移动床SBR反应器处理高氨氮废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过控制移动床SBR系统工艺运行参数,研究其对氨氮废水的处理效能;运用分子生物学技术研究了膜生物数量、种类及菌群结构的演变规律,主要研究内容如下:
     (1)移动床SBR系统处理氨氮废水效能
     在控制氨氮100mg/L, COD由400mg/L逐步降至200mg/L的运行培养过程中,填充率分别为25%和13%的R1、R2两组系统氨氮去除效果良好,均出现亚硝氮积累和反硝化现象,且填料填充率越大两现象越明显,COD浓度越高越有利于反硝化进行,有碍亚硝氮积累。
     (2)移动床SBR系统微生物相分析
     扫描电镜对系统中原始污泥及不同时期生物膜样品的研究结果表明,原始污泥中基本以短杆菌为主,运行初期,填料表面有黄褐色絮状膜,结构疏松;中期,填料表面形成一层致密黄褐色生物膜,电镜观察发现杆菌、球菌大量富集,成团成簇,将丝状菌包裹于其中,微生物形态逐渐模糊;后期,生物膜颜色有所加深,电镜观察细菌更加密集,生物膜已相当成熟。
     利用PCR-DGGE技术研究系统内部微生物群落结构及多样性,结果表明总细菌种类较丰富,主要为变形菌门,大部分为好氧异养菌,少部分可以进行兼性厌氧,其中5个条带具有还原硝酸盐和亚硝酸盐的作用;氨氧化细菌基本为亚硝化单胞菌,其中3个条带属于欧洲亚硝化单胞菌,而另外大部分均为不可培养菌。
     (3)移动床SBR系统运行影响因素的研究
     乙醇、乙酸钠、葡萄糖、蔗糖四种碳源条件下氨氮去除率差异不大,乙酸钠条件下总氮去除率最高;氨氮100mg/L条件下,移动床SBR系统在COD100~400mg/L的有机负荷范围内,氨氮去除率随着COD浓度升高有所降低,但整体氨氮去除效果在99%以上,有机浓度越高总氮去除率越大;氨氮浓度在30~50mg/L之间氨氮去除率较好,一般在反应5小时后去除率接近100%;氨氮浓度在15~60mg/L之间硝化反应符合一级反应动力学。
In this paper, the moving-bed SBR system is established to deal with ammonia-nitrogen wastewater by optimizing the process operating parameters. Membrane biological quantity, the evolution mechanism of species and community structure are investigated by microbiology molecular techniques. The main research contents are shown as follows:
     (1) The performance of moving-bed SBR system dealing with ammonia wastewater:
     Under the condition of NH4+-N100mg/L, COD decreasing from400mg/L to200mg/L gradually, the NH4+-N removal rate of system R1(25%packing fill rate) and R2(13%packing fill rate) are well. In running process, the nitrite accumulation and denitrification all appear in the moving bed SBR system. Moreover, there is a positive relationship between the fill rate and the two phenomenons. The higher COD concentration is conductive to denitrification and not to the accumulation of nitrite.
     (2) The microbial phase analysis results of moving bed SBR system
     Results of scanning electron microscopy (SEM) on different periods of the suspended filler bio-film show that Brevibacterium occupy a major position in the original sludge. In early running stage, there is tan flocculent film on packing surface with loose structure. In the middle of running, a dense yellow-brown bio-film forms on the filler surface. Electron microscopy observation shows that Bacillus and Coccus are enrichment, gathering into a mass. Filamentous bacteria wrapped in microbial shape gradually are blurred. Back-end bio-film color is deepened. More intensive bacteria observed by electron microscopy shows that bio-films have already reached quite mature stage.
     Research the composition and diversity of microbial communities in the system using PCR-DGGE. The results show that the bacteria species are rich in the reactor and the main kind is the Proteobacteria genus. Most of the bacteria belong to aerobic heterotrophic bacteria, and a small part is facultative anaerobe. There are5bands having the function of reduction for nitrate and nitrite. The main ammonia-oxidizing bacteria in the reactor is Nitrosomonas. Three of them belong to Nitrosomonas European, while the others are non-cultivated.
     (3) Study of influencing factors of running for moving bed SBR system shows that:
     The NH4+-N removal rates under the conditions of four carbon sources (ethanol, sodium acetate, glucose and sucrose) didn't have significant difference. When sodium acetate as the carbon source, TN remove rate was the highest. Under the condition of NH4+-N100mg/L, the NH4+-N removal rate decreases with the increase of COD concentration while COD was in100-400mg/L.But the NH4+-N removal rates were all above99%. The higher the organic concentration is, the greater the TN removal rate. Ammonia concentration in the range of30-50mg/L, the removal efficiency is better. Generally speaking, after five hours of reaction, the removal is nearly100%. The degradation of ammonia in the concentration of15-60mg/L follows the first order reaction kinetics.
引文
[1]陈清后,李飞,张雁秋,等.一种新型短程同步硝化反硝化生物膜工艺[J].环境科学与管理,2007,32(10):87-89.
    [2]李贤胜,王琳,施永生.生物法同步脱氮除磷主要工艺及问题探讨[J].进水技术,2005,24(6):30-33.
    [3]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999:188-197.
    [4]王宝贞,王琳.水污染治理新技术-新工艺、新理念、新理论[M].北京:科学出版社,2004,1.
    [5]Windey K, Debo I, Verstraete W. Oxygen limited autotrophic nitrification denitrification (OLAND) in a rotating biological contactor treating high salinity wastewater[J]. Water Research,2005,39(18):4512-4520.
    [6]董远湘,李小明,伊疆,等.溶解氧对OLAND生物膜反应器硝化性能的影响及其微生物种群动态研究[J].环境污染与防治,2005,27(8):561-564.
    [7]Zhao HW, Mavinic DS, oldham WK, et al. Controlling factors for simultaneous nitrification and denitrifyication in a two-stage intermittent aeration process treating domestic sewage[J]. Water Research,1999,33(4):961-970.
    [8]Yoo HS, Ahn KH, Lee HJ, et al. Nitrogen removal from synthetic waste water by simultaneous nitrification and denitrifyication via nitrite in an intermittently aerated reactor[J]. Water Research,1999,33(1):145-154.
    [9]杜馨,张可方,方茜,等.碳源对SBR工艺同步硝化反硝化的影响[J].中国给水排水,2007,23(11):47-51.
    [10]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,6(1):13-15.
    [11]Sirianuntapiboon, Suntud and Yommee, Suriyakit, Application of a new type of moving bio-film in aerobic sequencing batch reactor (aerobic-SBR)[J] Journal of Environmental Management,2006,78 (2):149-156.
    [12]Huang HK, Tseng SK. Nitrate reduction by mitrobacter diversus underaerohic environment[J]. Applied Microbiology and Biotechnology,2001,55:90-94.
    [13]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水,2001,27(1):22-24.
    [14]何坚.同步硝化反硝化脱氮的影响因素及其机理研究[D].上海:同济大学,2003:435.
    [15]阮文权,卞庆荣,陈坚.COD与DO对好氧颗粒污泥同步硝化反硝化脱氮的影响[J].应用与环境生物学报,2004,(10):366-369.
    [16]Satoh H, Okabe S, Yamaguchi Y, et al. Evaluation of the impact of bio-augmentation and bio-stimulation by in situ hybridization and microelectrode[J]. Water Research,2003,37(9):2206-2216.
    [17]Ros M, Vrtovsek J. Wastewater treatment and nutrient removal in the combined reactor[J]. Water Science and Technology,1998,38 (1):87-95.
    [18]Klangduen P, Jurg K. Study of factors affecting simultaneous nitrification and denitrification [J]. Water Science and Technology,1999,39(6):61-68.
    [19]Hong WZ, Donald SM. Controlling factor for simultaneous nitrification and denitrification in a two stage intermittent aeration process treating domestic sewage[J]. Water Research,1999,33(4):961-970.
    [20]廖振良,朱柏荣,叶建锋.UNITANK工艺机理及其研究进展[J].水处理技术,2009,35(1)20-23.
    [21]张小玲,李斌,杨永蛰,等.低DO下的短程硝化及同步反硝化[J].中国给水排水,2004,20(5):13-16.
    [22]马勇,彭永臻,王淑莹,等.前置反硝化工艺外加碳源投加串级控制策略研究.中国环境科学,2004,24(2):214-218.
    [23]王之晖,王淑莹,鼓永臻等.前置反硝化脱氮系统外加碳源在线控制基础[J].环境科学,2004,25(3):73-77.
    [24]Hyungseok Y, Kyu H. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently aerated reactor[J]. Water Research,1999,33(1):145-154.
    [25]王献平,李韧.吹脱+A/O工艺处理氮肥企业高氨氮废水的工程实践[J].环境工程,2007,25(5):102-104.
    [26]刘军,潘登,王斌,等.SBR工艺中DO和C/N对同步硝化反硝化的影响[J].北京工商大学学报,2003,21(2):7-9.
    [27]涂保华,王利平,李定龙.曝气-过滤一体化装置中同步硝化反硝化的研究[J].环境科学与技术,2005,28:132-134.
    [28]Andreadakis AD. Physical and chemical properties of activated sludge flocs[J]. Water Research,1993,(27):1707-1714.
    [29]白晓慧.利用好氧颗粒污泥实现同步硝化反硝化[J].中国给水排水,2002,18(2):26-28.
    [30]谢珊,李小明,曾光明,等.同步硝化反硝化实现途径的探讨[J].环境科学与技术,2004,2(27):107-109.
    [31]邹联沛,王宝贞,刘旭东,等.MBR中影响同步硝化反硝化的生态因子[J].环境科学,2001,22(4):52-55.
    [32]黄玉峰,张丽丽,郝微,等.SBR中好氧颗粒污泥的培养与除污效能[J].中国给水排水,2005,21(2):53-55.
    [33]Gupta AB, Gupta SK. Simultaneous carbon and nitrogen removal from high strength domestic waste water in an aerobic RBC biofilm[J]. Water Research, 2001, (35):1714-722.
    [34]Puznava N, Payraudeau M, Thornberg D. Simultaneous Nitrification and Denitrification in Biofilters with Real time Aeration Control [J]. Water Science and Technology,2001,43(1):269-276.
    [35]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006,176-203.
    [36]王淑莹.SBR法短程硝化及过程控制研究[J].中国给水排水,2002,18(10):1-5.
    [37]蒙爱红.高浓度氨氮废水的短程硝化研究[J].中国给水排水,2002,18(11):43-45.
    [38]Ruiz G, Jeison D, Chamy R. Nitrification with High Nitrite Accumulation for the Treatment of Waste water with High Ammonia Concentration[J]. Water Research,2003,37(6):1371-1377.
    [39]廖振良,朱柏荣,叶建锋.UNITANK工艺机理及其研究进展[J].水处理技术,2009,35(1):20-23
    [40]Joannasurmacz GR, Komeliusz M. Nitrogen Removal from Waste water with High Ammonia Nitrogen Concentration via Shorter Nitrification and Denitrification[J]. Water Science and Technology,1997,36(10):73-78.
    [41]郭海燕,郭祯,冯腾腾,等.序批式移动床生物膜反应器脱氮除磷影响因素及特性[J].化工学报,2012,63(1):251-257
    [42]王春荣,王宝贞,王琳.两段曝气生物滤池的同步硝化反硝化特征[J].中国环境科学,2005,25(1):70-74.
    [43]高大文,王淑莹,彭永臻.高氮豆制品废水的亚硝酸盐型同步硝化反硝化生物脱氮工艺[J].化工学报,2005,56(4):699-704.
    [44]周少奇,方汉平.低COD/NH4+-N比废水的同时硝化反硝化生物处理策略[J].环境污染与防治,2002,22(1):18-21.
    [45]Jin DX, Tian G, Shi HC. fabric media for wastewater treatment and mechanism[J]. Environment Science,2002,23(3):63-67.
    [46]Chen HB, Qu JL, Zhou GX, et al. Full scale application of advanced treatment process for oil refinery waste water[J]. China Water & Wastewater,2004,20(5): 1-4.
    [47]张朝升,章文菁,方茜,等.DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J].环境工程学报,2009,3(3):413-416
    [48]严华勇,杨一帆,叶敏MSBR工艺的设计与运行[J].中国新技术新产品,2009,16:142-143
    [49]郭海燕,郭祯,柳志刚,等.不同曝气强度下SBMBBR和SBR脱氮除磷性能对比研究[J]环境科学学报,2012,32(3):568-576
    [50]吴卫国.连续进水、恒水位的改进型SBR系统[J].中国给水排水,2001,17(7):1-5.
    [51]Ji M, Yang ZY, Xue GN, et al. Wastewater treatment in the moving bed biofilm process[J]. Urban Environmental,2000,13(3):47-49.
    [52]Andreottola G, Foladori P, RagazziM. Experimental comparison between MBBR and AS system for the treatment of Municipal waste water[J]. Water Science Technology,2000,41(4-5):375-382.
    [53]Li F, Xiang Y. Pilot study on wastewater of Taopu Industrial Park by MBBR process [J]. Water& Wastewater Engineering,2001,27(4):47-49.
    [54]Otero J A,Lena G,Colina J M,et al.Characterisation of nan ofiltration membran es structural analysis by the DSP model and microscopical techniques[J].J Membr Sci,2006,279:410-417
    [55]P.S.Golla, M.P.Reddy,M.K.Simms,et al Three years of full-scale CAPTOR process operation at Moundsville WWTP [J]. Water Science Technology,1994, 29(10-11):183-188.
    [56]孙佩石,黄兵,黄若华,等.生物法废气净化专用微生物菌种及其作用[J].中国环境科学,2002,22(1):28-31.
    [57]陈洪斌,庞小东,李建忠,等.悬浮填料生物接触氧化法处理炼油废水[J].中国给水排水,2002,18(9):42-44.
    [58]吴根,宋存义,郭湛.悬浮填料生物膜床反应器处理高校生活污水[J].环境污染治理技术与设备,2005,6(1):88-90.
    [59]张永丽,许唯临,刘钟文,等.多孔悬浮填料SBR工艺和传统SBR工艺的对比研究[J].四川大学学报(工程科学版),2007,39(2):66-70.
    [60]Yu YZ,Yan F, Qiu LP, et al. Effect of grain-slag media for the treatment of waste water in a biological aerated filter[J]. Bioresource Technology,2008,99: 4120-4123.
    [61]李娟英,夏四清,饶应福.在悬浮填料床工艺中对硝化实施自动控制的研究[J].中国给水排水,2008,24(3):25-28.
    [62]邹晨,邓彪,乌兰,等.悬浮填料A2/O工艺硝化特性研究[J].中国给水排水,2009,25(13):58-60.
    [63]张雯,邓风,许欣.悬浮填料与好氧颗粒污泥SND影响因素对比[J].水处理技术,2010,36(6):57-60.
    [64]王仁桃,任云霞,刘黎,等.厌氧悬浮填料生物膜反应器处理费托合成废水[J].燃料化学学报,2011,39(4):307-309.
    [65]宋旭升,毕学军,吴涛.悬浮填料强化活性污泥系统硝化功能的试验研究[J].工业水处理,2011,31(4):19-21.
    [66]Pastorelli G, Canzianietc R. Phosphorus and nitrogen removal in moving bed sequencing batch biofilm reactor(MBSBBR)[J]. Water Science Technology, 1999,40(4-5):169-176.
    [67]Helness H. Biological phosphorus removal in a sequencing batch moving bed biofilm reactor[J]. Water Science Technology,2001,43(1):233-240.
    [68]牟世芬,刘克纳,丁晓静.离子色谱方法及应用[M].北京:化学工业出版社,2006,50-61.
    [69]国家环境保护总局,HJ/T 84-2001离子色谱法[S].北京:中国环境科学出版社,2001,1-6.
    [70]国家环境保护总局,HJ/T 399-2007水质化学需氧量的测定快速消解分光光度法[S].北京:中国环境科学出版社,2007.
    [71]Liu Y, Yang SF, Tay JH. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria[J]. Journal of Biotechnology,2004,108: 161-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700