厌氧发酵液脱氮除磷循环工艺及物质变化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧发酵液中碳氮比例失调,碳源严重不足、碱度不足、可生化性差,为发酵液后处理工艺的难点。针对这一问题,本研究提出用水解酸化与生物接触氧化循环串联工艺处理发酵液废水。在此基础上,运用离子色谱仪、荧光光谱仪、紫外光谱仪等先进仪器,追踪监测在不同条件下反应过程中有机物和氮元素变化过程。
     研究了水解酸化与生物接触氧化组合循环工艺处理厌氧发酵液的最佳运行工况和最佳运行参数以及工艺低温运行的性能。试验结果表明,水力停留时间24小时、循环比1:3、温度在8-30℃,溶解氧和有机负荷分别在2mg/L~3mg/L、<3g/L的条件下,组合工艺达到最佳脱氮效果,出水清澈无异味。组合工艺连续运行三个月以上,污染物去除效果稳定。
     小分子有机酸分析结果显示,在水解酸化过程中,有机物被降解为甲酸、乙酸和丙酸,在水解初期有机酸总量达到最大,随后逐渐降低,后趋于稳定;而在生物接触氧化池内未检测到小分子有机酸物质。荧光光谱分析显示,污水中有机物均以类蛋白类物质荧光峰为主,类蛋白物质的荧光峰强度随着水解时间增加而增强,而好氧过程中有机物中出现结构复杂的类富里酸荧光峰,且逐渐增强。
     紫外分析结果表明,紫外光谱图中均在280nm处有一个吸收平台,随着反应时间的延长,水解污水中的紫外吸收强度有少许增加,而好氧阶段却呈相反趋势,两者的变化均不明显。水解阶段,SUVA254、E253/E203数值由1.5和0.28增至1.4和0.3,有机物芳香性和不饱和性增加,同时芳环物质的稳定性变差,好氧阶段呈下降趋势,易降解有机物被快速消耗。
     循环比1:3条件下产生的有机酸物质最佳,脱氮效果最佳。水解酸化阶段污水的COD量与有机酸生成总量、乙酸、丙酸量均呈显性相关关系。
     污水中有大量的有机物和氮元素抑制磷的去除,并且存在聚糖菌与聚磷菌微生物的竞争机制,聚磷菌无法大量繁殖,影响除磷效果。
The difficulty of treating anaerobic digested wastewater is its characteristics on the imbalance of carbon and nitrogen, serious lack of carbon source, lack of basicity, and no good biochemical quality. Aiming at solving the problem, study proposes using a combination recirculating system of hydrolyze-acidification and biological contact oxidation process to treat digested wastewater. Basis on these, study recurs to some advanced instruments such as ion chromatograph, fluorescence spectroscope and ultraviolet spectrometer to detect the changes of organic matter and nitrogen in different condition around the reaction process.
     The operating conditions and operating parameters of optimal process were studied on the denitrification cycling process combination with hydrolysis & acidification and biological contact oxidation to treat with anaerobic fermentation of digested wastewater. Results showed that hydraulic retention time with 24h, the recycling ratio with 1:3, DO concentration with 2-3mg/L and organic loading with 3g/L were the best running conditions, and then effluent clear and no objectional odor. The combination recirculating system was used to treat digested piggery wastewater for more than three months; the pollutants removal efficiency was continuously stable.
     Micromolecule organic acid results showed that during hydrolysis and acidification process, organic was degraded to be methanoic acid, acetic acid and propanoic acid. At the beginning of hydrolysis and acidification process, the total organic acid concentration reached maximum, and than reduced, at last it stayed relatively constant. Organic acids were not detected in aerobic reactor. Fluorescence spectroscope showed that organi matter was main protein-like fluorescence, the fluorescence intensity increased gradually in hydrolyze and acidification reactor. However, in aerobic reactor, fluorescence peak of DOM appeared fulic-like fluorescence, and the fluorescence intensity strengthened gradually.
     Ultraviolet spectrometer results showed that there is a absorption platform in 280nm in ultraviolet spectrum chart, along with the reacting time, it was a little increase arounding in hydrolysis process, but opposited in aerobic phase, both are not obvious. SUVA254 and E253/E203 increased respectively from 1.5 and 0.28 to 1.4 and 0.3 during the hydrolyze reaction, which suggested that aromatic and unsaturated compounds slightly increase and the stability of aromatic compounds weaken. It was declined, and easily degradable organic matter have been degraded rapidly in aerobic reactor.
     It was produced most organic acid and get a best effect in denitrification in the condition of recycling ratio with 1:3. The concentration of COD was significantly correlated with the concentration of organic acids, acetic acid and propanoic acid in hydrolyze and acidification reactor.
     A mass of organic matter and nitrogen in effluent were restrain removaling phosphorus, and it exists the competition mechanism of glycogen-accumulating organisms and phosphate-accumulating organisms, causing phosphate accumulating organisms can't grow greatly, then affected the phosphorous removal effect.
引文
[1]王青颖.中国农村生活污水处理技术应用现状及研究方向[J].污染防治技术.2007,20(5):37-41,73
    [2]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005.
    [3]王金花.沼气发酵生态系统与残留物综合利用技术研究[D].北京:中国农业大学水利与土木工程学院,2005.
    [4]赵宗升,刘鸿亮,李炳伟,等.高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水,2001,17(5):24-28
    [5]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学通报,2001,28(4):88-91
    [6]王冬波,李小明,杨麟,等.SBR无厌氧段实现生物除磷[J].环境科学,2008,29(7):1867-1873
    [7]Merzouki M, Bernet N, Delgenes J P, Benlemlih M. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater [J]. Bioresource Technology,2005,96(12): 1317-1322
    [8]Bernet N, Delgenes N, Akunna C, et al. Anerobic-aerobic SBR for the treatment of piggery wastewater[J]. Water Research,1999,34(2):611-619.
    [9]Qin L, Liu Y. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor[J]. Chemosphere,2006,63(6):926-933
    [10]Takaaki M, Chung M L, Xing D F. Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reaetor followed by ammonium crystallization proeess[J]. Water Research,1995,29(12):2643-2650.
    [11]张瑞红.基于物化-序批式生物膜工艺处理厨余垃圾厌氧消化液的研究[D].昆明:昆明理工大学,2005
    [12]宋国梁,邓良伟.高氨氮厌氧消化液后处理技术研究[J].中国沼气,2006,25(2):7-10
    [13]Sang I L, Jong H P, Kwang B K, et al. Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactor[J]. Water Research,1997,31(7):1807-1812
    [14]Ivan M, Alenka P, Franee M. Nitrifieation/denitrifieation in nitrogen high-strength liquid wastes[J]. Water Research,1996,30(9):2107-2111
    [15]Ahmed S U, Mogens H. Biological hydrolysis and acidification of sludge under anaerobic conditions:The effect of sludge type and origin on the production and composition of volatile fatty acids [J]. Water Research,2008,42(14):3729-3738
    [16]Vazque I Z, Rodriguez J, Maranon E, et al. Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process[J]. Journal of Hazardous Material,2006, B 137(3):1681-1688
    [17]Kim J H, Chen M X, Kishida N, et al. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing bateh reaetors[J]. Water Researeh, 2004,38(14-15):3340-3348.
    [18]Xavier F, Nuria A, Manel P V. Evaluation of an integrated system for pig slurry treatment[J]. Biotechnology,1997,68:75-81.
    [19]邓良伟,蔡昌达,陈铬铭,等.猪场废水厌氧消化液后处理技术研究及工程应用[J].农业工程学报,2002,18(3):92-94
    [20]邓良伟,孙欣,陈子爱.基于碱度平衡与反硝化动力学的厌氧-加原水-间歇曝气工艺配 水比例模型[J].环境科学学报,2007,27(10):1643-1651
    [21]杨剑,邓超冰,冼萍,等.SBR处理猪场废水厌氧消化液脱氮工艺的优化[J].环境科学与技术,2009,32(1):174-177
    [22]曹玉成,张妙仙,单胜道.MBBR处理猪场废水厌氧消化液的研究[J].环境工程学报,2008,2(5):591-594
    [23]Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research,2005,39(19):4817-4832
    [24]Eckenfelder W W. Inderstrial Water Pollution Control, McGraw-Hill Book Company. New York:1989:49-79
    [25]牛樱,陈季华.兼氧-好氧工艺处理高浓度化工废水[J].工业水处理,2000,20(8):8-10.
    [26]Fahmy M, Kut O M, Heinzle E. Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents-I. Global parameters[J]. Water Research,1994,28(9):1987-1996.
    [27]Fahmy M, Kut O M, Heinzle E. Aaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents-Ⅱ. Fate of individual chlorophenolic compounds [J]. Water Research, 1994,28(9):1997-2010.
    [28]Ascon M A, Lebeault J M. High efficiency of a coupled aerobic-anaerobic recycling biofilm reactor system in the degradation of recalcitrant chloroaromatic xenobiotic compounds[J]. Applied Microbiology and Biotechnology,1999,52:592-599.
    [29]Beeman R E, Bleckmann C A. Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics:field results [J]. Journal of Contaminant Hydrology, 2002(57):147-159.
    [30]Takai T, Hirata A.Yamauchi K, et al. Effects of temperature and volatile fatty acids on nitrification-denitrification activity in small-scale anaerobic-aerobic recirculation biofilm process[J]. Water Science Technology,1997,35(6):101-108.
    [31]邹小勤.高浓度模拟PTA生产废水的间歇生物处理技术研究[D].厦门:厦门大学,2006.
    [32]廖鑫凯.处理高浓度有机废水的新型水解-好氧循环SBR技术的研究[D].厦门:厦门大学,2004.
    [33]Su J J, Liu Y L, Shu F J, et al.Treatment of piggery wastewater by contact aeration treatment in coordination with the anaerobic fermentation of three-step piggery wastewater treatment (TPWT) process in Taiwan[J]. Journal of Environmental Science and Health part A-toxic/Hazardous Substanc,1997,32 (1):55-73.
    [34]Ng W G. Aerobic treatment of piggery wastewater with the sequencing batch reactor[J] Biological Waste,1987,22(4):285-294.
    [35]孙京敏,王路光,王世研.水解酸化法预处理青霉素废水的试验[J].环境工程,2006,24(1):30-32
    [36]Malgorzata K K, Hanna M, Eugeniusz K. Factors affecting the biological nitrogen removal from wastewater[J]. Process Biochemistry,2006,41(5):1015-1021
    [37]刘长青,毕学军,张峰,等.低温对生物脱氮除磷系统影响的试验研究[J].水处理技术,2006,32(8):18-21
    [38]Euiso C D, Rhu Z, Yun E L. Temperature effects on biological nutrient removal system with weak municipal wastewater[J]. Water Science Technology,1998,37(9):219-226.
    [39]张朝升,章文菁,方茜,等.DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J].环境工程学报,2009,3(3):413-416
    [40]Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater[J]. Journal of Biotechnology,2003,106(1):77-86
    [41]Qin L, Liu Y. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor[J]. Chemosphere,2006,63(6):926-933
    [42]G6mez M A, Gonzdlez-L6pez J, Hontoria-Garc E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter [J]. Journal of Hazardous Materials,2000,80(1-3):69-80.
    [43]Belen A, Anuska M C, Juan M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research,2004,38(14-15):3389-3399
    [44]He S B, Xue G, Kong H N, et al. Improving the performance of sequencing batch reactor (SBR) by the addition of zeolite powder[J]. Journal of Hazardous Material,2007,142(1-2): 493-499
    [45]Lu X Q, Jaffe R. Interaction between Hg(II)and natural dissolved organic matter:a. fluorescence spectroscopy based study[J]. Water Research,2001,35(7):1793-1803.
    [46]郭瑾,马军.松花江水中天然有机物的提取分离与特性表征[J].环境科学,2005,26(5):77-84
    [47]努尔古丽,冉竹叶,赵小峰,等.高效液相色谱法定量测定采油微生物发酵菌液中的有机酸[J].分析测试技术与仪器,2007,13(2):136-140.
    [48]贾洪锋,贺稚非,李洪军,等.高效液相色谱法测定发酵辣椒中的有机酸[J].食品科学,2008,29(3):374-379.
    [49]屈锋,刘克纳,牟世芬,等.离子色谱法同时测定柠檬酸发酵液中无机阴离子和有机酸[J].环境化学,1995,14(5):465-470.
    [50]邢宝立,王莉娜,林智平,等.啤酒酿造过程中有机酸变化规律的分析研究[J].啤酒科技,2007,111(3):17-22.
    [51]王莉娜,邢宝合.抑制型离子色谱法同时测定啤酒中有机酸与无机阴离子[J].啤酒科技,2005,(7):28-31.
    [52]徐伟,于刚,薛长湖,等.抑制型离子色谱同时测定分离检测鱼酱油中的九种有机酸[J].食品科学,2008,29(4):306-309.
    [53]Kasai Y, Tanimura T, Tanura Z. Spectrophotometric determination of carboxlic acids by the formation of hydroxamic acids with dicyclohexylcarbodiimide[J]. Analytical Biochemistry, 1975,47(1):34-41.
    [54]Figenschou D L, Marais J P, Spectrophotometric method for the determination of microquantities of lactic acid in biological material[J]. Analytical Biochemistry,1991,195(2): 308-313.
    [55]吴玉萍,宋春满,雷丽萍,等.梯度淋洗离子色谱法测定烟草中的苹果酸、柠檬酸和阴离子[J].分析试验室,2006,25(7):31-34.
    [56]史亚利,刘京生,蔡亚岐,等.离子交换色谱法同时测定啤酒中有机酸和无机阴离子[J].分析化学,2005,33(5):605-608.
    [57]林华影,林风华,盛丽娜,等.淋洗液自动发生-离子色谱法同时测定食品中的21种有机酸[J].色谱,2007,25(1):107-111.
    [58]闫巍,焦霞,叶明立,等.离子色谱法测定威力酸中的有机酸[J].分析试验室,2008,27(2):38-40.
    [59]傅彤,刘庆生,范志影,等.应用离子色谱测定青贮饲料中有机酸含量的研究[J].中国畜牧兽医,2005,32(5):16-17.
    [60]刘义,张兆昌.水解酸化-气浮-SBR工艺处理乳品废水的研究[J].环境工程,1998,16(5): 19-21
    [61]Chen Y G, Randall A A, Mc C T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratio of acetic to propionic acid [J]. Water Research,2004,38(1):27-36
    [62]Chen Y G, Chen Y S, Xu Q, et al. Comparison between acclimated and unacclimated biomass affecting anaerobic-aerobic transformations in the biological removal of phosphorus [J]. Process Biochemistry,2005,40(2):723-732
    [63]Beccari M, Majone M, Torrisi L. Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents[J].Water Science and Technology,1998, 38(4-5):53-60
    [64]马文林,王晋,梁存珍,等.土霉素结晶母液酸化水解过程的研究[J].环境科学,2001,22(5):41-43
    [65]Ince O. Performance of a two-phase anaerobic digestion system when treating dairy wastewater[J]. Water Research,1998,32(9):2707-2713
    [66]欧阳二明,张锡辉,王伟.城市水体有机污染类型的三维荧光光谱分析法[J].水资源保护,2007,23(3):56-59
    [67]傅平青,刘丛强,吴丰昌,等.洱海沉积物孔隙水中溶解性有机质的三维荧光光谱特征[J].第四纪研究,2004,24(6):695-700
    [68]张军政,杨谦,席北斗,等.垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J].光谱学与光谱分析,2008,28(11):2583-2587
    [69]吕洪刚,欧阳二明,郑振华,等.三维荧光技术用于给水的实质测定[J].中国给水排水,2005,21(3):91-93
    [70]傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特性研究[J].光谱学与光盘分析,2005,25(12):2024-2028
    [71]Sierra M M, Donard O F X, Lamotte M, et al. Fluorescence spectroscopy of coastal and marine waters [J]. Marine Chemistry,1994,47(2):127-144
    [72]Lombardi A T, Jardim W J. Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials[J]. Water Research, 1999,33(2):512-520.
    [73]Peuravuori J H, Koivikko R, Pihlaja K. Characterization, differentiation, and classification of aquatic humic matter separated with different sorbenta:synchronous scanning fluorescence spectroscopy [J]. Water Research,2002,36(18):4552-4562.
    [74]Ahmad S R, Reynolds D M. Synchronous fluorescence spectroscopy of wastewater and some potential constituents [J].Water Research,1995,29(6):1599-1602
    [75]刘志宏,蔡汝秀.三维荧光光谱技术分析应用进展[J].分析科学学报,2000,16(6):516-523.
    [76]Baker A, Curry M. Fluorescence of leachates from three contrasting landfills. Water Research, 2004,38(10):2605-2613
    [77]Paula G C. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry,1996,51(4):325-346
    [78]Leenheer J A, Croue J P. characterizing aquatic dissolved organic matter[J]. Environmental Science and Technology.2003,37(1):19-26.
    [79]Jaffe R, Boyer J N, Lu X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis [J]. Marine Chemistry, 2004,84(3-4):195-210.
    [80]Baker A. Fluorescence properties of some farm wastes implications for water quality monitoring[J]. Water Research,2002,36(1):189-195
    [81]Yamashita Y H, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry,2003,82(3-4):255-271
    [82]Colin A, Stedmona, Stiig M, et al. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82(3-4): 239-254
    [83]Chen J, Gu B, LeBoeuf E J, et al. Fluorescence spectroscopic studies of natural organic matter fractions [J]. Chemosphere,2003,50(5):639-647.
    [84]欧阳二明,张锡辉,王伟.常规净水工艺去除有机物效果的三维荧光光谱分析法[J].光谱学与光谱分析,2007,27(7):1373-1376
    [85]万芳,刘国强,郭劲松,等.渗滤液中DOM的表征及特性研究[J].环境科学,2009,30(3):834-839
    [86]彭全才,胡继伟,蒋翠红,等.百花湖沉积物孔隙水中溶解有机质的光谱特性[J].江西师范大学学报(自然科学版),2009,33(3):261-266
    [87]郝瑞霞,曹可心,赵钢,等.用紫外光谱参数表征污水中溶解性有机污染物[J].北京工业大学学报,2006,32(12):1062-1066.
    [88]Korshin G V, Li C W, Benjamin M M. Monitoring the properties of natural organic matter through UV spectroscopy:A consistent theory[J]. Water Research,1997,31(7):1787-1795
    [89]张甲,曹军,陶澍.土壤水溶性有机物的紫外光谱特征及地域分异[J].土壤学报,2003,40(1):118-122.
    [90]Magnus S, Klau S K, Rolf D, et al. Estimating nitrate, dissolved organic carbon and DOC fractions in forest floor leachates using ultraviolet absorbance spectra and multivariate analysis [J]. Geoderma,2005,124(1-2):157-168
    [91]Nishijima W, Speitel G E. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon[J]. Chemosphere,2004,56(2):113-119.
    [92]水和废水监测分析方法编委会.水和废水分析方法(第四版)[M].北京:中国环境科学出版社,2002:43-46
    [93]Wang Y Y, Peng Y Z, Tom S. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process[J]. Bioresource Technology,2009,100(14):3506-3512
    [94]Merzouki M, Bernet N, Delgenes J P, Benlemlih M. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater[J]. Bioresource Technology,2005,96(12): 1317-1322
    [95]万金保,王敬斌.同步硝化反硝化脱氮机理分析及影响因素研究[J].江西科学,2008,26(2):345-350
    [96]Liu Y, Chen Y G, Zhou Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids[J]. Chemosphere,2007, 66(1):123-129
    [97]Schuler A J, Jenkins D. Effects of pH on enhanced biological phosphorus removal metabolisms[J]. Water Science Technology.2002,46(4-5):171-178.
    [98]Oehmen A, Teresa V M, Lu H, et al. The effect of pH on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms [J]. Water Research,2005,39(15):3727-3737.
    [99]Panswad T, Doungchai A, Anotai J. Temperature effect on microbial community of enhanced biological phosphorus removal system[J]. Water Research,2003,37(2):409-415.
    [100]Griffiths P C, Stratton H M, Seviour R J. Environmental factors contributing to the "G-bacteria" population in full-scale EBPR plants[J]. Water Science and Technology,2002, 46(4-5):185-192.
    [101]李勇智,袁永臻,张艳萍,等.硝酸盐浓度及投加方式对反硝化除磷的影响[J].环境污染与防治,2003,12(6):323-325
    [102]张晔.生物除磷机理及其影响因素分析[J].唐山学院学报,2003,16(1):24-25,72
    [103]方茜,张朝升,张红.亚硝酸盐对反硝化聚磷菌除磷性能的影响[J].环境工程学报,2009,3(1):52-56
    [104]石玉明,马放,姜欣欣,等.污水有机碳源和电子受体对除磷的影响[J].给水排水,2009,35(3):35-40
    [105]Carucci A. Different mechanisms for the anaerobic storage of organic substrates and their effect on enhanced biological phosphate removal[J]. Water Science and Technology,1999, 39(6):21-28.
    [106]Meinhold J. Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal[J]. Water Science Technology,2001,38(1):97-105.
    [107]田淑媛,杨睿,王景峰,等.生物除磷及其生化机理研究[J].中国给水排水,2001,17(1):71-73
    [108]Beril S A, Aysenur U. The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor[J]. Bioresource Technology,2004,9(4):1-7
    [109]Cech J S, Hartman P. Glucose induced break-down of enhanced biological phosphate removal[J]. Environmental Technology,1990,11:651-656.
    [110]Liu W T, Mino T, Nakamura K, et al. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal[J]. Water Research,1996,1(30):75-82.
    [111]Liu W T, Nakamura K, Matsuo T, et al. Internal energy-based competition between polyphosphate-accumulating bacteria and glycogen-accumulating bacteria in biological phosphorus removal reactors-Effect of P/C feeding ratio[J]. Water Research,1997,6(31): 1430-1438.
    [112]徐伟锋,顾国维,张芳.生物除磷系统中聚糖菌代谢机理的研究进展[J].微生物学通报,2006,33(4):149-153
    [113]Whang L M, Park J K. Competition between polyphosphate and glycogen accumulating organisms in biologica phosphorus removal systems:effect of temperature[J]. Water Science Technology,2002,46(1-2):191-194.
    [114]Oehmen A, Yuan Z, Blackall L L, et al. Short term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms[J]. Water Science Technology,2004,50(10):139-144.
    [115]Oehmen A, Saunders A M, Vives M T, et al. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources[J]. Biotechnology,2006,123(1):22-32.
    [116]Saito T, Brdjanovic D, Loosdrecht M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Water Research,2004,38(17):3760-3768.
    [117]Whang L M, Park J K. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems:effect of temperature and sludge age[J]. Water Environment Research,2006,78(1):4-11.
    [118]邓荣森,郎建,王涛,等.城市污水生物除磷脱氮机理研究[J].重庆建筑大学学报,2002,24(3):106-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700