3]潘涌璋.面向循环经济的畜禽养殖发展思路[J].家畜生态,2004(25):8-10.
    [4]王方浩,马文奇,窦争霞等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
    [5]张福锁.中国养分资源综合管理策略和技术[M].中国农学会学术年会论文文集,2006:371-374.
    [6]王芳.不同菌剂处理对猪粪堆肥效果的影响及PCR-DGGE研究堆肥微生物群落变化[D].四川:四川农业大学,2008.
    [7]路冶.现代化畜禽养殖业粪污处理技术措施[J].辽宁畜牧兽医,2004,4:15-16.
    [8]郭月仙.控制养殖污染的对策建议[J].畜禽业,2008,8:61-63.
    [9]张维理,武淑霞,冀宏杰等.中国农业面源污染形势估计及控制对策[J].中国农业科学,2004,37(7):1008-1017.
    [10]李彪.猪粪高温堆肥添加微生物的筛选和堆肥机理及效果研究[D].四川:四川农业大学,2007.
    [11]徐志平.畜禽废弃物污染与商品有机肥料产业发展[J].耕作与栽培,2003,5:57-58.
    [12]李建华.畜禽养殖业的清洁生产和污染防治对策研究[D].浙江:浙江大学,2004.
    [13]刘波,朱昌雄,微生物发酵床-零污染养猪技术研究与应用[M].中国农业科学技术出版社,2009,5:12-13
    [14]Bremner J M.Organic forms of nitrogen [A].USA:Madison, American Society of Agronomy,1965:1148-1178.
    [15]Thomas Redlinger,Jay Graham,Veronica Corella-Barud.Survival of Fecal Coliforms in Dry-Composting Toilets[J].Applied and Environmental Micro biology,2001,67: 4036-4040.
    [16]兰时乐,曹杏芝,戴小阳等.鸡粪与油菜秸秆高温堆肥中营养元素变化的研究[J].农业环境科学学报,2009,28(3):564-569.
    [17]卢声.稻秆与鸡粪制作堆肥的可行性研究[J].安徽农业科学,2008,36(2):640-641
    [18]F Lebas,G Matheron.Ⅷ.Rabbits[J].Livestock Production Science,1982,4(9):235-250.
    [19]许俊香,王方浩,张福锁等.中国畜禽粪尿磷素养分资源分布以及利用状况[J].河北农业大学学报,2005(28):5-9.
    [20]杨正.现代养兔[M].北京:中国农业出版社,1999:396.
    [21]谷子林,薛家宾.现代养兔实用百科全书[M].北京:中国农业出版社,2007:328.
    [22]Anon.Fertilizer values of some manures[J]. Countryside&Small Stock Journal,1998, 9(10):75.
    [23]曾光明,黄国和,袁中兴等.堆肥环境生物与控制[M].北京:科学出版社,2006.
    [24]Juteau P,Larocque Retal.Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost[J].Applied Environmenlal Microbiology,1999,65(6):863-868.
    [25]Eklind Y,Kirchmann H. Composting and storage of organic household waste with different litter amendments I:carbon turnover[J]. Bioresource Technology,2000,74 (2):115.
    [26]Barrington S,Choinie D,TriguiM,et al.Effect of, carbon source on compost nitrogen and carbon losses [J].Bioresource Technology,2002,83 (3):189..
    [27]Fukumoto Y,O sada T,Hanajima D,et al.Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration effect of compost pile scale[J].B ioresource Tech2nology,2003,89:109.
    [28]柴晓丽,张华,赵由才等.固体废弃物堆肥远离与技术[M].化学工业出版社,2005:18.
    [29]李国学,张福锁.固体废物堆肥化与有机复混肥的生产[M].北京:化学工业出版社,2000:123-137.
    [30]Macgregor S T,Miller F C,Psarianos K M,et al.Composting process control based on interaction between microbial heat output and temperature [J]. Applied and Environmental Microbiology,1981,41(6):1321-1330,
    [31]YANG Yanmei,LIU Hongliang,YANG Zhifeng,et al.Methods and techniques in the control of nitrogen loss during the composting-a review[J]. Journal of Beijing Normal University,2005,41(2):213-216.
    [32]Vaneechoutte M,Rossau R,GiUis M,et al.Rapid identification of bacteria of the Comamonadaeeae with amplified ribosomal DNA-restriction analysis (ARDRA)[J].FEMS Microbiol.Lett.,1992,93:227-233.
    [33]李斌.应用PCR-DGGE分析磁性流化床生物脱硫反应器的菌群多样性[D].内蒙古:内蒙古师范大学,2007.
    [34]肖勇.16SrRNA-rDNA序列分析技术应用于环境微生物群落的初步研究[D].湖南:湖南大学硕士学位论文,2007年.
    [35]Amann R I,Ludwig W,Schleifer KH.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol Rev.,1995,59(1):143-169.
    [36]Torsvik V,Sorheim R,Goksoyr J.Total bacterial diversity in soil and sediment communities-a review[J]. Ind. Microbiol Biotech.,1996,17(3):170-178.
    [37]Ward D M,Bateson M M,Weller R,et al.Ribosomal rRNA analysis of microorganisms as they occur in nature[J]. Adv Microb Ecol,1992,12:219-287.
    [38]Wayne L G,Brenner D J,Colwell RR,et al.Report of the and hotCommittee on reconciliation of approaches to bacterial systematic[J.] Ind. Microbiol Biotech,1987, 37:463-464
    [39]Liu W T,Marsh T L,Cheng H,et al.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J].Appl Environ Microbiol,1997,63:4516-4522.
    [40]LaMontagne M G,Michel Jr F C,Holden P A,et al.Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis[J]. microbiol.meth.,2002,49(3):255-264.
    [41]Stach J M,Bathe S,Clapp J,et al.PCR-SSCP comparison of 16SrDNA sequence diversity in soil DNA obtained using diferent isolation and purification methods[J]. FEMS Microbiof Ecol,2001,36:139-151.
    [42]pervaiza A A B basi,Sally A M,Team E,et al.precise detection and tracing of trichorderma hamatum 382 in compost-amended Ppotting mixes by using molecular markers[J].Appl Environ Microbiol,1999,65(2):5421-5426.
    [43]Zhang T,Fang H P,Digitization of DGGE(denaturant gradient gelelectrophoresis profile and cluster analysis of microbial communities[J]. Biotechnology Letters,2000,22:399-405.
    [44]宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2004,44(6):845-848.
    [45]Muyers R M,Fischer S G,Lerman L S,et al.Nearlyall single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel eleetrophoresis[J].Nucleic Acids Res,1985,13:3131-3145.
    [46]Muyzer QWaal E C,Uitterlinden A GProfiling of complex microbial populations by denaturing gradient gel eleetrophoresis analysis of po lymerase chain reaetionamplified genes encoding for 16S Rrna[J].Appl Environ Microblol,1993,59:695-700.
    [47]Riesner D,Henco K,Steger G.Temperature gradient gel electrophoresis:amethod for the analysis of conformational transitions and mutations in nucleic acids and proteins[J].Advances in Electrophoresis,1991,4:169-250.
    [48]Cocolin L,Manzano M,Cantoni C,et al.Denaturing gradient gel eleetrophoresis analysis of the 16S rRNA gene V1 region to monitordynamic changes in the bacterial po pulation during fermentation of Italian sausages[J].Appl Environ Microbiol, 2001,67(11):5113-5121
    [49]Donnel G O,Cortes H E.16S rDNA methods in soil microbiology[J].Current Opinionin Biotechno logy,1999,10:225-229.
    [50]刘新春,吴成强,杨敏等.PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析[J].生态学报,2005,4(25):842-847.
    [51]杨洋,左剑恶,全哲学等.UASB反应器中厌氧氨氧污泥的种群分析[J].中国环境科学,2006,26(1):52-56.
    [52]张丹,刘耀平,徐慧等.OLAND生物脱氮系统中硝化菌群16S rDNA的DGGE分析[J].生物技术,2003,5(13):1-3.
    [53]Ishii K,Fukui M,Takii S.Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis[J], Appl Microbiol.2000, 89(5):768-777.
    [54]傅以刚,王峰,何培松等.DGGE污泥堆肥工艺微生物种群结构分析[J].中国环境科学,2005,25(Suppl):98-101.
    [55]曾薇,杨庆,张树军等.采用FISH、DGGE和Cloning对短程脱氮系统中硝化菌群 的比较分析[J].环境科学学报,2006,26(5):734-739.
    [56]Vallaeys T,Topp E,Muyzer G,et al. Evaluation of denaturing gradient gel electrophor-esis in the detection of 16S rDNA sequence variation in rhizoidal and methanotrophs[J]. FEMS Microbiol Ecol,1997,24:279-285.
    [57]Komatsoulis G A,Wateman M S.A new computational method for detection ofchimerical 1 6Sr RNA artifacts generated by PCR amplifyic action from mixed bacterial population[J].Applied and Environmental Mi cryobiology,1997,63:2338-2346.
    [58]Hold G L,Smith E A,Rapp6 M S,et al.Characterization of bacterial communities associated with toxic and nontoxic dinoflagellates:Alexandrium spp. and Scrippsiella trochoidea[J].FEM S M icrobiol.Ecol.,2001,37(2):161-173.
    [59]Straub K L,Buchholz-Cleven B E E.Enumeration and detection of anaerobic ferrous irono-xidizing nitratereducing bacteria from diverse European sediments[J]. Appl Environ M icrobiol.,1998,64(12):4846-4856.
    [60]Phillips C J,Harris D,Dollhopf S L,et al.Effects of agronomic treatments on structure and function of ammonia-oxidizing comm unities[J].Appl Environ Microbiol,2000, 66(12):5410-5418.
    [61]黄昌永.土壤学[M].北京:中国农业出版社,2000,5.
    [62]章戴荣.利用PCR-SSCP技术分析猪粪堆肥微生物群落动态[D].四川:四川农业大学,2007.
    [63]Tam N F Y,Tiquia S M. Assessing toxicity of spent pig litter using a seed germination technique[J]. Conservation and Recycling,1994,11(1-4):261-274.
    [64]Van O N,Li D,Jan V.Denaturing gradient gel electrophoresis(DGGE) increases resolution and information of Alu-directed inter-repeat PCR[J].Molecular Cellular Probes,1997,11:95-101.
    [65]刘佳,许修宏,李洪涛.利用PCR-DGGE技术对自然堆肥微生物群落多样性的分析[J].东北农业大学学报,2009,40(9):35-38.
    [66]吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产品质的关系[J].中国农业科学,2007,40(10):2274-2280.
    [67]徐智,汤利,毛昆明等.牛粪对西番莲果渣高温堆肥腐熟进程的影响[J].农业环境科学学报,2006,25(2):226-230.
    [68]FangM,Wong W C,MaK K,etal.Co-composting of sewagesludge and coal fly ash: Nutrient transformations[J]. BioresourceTechnology,1999,67:19-24.
    [69]吕宝,王成端.污泥与稻草混合堆肥试验研究[J].环境卫生工程,2007,15(4):12-14.
    [70]Hirai M F,Chanyasak V,Kubota H.A standard measurement for compostmaturity[J]. Biocycle,1983,24:54-56.
    [71]Sneh Goyal,S.K Dhull,K.K. Kapoor.Chemical and biological changes during composting of different organic wastes and assessment of compost maturity[J]. Bioresource Technology,2005,96:1584-1591.
    [72]Sanchez-MonederoM A,Roig A,Paredes C,et al.Nitrogen transformation during organicwaste composting by the Rutgers systemand its effects on pH,EC and maturity of the composting mixtures[J]. Bioresource Technology,2001,78:301-308.
    [73]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用[J].环境科学,2001,22(5):121-125.
    [74]李季,彭生平.堆肥工程实用手册[M].北京:化学工业出版社,2005:1-22,62.
    [75]陆承平.兽医微生物学(第三版)[M].北京:中国农业出版社,2007:215-223.
    [76]Zucconit F,Pera A,Forte M,et al.Evaluating toxicity of immature compost[J].Biocycle, 1981,22:54-57.
    [77]Tiquia S M,Tama N F Y,Hodgkis I J.Effects of Composting on Phytotoxicity of Spent Pig-Manure Sawdust Litter[J].Environmental Pollution,1996,93(3):249-256.
    [78]Haug R T.The practical handbook of compost engineering[M].New York,Lewis Publisher,1993
    [79]钱晓雍,沈根祥,黄丽华等.畜禽粪便堆肥腐熟度评价指标体系研究[J].农业环境科学学报,2009,28(3):549-554.
    [80]Bishop P L,Godfrey C.Nitrogen transformation during sludge composting[J]. BioCycle,1983,24:34-39.
    [81]张桥,吴启堂,黄焕忠等.城市污泥与稻草堆肥的腐熟度指标研究[J].农业环境科学学报,2004,23(4):782-786.
    [82]于安,鸡粪/木屑强制通风堆肥过程中物质转化规律及微生物种群结构[D].山东: 中国海洋大学,2009.
    [83]徐晓宇,闵航,刘和等.土壤微生物总DNA提取方法的比较[J].农业生物技术学报,2005,13(3):377-381.
    [84]曹治明,郑维,权春善等.土壤DNA提取方法的研究[J].大连民族学报,2005,7(3):94-94.
    [85]Michael H,William C G,Larry P W.A quantitative analysis of DNA extraction and purification from compost[J].Microbiol.Meth,2003,54:37-45.
    [86]Kousuke I,Manabu F.optimization of annealing temperature to reduce biascaused by a primer mismatch in multitemplate PCR[J].Applied and Entertainment Microbiology,2004,67:3753-3755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700