化粪池污水的好氧颗粒污泥脱氮特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于氮污染所引起的水体富营养化以及对人类健康的影响已经受到人们的广泛关注。生活污水的排放是水体中氮污染的一个重要来源,但是传统的污水脱氮技术不但复杂,氮的去除效率也很低,因此开发一种经济有效的生活污水脱氮新技术成为研究的热点。好氧颗粒污泥是一种介于传统的活性污泥和生物膜之间的生物聚集体,其独特的物理结构和微生物种群的梯度分布使好氧颗粒污泥对污染物的去除具有传统活性污泥所无法比拟的优势。但是好氧颗粒污泥目前还处于基础理论研究阶段,技术不够成熟,实际工程应用也很少。
     本实验首先研究了进水氨氮浓度和碳氮比这两个因素对好氧颗粒污泥脱氮的影响。通过逐步改变进水氨氮浓度(10、30、60、100mg/L)研究其对好氧颗粒污泥脱氮的影响,发现进水氨氮浓度在60mg/L以下时好氧颗粒污泥有较好的脱氮效果,总氮的平均去除率达到80%。但是当进水氨氮浓度上升到100mg/L后总氮的去除率急剧下降,最低时只有28%,并且好氧颗粒污泥系统在此时表现出不稳定性,颗粒有解体现象。与此同时,COD的去除率则变化不大,一直维持在89%以上。在研究进水碳氮比对颗粒脱氮性能的影响时,确定了三个碳氮比34、26、17,发现碳氮比为17时总氮的去除效果最好,去除率在94%以上,但是此时COD去除效果下降至73%。在研究好氧颗粒污泥处理化粪池污水的实验中发现好氧颗粒污泥对化粪池污水有稳定的处理效果, TN、NH3-N、COD的平均去除率为47%、61%、78%,但是后期反应器中污泥浓度较低,一直维持在2500 mg/L左右。
People have noticed that the nitrogen leads to eutrophication. Domestic sewage is one of the main resources of nitrogen. The traditional nitrogen remove technologies have too much procedures and can hardly get a high nitrogen removal rate. Therefore, exploiting a new nitrogen remove technology is the research focus. Aerobic granular sludge is a kind of biological floc which has the characteristics both of bio-film and activated sludge. It has advantages in pollutant removing due to its special structure and microbial population. Aerobic granular sludge technology is still in laboratory study and few used in practical engineering.
     The research studied on the efficiency of influent NH3-N concentration and C/N in the biological nitrogen removing process. According change the influent NH3-N concentration (10, 30, 60, 100mg/L), the experiment showed that when the influent NH3-N concentration is lower than 60mg/L, the aerobic granular sludge got the best nitrogen removal rate. The average removal rate of TN was 80%. When the influent NH3-N concentration increased to 100mg/L, the TN removal rate dropped down sharply to the minimum value of 28%. Meanwhile the aerobic granular system was unstable with the granules disjointed. But the COD removal rate was still above 89%. The result showed that when the C/N was 17, the system got a highest TN removal rate(>94%), but the COD removal rate decreased to 73%. The cesspool sewage treatment experiment showed the aerobic granular sludge had a stable removal efficiency. The average removal rate of TN、NH3-N and COD were 47%、61% and 78% respectively. In the late experiment period, the MLSS maintained about 2500mg/L.
引文
[1]张占平.水体中氨氮污染来源及其控制.内蒙古环境科学,2008,20(5):71-72.
    [2]杨麒.好氧颗粒污泥的培养及其实现同步硝化反硝化的研究.湖南大学. 2003.
    [3]程翔.好氧颗粒污泥同步硝化反硝化处理高浓度氨氮废水研究.哈尔滨工业大学.2006.
    [4] Burrell P C,Keller J,Blackall L L. Microbiology of a nitrite-oxidizing bioreactor. Appl. Environ Microbial,1998,64(5):1878-1883.
    [5]周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000,l(6):11-18.
    [6] Voet J P.Removal of nitrogen from highly nitrogenous wastewater.J.WPCF,1975,47(4):394~398.
    [7] C Hellinga,A A J C Schellen,J W Mulder,M C M van Loosdrecht and J J Heijnen. The SHARON process:An innovative method for nitrogen removal from ammo- nium-rich waster.Water Science and Technology,1998,37(9):135-142.
    [8] Robertson L A,Kuenen J G.Thiosphaera Pantotropha gen nov sp nov,a faculta -tively anaerobic,facultatively autotrophic sulphur bacterium. J Gen Microviol,1983,129:2847-2855.
    [9]吕锡武,李峰,稻森悠平,等.氨氮废水处理过程中的好氧反硝化研究.给水排水,2000,26(4):17-21.
    [10]王志平.好氧颗粒污泥脱氮特性及其过程研究.哈尔滨工业大学.2006.
    [11] A. Mulder,A. A. vande Graaf,L.A.Robertson.et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol,1995. 16 (3):177-183.
    [12]徐海江,张仁志,韩恩山,等.厌氧氨氧化的研究进展.能源环境保护,2005,19(2) :15.
    [13] E W J Van Neil. Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification. Ph D thesis. Delft University of Technology, Delft,1991. 78-80.
    [14]李小明,王敏,矫志奎,等.电解氧化处理垃圾渗滤液研究.中国给水排水,2001,17(8):14-17.
    [15]齐小力.DT-RO在中国处理垃圾渗沥液的试验.环境卫生工程,2003,11(3):141-142.
    [16] E. V.Münch,P.A.Lant and J Keller.Simultaneous nitrification in plant scale activated sludge.Wat Sci Tech,1986(6):139-148.
    [17] Andreadakis A D. Physical and chemical properties of activated sludge flocs. Wat. Res.,1993,27 (12):1707-1714.
    [18]管运涛,吴晓磊,钱易,等.生物钙法好氧污泥颗粒化条件研究.给水排水,1996,(11):28-30.
    [19]竺建荣,刘纯新,何建中,等.厌-好氧交替工艺的生物除磷特性研究.环境科学学报,1999,19 (4):394-398.
    [20]卢然超,张晓健,张悦,等.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,22(2):90-93.
    [21]刘贤伟.好氧颗粒污泥的培养及其在工业废水处理中的应用研究.山东大学. 2007.
    [22]张朝升,章文菁,方茜,等.DO对好氧颗粒污泥短程硝化反硝化脱氮的影响.环境工程学报,2009,3(3):413-416.
    [23] Mishima K,Nakamura M.Self-immobilization of aerobic activated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Sci Technol,l991,4/6 (23):981-990.
    [24] Morgenroth E,Sherden T,Van Loosdrecht M C M,et al.Aerobic granular sludge in a sequencing batch reactor. Water Research,1997,31(12):3191-3194.
    [25] Tay J H,Liu Q S,Liu Y. Microscopic observation of aerobic granulation in sequen -tial aerobic sludge blanket reactor.Journal of Applied Microbiology,2001,(91):168-175.
    [26] Schwarzenbeck N,Borges J. M.,Wilderer P. A.Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Applied Microbiology and Bio -technology,2005 ,66(6):711-718.
    [27]陈坚,王强,堵国成.好氧颗粒污泥的形成及其性质.无锡轻工大学学报,2002,21 (3) :317-322.
    [28]安鹏.好氧颗粒污泥的培养与性质研究.大连理工大学.2006.
    [29]张鉴达.好氧颗粒污泥的培养及其工艺研究.山东大学.2006.
    [30] Qin L,Tay J H,Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem,2004,39(5):579-584.
    [31]高景峰,郭建秋,陈冉妮,等。SBR反应器排水高度与直径比对污泥好氧颗粒化得影响.中国环境科学,2008,28(6):512-516.
    [32] N Schwarzenbeck,J M Borges,P A Wilderer. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biotechnol, 2005,66(6):711-718.
    [33] Ching-ShyungHwu,Chih-Jen Lu.Enhanced dechlorination of chloroethenes by granular sludge under microaerophilic Conditions. World Journal of Microbiology and Biotechnology ,2006,22(8):841-844.
    [34]刘莉莉,王志平,蔡伟民.好氧颗粒污泥处理啤酒废水的研究.工业用水与废水,2006,37(4):27-30.
    [35] Liu Y ,Yang S F,Tay J H,et al. Aerobic granules:novel Zinc biosorbent. Letters in Applied Microbiology,2002,35(6):548-551.
    [36]史晓慧,竺建荣.好氧颗粒污泥关键培养技术研究进展.云南环境科学,2006,25(1):53-55.
    [37]张可方,杜馨,张朝升,等.DO C/N对同步硝化反硝化影响的实验研究.环境科学与技术,2007,30(6):3-5.
    [38] Qin L,Liu Y,Tay J H.Effect of settling time on aerobic granulation in sequencing batch reactor.Biochemical Engineering Journal,2004,21(1):47-52.
    [39]陈洁,袁莉.沉降速率作为选择压对好氧颗粒污泥性质影响[J].环境科学与技术,2006,29(4):29-31.
    [40]竺建荣,刘纯新.好氧颗粒污泥的培养及理化特性研究.环境科学,1999,20(2):38-41.
    [41]赵红梅.城市污水中有机污染物的分布.山西建筑,2005,31(13):147-148.
    [42] Yang S F,Tay J H,Liu Y. Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios.Current Microbiology, 2004,49(1):42-46.
    [43] Pochana K,Keller J.Study of factors affecting simultaneous nitrification and deni -trifyication (SND).Wat.Sci.Tech.,1999,39(6):61-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700