用户名: 密码: 验证码:
大型复杂建筑结构风致效应及等效静力风荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以超高层及大跨屋盖为代表的大型复杂建筑结构由于质量轻、柔性大、阻尼小等特点使得风荷载往往成为设计控制荷载。对此类风敏感结构风致响应及等效静力风荷载的精细化研究对解决实际设计问题具有重要意义。为此,本文以多个具有代表性的刚性模型测压风洞试验结果为基础,以复杂体型超高层建筑及大型屋盖结构为主要研究对象,开展了以下几个方面的工作:
     1.研究了单体及群体超高层建筑结构三维风荷载效应。其中在复杂体型单体建筑三维风荷载效应方面,引入了扭转向等效力偶的概念用以比较扭转向风荷载与水平分量间的大小关系,明确了此类建筑风荷载扭转效应的重要性;拟合了不规则截面建筑在典型风向角下的层扭矩规格化功率谱曲线,发现其受截面厚宽比等参数的影响明显。在群体建筑干扰效应方面,以一窄长形直线状建筑群为研究对象,着重考察了在典型正交风向角下受扰建筑表面各测点风压及层三维风荷载的量值分布和变化情况,发现群体建筑间的干扰作用主要表现为狭缝效应和遮挡效应。
     2.考察了三维时变风荷载作用下具有非规则体型超高层建筑结构风致响应的计算方法及影响因素。引入对数坐标体系下广义荷载谱随频率分布的线性假定,提出了新的广义位移响应共振分量简化计算公式,证明了其相比传统的白噪声假定具有更高的精确性;考察了建筑外型的复杂性及高阶振型的参与等因素对结构不同位置各类风致响应的影响。
     3.在建立现有单目标等效静力风荷载作用下结构不同位置等效响应与实际结果间相互关系的基础上,提出了可以保证目标位置三维多目标响应等效的静力风荷载计算方法,并进一步综合考虑了峰值因子的非高斯特性及多目标等效折减效应的影响,使得相应的等效静力风荷载计算结果更为合理可靠。
     4.根据POD法基本原理对传统大跨屋盖结构风致响应的频域算法加以优化,提出了先挑选控制模态再进行精确风致响应计算的“二步法”过程。工程算例表明该计算过程不仅具有提取信息简单、精度高、收敛快等特点,还有利于从原理上了解风激励对大跨屋盖结构风致响应的影响过程。
     5.针对现有屋盖结构等效静力风荷载受不同节点间的风致响应相关性影响、分布形式极不均匀的特点,提出了针对屋盖结构的多目标等效静力风荷载计算方法。该方法不仅考虑了各目标响应脉动极值的符号选取问题,且静力风荷载量值分布不再受单一节点或局部区域的控制,更趋于均匀、合理。在该组等效静力风荷载作用下,不仅能够保证关键部位等效响应与实际结果高度一致,其它非关键部位响应结果也具有一定的精确性和连续性。
As the representative of large and complex building structures, tall buildings and long-span roof structures characterized by light weight, large flexible and small damping are controlled by the wind loads in the design. The refinement of the wind induced responses and equivalent static wind loads on such wind-sensitive structures is of significant importance to the practical design. Therefore, utilizing representative multiple point synchronous scanning of pressure on structure models and taking the complex geometric shape tall building and large roof structure as the main objects, the following aspects of work were carried out in this paper:
     1. The three-dimensional wind load effects of the single or groups of tall buildings were investigated. For the single tall building with complex geometric shape, the concept of the torsional equivalent couple was introduced to be compared with the value of the corresponding lateral wind loads and the importance of the torsional effects for this kind of buildings was verified. The normalized power spectrum density of the torque wind load for the irregular cross-section in typical wind direction was fitted and the result shows that it is closely related to the parameter of the thickness-width ratio. For the interference effects on groups of tall buildings, taken one group of the linear spaced tall buildings as an example, the distribution and variation of the wind pressures and the three-dimensional layer wind loads on the interfered building surfaces in the key orthogonal wind directions were investigated. It is indicated that the interference effects between the buildings main express as the channeling effect and shielding effect.
     2. The calculation methods and influencing factors of the wind induced responses of tall buildings with irregular geometric shapes in the three-dimensional spatiotemporally varying wind loads were researched. Based on the linear distribution assumption of generalized force spectrum distribution with the frequencies in logarithmic coordinates, a new simplified formula for the resonant component of the generalized displacement response was proposed and compared to the traditional white-noise-assumed the higher accuracy of the new method was demonstrated. Meanwhile, the effects of the irregularity of the building shapes and the participation of the higher modes on kinds of the wind induced responses at different locations of the structure were analyzed.
     3. Based on the relationship between the equivalent responses and the actual results of the structure in different locations under the single-objective equivalent static wind load, the three-dimensional multi-objective equivalent static wind load, which could ensure the response on multiple degrees of freedom of the target floor equivalent, was proposed. Furthermore, both the Non-Gaussian feature of the peak factor and the reduction effect of the multi-objective equivalent were taken into account, which made the corresponding results of the equivalent static wind load more reasonable and reliable.
     4. Based on the traditional wind-induced response analysis of the long-span roof structure, the frequency-domain method was optimized on the basis of POD (proper orthogonal decomposition) principle and the Two-step Method, which meant firstly modes selection then effective wind-induced response calculation, was presented. The example showed that the scheme proposed not only had the characteristics of simple to extract information, high precision and fast convergence, but also was beneficial to the understanding of the wind load excitation acting on large span roof structures response in principle.
     5. The expressions of existing equivalent static wind loads for roof structures are related to the correlation between different nodes, which leads to very unevenly distributed. Accordingly, the equivalent static wind load for multi-targets was put forward. In this approach, the sign combination problem of the pulse extreme response for the multi-targets was effectively resolved. Meanwhile, the force distribution of the equivalent static wind load was no longer controlled by neither some single node nor local position, but tended to be more uniform and reasonable. It was also proved that the proposed equivalent wind loads for multi-targets can not only ensure that the responses in key parts are highly consistent with the actual results, but also keep other results in non-critical parts accurate and continuous to some extent.
引文
[1]胡玉银.超高层建筑的起源、发展与未来(一)[J].建筑施工,2006,28(11):938-941.
    [2]胡玉银.超高层建筑的起源、发展与未来(二)[J].建筑施工,2006,28(12):1020-1025.
    [3]胡玉银.超高层建筑的起源、发展与未来(三)[J].建筑施工,2006,29(1):71-73.
    [4]钱峰,王艳锦.超高层建筑结构体系的选择分析[J].黑龙江科技信息,2011,35:301-301.
    [5]李君,张耀春.超高层建筑结构的新体系—巨型结构[J].哈尔滨建筑大学学报,1997,30(6):21-27.
    [6]方江生.复杂大跨度屋盖结构的风荷载特性及抗风设计研究[D].上海:同济大学,2007.
    [7]周暄毅.大跨度屋盖结构的风荷载及风致响应研究[D].上海:同济大学,2004.
    [8]黄东梅.超高层建筑风致效应和气动干扰效应的理论和实验研究[D].上海:同济大学,2009.
    [9]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [10]金虎.复杂体型超高层建筑三维风荷载与风致响应研究[D].杭州:浙江大学,2008.
    [11]Simiu.E, Scanlan.R.J. Wind effect on Structures:An introduction to wind engineering[M]. New York:John Wiley & Sons Inc,1978.
    [12]张相庭.结构风压和风振计算[M].上海:同济大学出版社.1985.
    [13]E Simiu. Revised procedure for estimating along-wind response[J]. J. Struct. Div., ASCE,1980,106(ST1): 1-10.
    [14]G Solari. Along-wind response estimation:closed form solution[J]. J. Struct. Div., ASCE,1982,108(ST1): 225-244.
    [15]Solari G. Mathematical model to predict 3-D wind loading on buildings[J]. Journal of engineering mechanics, 1985,111(2):254-276.
    [16]Kwok K C S. Melbourne W H. Cross-wind response of structures due to displacement dependent lock-in excitation[J]. Wind Engineering,1979,2:458-472.
    [17]Kwok K C S. Cross-wind response of tall buildings[J]. Engineering Structures,1982,4(4):256-262.
    [18]徐安,谢壮宁,葛建斌等CAARC高层建筑标准模型层风荷载谱数学模型研究[J].建筑结构学报,2004,25(4):118-123.
    [19]顾明,叶丰,张建国.典型超高层建筑风荷载的幅值特性研究[J].建筑结构学报,2006,27(1):24-29.
    [20]顾明,叶丰.高层建筑的横风向激励特性和计算模型的研究[J].土木工程学报,2006,39(2):1-5,26.
    [21]顾明,叶丰.典型超高层建筑风荷载频域特性研究[J].建筑结构学报,2006,27(1):30-36.
    [22]顾明,王凤元,全涌等.超高层建筑风荷载的试验研究[J].建筑结构学报,2000,21(4):48-54.
    [23]全涌,顾明.超高层建筑横风向气动力谱[J].同济大学学报,2002,30(5):627-632.
    [24]M. Gu, Y. Quan. Across-wind load of typical tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:1147-1165.
    [25]Shuguo Liang, Shengchun Liu, Q.S. Li, et al. Mathematical model of acrosswind dynamic loads on rectangular tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90:1757-1770.
    [26]梁枢果,刘胜春,张亮亮等.矩形高层建筑横风向动力风荷载解析模型[J].空气动力学学报,2002,20(1):32-39.
    [27]陈建兰,金康宁,杨子松等.矩形截面高层建筑风力特性研究[J].华中科技大学学报(城市科学版),2004,21(3):61-65.
    [28]梁枢果,瞿伟廉,李桂青.高层建筑横风向与扭转风振力计算[J].土木工程学报,1991,24(4):65-73.
    [29]Solari G. Mathematical model to predict 3-D wind loading on buildings[J]. Journal of Engineering Mechanics. 1985, 111(2):254-276.
    [30]Isyumov N, Poole M. Wind induced torque on square and rectangular building shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983,13(1):183-196.
    [31]梁枢果,刘胜春,张亮亮等.矩形高层建筑扭转动力风荷载解析模型[J].地震工程与工程振动,2003,23(3):74-80.
    [32]Liang S G, Li Q S, Liu S C, et al. Torsional dynamic wind loads on rectangular tall buildings [J].Engineering Structures,2004,26:129.
    [33]唐意,顾明,全涌.高层建筑的扭转风荷载功率谱密度[Jl.同济大学学报(自然科学版),2007,35(4):435-439.
    [34]NING L, Letch ford C, Tamura Y, et al. Characteristics of wind forces acting on tall buildings [J].Journal of Wind Engineering and Industrial Aerodynamics,2005,93(3):217-242.
    [35]肖天崟,梁波,田村幸雄.高层建筑扭转风向动力风荷载数学模型[J].华中科技大学学报(城市科学版),2003.20(9):67-70.
    [36]金虎,楼文娟,沈国辉.x型超高层建筑扭转风荷载谱计算模型研究[J].空气动力学学报,2009,27(2):147-153.
    [37]Khanduri A C, Stathopoulos T, Bedard C. Wind-induced interference effects on buildings—a review of the statc-of-the-art[J]. Engineering structures,1998,20(7):617-630.
    [38]顾明,黄鹏.群体高层建筑风荷载干扰的研究现状和展望[J].同济大学学报,2003,31(7):762-766.
    [39]谢壮宁,葛建斌,石碧青.不同体型建筑物尾流作用下的高层建筑的风荷载特性[J].应用力学学报,2005,22(3):342-345.
    [40]谢壮宁,洪海波,李神云.高层建筑间的干扰效应:建筑外形的影响及干扰因子分布的相关特征[J].建筑结构学报,2008,29(2):13-18.
    |41] Z.N. Xie, M. Gu. Mean interference effects among tall buildings [J]. J. of Structure Engineering,2004,26(9): 1173-1183.
    [42]Z.N, Xie, M. Gu. Simplified formulas for evaluation of wind-induced interference effects among three tall buildings [J]. J. Wind Eng. Ind. Aerodyn.,2007,95(1); 31-52.
    [43]K.M. Lam, M.Y. H. Lcung, J.G. Zhao. Interference effects on wind loading of a row of closely spaced tall buildings[J]. J. Wind F.ng. Ind. Aerodyn.,2008,96(5):562-583.
    [44]Lam K M, Zhao J G, Leung M Y H. Wind-induced loading and dynamic responses of a row of tall buildings under strong interference[J] . Journal of Wind Engineering and Industrial Aerodynamics,2011,99(5):573-583.
    [45]黄鹏,顾明.高层建筑静风荷载的干扰效应研究[J].建筑结构学报,2002,23(5):67-72.
    [46]Tang U F, Kwok K C S. Interference excitation mechanisms on a 3DOF acroclastic CAARC building model[J]. Journal of wind engineering and industrial aerodynamics,2004,92(14):1299-1314.
    [47]Thepmongkorn S, Wood G S, Kwok K C S. Interference effects on wind-induced coupled motion of a tall building[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12):1807-1815.
    [48]黄东梅,朱乐东,丁泉顺.邻近建筑对高层建筑风振响应的干扰效应[J].同济大学学报(自然科学版),2009,37(3):291-297.
    [49]张敏,楼文娟,何鸽俊,等.群体高层建筑风荷载干扰效应的数值研究[J].工程力学,2008,25(1):179-185.
    [50]杨立国,唐意,金新阳.错列高层建筑群风荷载静力干扰效应的实验和数值模拟研究[J].建筑结构,2011,41(11):125-130.
    [51]Armitt J. Eigenvector analysis of pressure fluctuations on the west instrumented cooling tower[J]. Internal Rep. RD/LN,1968,114.
    [52]Lee B E. The effect of turbulence on the surface pressure field of a square prism[J]. J, Fluid Mech,1975, 69(2):263-282.
    [53]Kareem A. Wind excited motion of buildings [D]. PhD dissertation, Dcpt. of Civil Engineering, Colorado State Univ., Eort Collins, Colo,1978.
    [54]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004
    [55]Xu Y L, Zhang W S, Ko.1 M, et al. Pseudo-excitation method for vibration analysis of wind-excited structures[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1):443-454.
    [56]陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用[D].杭州:浙江大学,2005.
    [57]ZHOU Y, GU M, XIANG H E. Alongwind static equivalent wind loads and responses of tall buildings. Part Ⅰ: Unfavorable distributions of static equivalent wind loads [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79(1-2):135-150.
    [58]ZHOU Y, GU M, XIANG H E. Alongwind static equivalent wind loads and responses of tall buildings. Part Ⅱ: Effects of mode shapes [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999, 79(1-2):151-158.
    [59]HUANG G Q, CHEN X Z. Wind load effects and equivalent static wind loads of tall buildings based on synchronous pressure measurements [J]. Engineering Structures,2007,29(10):2641-2653.
    [60]顾明,叶丰.高层建筑风致响应的简化分析方法[J].工程力学,2006,23(8):57-62.
    [61]顾明,叶丰.高层建筑风致响应和等效静力风荷载的特征[J].工程力学,2006,23(7):93-98.
    [62]叶丰,顾明.估算高层建筑顺风向等效风荷载和响应的简化方法[J].工程力学,2003,20(1):63-67.
    |63] CHEN X, KAREEM A. Coupled dynamic analysis and equivalent static wind loads on buildings with 3-D modes[J] J. Struct. Eng.,2005,131(7):1071-1082.
    [64]Chen X, Kareem A. Dynamic wind effects on buildings with 3D coupled modes:Application of high frequency force balance measurements[J]. Journal of engineering mechanics,2005,131(11):1115-1125.
    165] HUANG M E, CHAN C M, KWOK C S, et al. Cross correlations of modal responses of tall buildings in wind-induced lateral-torsional motion [J]. Journal of Engineering Mechanics, ASCE,2009,135(8):802-812.
    [66]Chan C M, Huang M F, Kwok K C S. Integrated wind load analysis and stiffness optimization of tall buildings with 3D modes[J]. Engineering Structures,2010,32(5):1252-1261.
    [67]章李刚,楼文娟,申屠团兵.不规则结构扭转风荷载[J].浙江大学学报,2011,45(6):1094-1099.
    |68] Chen X, Kareem A. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes[J]. Journal of structural engineering,2005,131(7):1071-1082.
    [69]Xinzhong Chen, Ahsan Kareem. Dynamic Wind Effects on Buildings with 3D Coupled Modes:Application of High Frequency Force Balance Measurements[J]. J. of Structure Engineering,2005,131(11):1115-1125.
    [70]Bo Liang, Y. Yamura, S. Suganuma. Simulation of wind-induced lateral-torsional motion of tall building [J]. Computers & Structures.1997,63(3):601-606.
    [71]Kim Y C, Kanda J, Tamura Y. Wind-induced coupled motion of tall buildings with varying square plan with height[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011,99(5):638-650.
    [72]Zhou Y, Kareem A. Torsional load effects on buildings under wind[C]//Proceedings of Structures Congress. 2000:8-10.
    [73]唐意,顾明,金新阳.偏心超高层建筑的风振研究[J].同济大学学报(自然科学版),2010,38(2):178-182.
    [74]金新阳,唐意,虞惠忠,等.温州东海广场超高层建筑三维风振分析[J].建筑结构学报(增刊1),2009(S1):155-159.
    [75]Huang M F, Chan C M, Kwok K C, et al. Cross correlations of modal responses of tall buildings in wind-induced latcral-torsional motion[J]. Journal of engineering mechanics,2009,135(8):802-812.
    [76]C.M. Chan, M.F. Huang, K.C.S. Kwok. Integrated wind load analysis and stiffness optimization of tall buildings with 3D modes[J]. J. of Structure Engineering,2010,32:1252-1261.
    [77]M.F. Huang, K.T. Tse, C.M. Chan, et al. Mode shape linearization and correction in coupled dynamic analysis of wind-excited tall buildings [J]. Structural Design ofTall and Special Buildings,2011,20(3):327-348.
    [78]Tse K T, Hitchcock P A, Kwok K C S. Mode shape linearization for HFBB analysis of wind-excited complex tall buildings[J]. Engineering Structures,2009,31(3):675-685.
    [79]Guoqing Huang, Xinzhong Chen. Wind load effects and equivalent static wind loads of tall buildings based on synchronous pressure measurements [J]. J. of Structure Engineering,2007,29:2641-2653.
    [80]Davenport A G. Gust loading factors[J|. Journal of the Structural Division, ASCE,1967,93(3):11-34.
    [81]Kareem A, Zhou Y. Gust loading factor—past, present and future[J]. Journal of wind engineering and industrial aerodynamics,2003,91(12):1301-1328.
    [82]Zhou Y, Kareem A. Torsional load effects on buildings under wind[C|//Proccedings of Structures Congress. 2000:8-10.
    [83]Guoqing Huang, Xinzhong Chen. Wind load effects and equivalent static wind loads of tall buildings based on synchronous pressure measurements [J]. J. of Structure Engineering,2007,29:2641-2653.
    [84]Zhou Y, Gu M, Xiang H. Alongwind static equivalent wind loads and responses of tall buildings. Part I: Unfavorable distributions of static equivalent wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79(1):135-150.
    [85]Zhou Y, Gu M, Xiang H. Alongwind static equivalent wind loads and responses of tall buildings. Part II: Effects of mode shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79(1):151-158.
    [86]Kasperski M. Extreme wind load distributions for linear and nonlinear design[J]. Engineering Structures,1992, 14(1):27-34.
    [87]Xinzhong Chen, Ahsan Kareem. Equivalent Static Wind Loads on buildings:new model [J]. J. of Structure Engineering,2004,130(10):1425-1435.
    [88]Xinzhong Chen, Ahsan Kareem. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modcs[J]. J. of Structure Engineering,2005,131(7):1071-1082.
    [89]Holmes J D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(2):91-109.
    [90]Xinzhong Chen, Ahsan Kareem. Dynamic Wind Effects on Buildings with 3D Coupled Modes:Application of High Frequency Force Balance Measurements[J]. J. of Structure Engineering,2005,131(11):1115-1125.
    [91]Mingfeng Huang, Kam-Tim Tse, Chun-Man Chan. Mode shape linearization and correction in coupled dynamic analysis of wind-excited tall buildings[J]. Struct. Design Tall Spec. Build.,2011,20:327-348.
    [92]Jiyang Fu, Zhuangning Xic. Equivalent static wind loads on long-span roof structures [J]. J. of Structure Engineering,2008,134(7):1115-1128.
    [93]谢壮宁,方小丹,倪振华.超高层建筑的等效静风荷载-扩展荷载响应相关方法[J].振动工程学报, 2008,21(4):398-403.
    [94]Davenport A G. Note on the distribution of the largest value of a random function with application to gust loading[C]//lCE Proceedings. Ice Virtual Library,1964,28(2):187-196.
    [95]Binh LV, lshihara T, Phuc PV, Hujino Y. A peak factor for non-Gaussian response analysis of wind turbine tower[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:2217-2227
    [96]陈凯,符龙彪,钱基宏,等.基于响应时程的大跨度空间结构等效静风荷载分析方法[J].建筑结构学报,2012,33(1):35-42.
    [97]Kwon D, Kareem A. Peak factor for non-Gaussian processes revisited[C]//Proc.,7th Asia-Pacific Conference on Wind Engineering (APCWE-Ⅶ).2009.
    [98]Kareem A, Zhao J. Analysis of non-Gaussian surge response of tension leg platforms under wind loads. Journal of Offshore Mechanics and Arctic Engineering, ASME,1994,116:137-144.
    [99]Wintersteiri S.R. Nonlinear vibration models for extremes and fatigue[J]. Journal of Engineering Mechanics, ASCE,1988,114(10),1772-1790.
    [100]Sadek F, Simiu E. Peak non-Gaussian wind effects for database-assisted low-rise building design[J]. Journal of Engineering Mechanics ASCE,2002,128(5):530-539.
    [101]Henry W. Tieleman, Zhongfu Ge, Muhammad R. Hajj. Theoretically estimated peak wind loads[J]. J. Wind Eng. Ind. Aerodyn.2007,95:113-132.
    [102]Grigoriu M. Crossings of non-Gaussian translation processes[J]. Journal of Engineering Mechanics,1984, 110(4):610-620.
    [103]Gumbcl E J. Statistics of extremes[M]. Courier Dover Publications,2004.
    [104]M.F. Huang. Optimum Stiffness Design of Wind-excited Tall Buildings [M]. VDM Publishing.2009.
    [105]Huang M, Lou W, Chan C M, et al. Peak factors of non-Gaussian wind forces on a complex-shaped tall building[J]. The Structural Design of Tall and Special Buildings,2012.
    [106]Melbourne W H. Probability distributions of response of BMP house to wind action and model comparisons[J]. Journal of Wind Engineering and Industrial Aerodynamics,1975, I:167-175.
    [107]Vickery B J, Basu R 1. The response of reinforced concrete chimneys to vortex shedding[J]. Engineering Structures,1984,6(4):324-333.
    [108]Solari G, Pagnini L C. Gust buffeting and aeroelastic behaviour of poles and monotubular towers[J]. Journal of fluids and structures,1999,13(7):877-905.
    [109]Tamura Y, Ohkuma T, Kawai H, et al. Revision of AIJ Recommendations on Wind Loads for Buildings[J]. CIB REPORT,2003:539-544.
    [101 Bartoli G, Mannini C, Massai T. Quasi-static combination of wind loads:A copula-based approach[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011,99(6):672-681.
    [111]Chen X, Huang G. Evaluation of peak resultant response for wind-excited tall buildings[J]. Engineering Structures,2009,31(4):858-868.
    [112| Ray Clough.结构动力学[M].北京:高等教育出版社,2006.
    [113]Newland D.E. Random vibration and spectral analysis[M]. Longman Scientific & Technical, UK,1984.
    [114]Cheng P W, van Bussel G J W, van Kuik G A M, et al. Reliability-based Design Methods to Determine the Extreme Response Distribution of Offshore Wind Turbines[J]. Wind Energy,2003,6(1):1-22.
    [115]Rice S O. Mathematical analysis of random noise[J]. Bell System Technical Journal,1994,23:282-332.
    [116]Trevor. Hastie, Robert. Tibshirani, Friedman J J H. The elements of statistical learning[M]. New York: Springer,2001.
    [117]楼文娟,李进晓,沈国辉.超高层建筑脉动风压的非高斯特性[J].浙江大学学报(工学版),2011,45(4):671-677.
    [118]J.D. Holmes, M.J. Syme, M Kasperski. Optimised design of a low-rise industrial building for wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,57:391-401.
    [119]M. Kasperski. Design wind loads for a low-rise building taking into account directional effects[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95:1125-1144.
    [120]Yasushi Uematsu, Tsuyoshi Moteki, Takeshi Hongo. Model of wind pressure field on circular tlat roofs and its application to load estimation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96: 1003-1014.
    [121]Yasushi Uematsu, Theodore Stathopoulos, Eri lizumi. Wind loads on free-standing canopy roofs:Part 1 local wind pressures[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:1015-1028.
    [122]Yasushi Uematsu, Theodore Stathopoulos, Eri lizumi. Wind loads on free-standing canopy roofs:Part 2 overall wind forces[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:1029-1042.
    [123]P.A. Blackmore,O. Tsokri. Wind loads on curved roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics,2006,94:833-844.
    [124]Melbourne W H. The response of large roofs to wind action[J]. Journal of wind engineering and industrial aerodynamics,1995,54:325-335.
    [125]Yasushi Uematsu, Keisuke Watanabe, Akihiro Sasaki, et al. Wind-induced dynamic response and resultant load estimation of a circular flat roof[J|. Journal of Wind Engineering and Industrial Aerodynamics,1999,83: 251-261.
    [126]顾明,周喧毅,黄鹏.大跨度屋盖结构风致抖振响应研究[Jl.土木工程学报,2006,39(11):37-42..
    [127]周向阳,梁枢果,张其林.武汉体育馆结构屋盖风振响应分析[J].土木工程学报,2008,41(5):33-39.
    [128]史益军,黄本才,刘丹.体育场大跨屋盖空间风振分析[J].计算机辅助工程,2008,17(1):21-29.
    [129]米副生,周暄毅,顾明.柱面网壳结构风致抖振响应研究[J].振动与冲击,2007,26(7):32-39.
    [130]周喧毅,顾明.大跨度屋盖结构考虑模态耦合的抖振共振响应分析方法[J].振动工程学报,2006,19(2):179-183.
    [131]李玉学.杨庆山,田玉基,基于能量的大跨度屋盖结构共振响应模态耦合效应分析[J].工程力学,2010,22(6):614-619.
    [132]李玉学,杨庆山,田玉基.大跨屋盖风致背景响应和共振响应的模态祸合[J].振动工程学报,2009,27(3):85-90.
    [133]柯世堂,葛耀君.基于一致耦合法某大型博物馆结构风致响应精细化研究[J].建筑结构学报,2012,33(3):111-117.
    [134]陈贤川,赵阳,董石麟.基于虚拟激励法的空间网格结构风致抖振响应分析[J].计算力学学报,2006,23(6):684-689.
    [135]陈贤川,赵阳,董石麟.大跨空间网格结构风振响应主要贡献模态的识别及选取[J].建筑结构学报,2006,27(1):9-15.
    [136]田玉基,杨庆山.大跨度屋盖结构脉动风振响应的振型能量参与系数[J].振动工程学报,2007,20(3):219-223.
    [137]李玉学,杨庆山,田玉基.大跨屋盖结构风致动力响应高阶主导模态的识别[J].北京交通大学学报,2010,34(1):89-94.
    [138]Nakayama M, Sasaki Y, Masuda K, et al. An efficient method for selection of vibration modes contributory to wind response on dome-like roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998, 73(1):31-43.
    [139]陈波,武岳,沈世钊Ritz-POD法的原理及应用[J].计算力学学报,2007,24(4):499-504.
    [140]张建胜,武岳,陈波. Ritz-POD法及其在大跨度屋盖结构风振分析中的应用[J].沈阳建筑大学学报(自 然科学版),2005,21(6):601-605.
    [141]汪梦甫,沈蒲生.Ritz向量叠加法的改进及其应用[J].湖南大学报,1996,23(3):109-115.
    [142]Jianmin Gu, Zheng-Dong Ma, Gregory M. Hulbert. A new load-dependent Ritz vector method for structural dynamics analyses:quasi-static Ritz vectors[J]. Finite Elements in Analysis and Design,2000,36:261-278.
    [143]Chen X, Kareem A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures[J]. Journal of Engineering Mechanics,2005,131(4):325-339.
    [144]Bienkiewicz B, Tamura Y, Ham H J, et al. Proper orthogonal decomposition and reconstruction of multi-channel roof pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54:369-381.
    [145]江棹荣,倪振华,谢壮宁.POD在大跨度屋盖风致响应计算中的应用[J].土木工程学报,2007,40(6):1-6.
    [146]潘峰,叶尹,孙炳楠.基于双POD模型的大跨屋盖多模态随机风致响应研究[Jl.空气动力学学报,2009,27(1):129-135.
    [147]Huang M F, Chan C M, Kwok K C, et al. Cross correlations of modal responses of tall buildings in wind-induced lateral-torsional motion[J]. Journal of engineering mechanics,2009,135(8):802-812.
    [148]夏法宝,梁枢果,郭必武.武汉国际证券大厦表面风压重组的POD法[J].华中科技大学学报(城市科学版),2005,22(2):90-94.
    [149]武岳,陈波,沈世钊.大跨度屋盖结构等效风荷载研究[J].建筑科学与工程学报,2005,22(4):27-31.
    [150]Kasperski M, Niemann H J. The LRC (load-response-correlation)-method a general method of estimating unfavourable wind load distributions for linear and non-linear structural behaviour[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1):1753-1763.
    [151]J.D. Holmes, M.J. Syme, M. Kasperski. Optimised design of a low-rise industrial building for wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,57:391-401.
    [152]Holmes J D, Kasperski M. Effective distributions of fluctuating and dynamic wind loads[J]. Transactions of the Institution of Engineers, Australia. Civil engineering,1996,38(2-4):83-88.
    [153]Holmes J D. Equivalent static load distributions for resonant dynamic response of bridges[C]//Proc.,10th Int. Conf. on Wind Engrg.1999:907-911.
    [154]Holmes J D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(2):91-109.
    [155]顾明,周暄毅.大跨度屋盖结构等效风荷载方法及应用[J].建筑结构学报,2007,28(1):125-129.
    [156]武岳,陈波,沈世钊.大跨度屋盖结构等效风荷载研究[J].建筑科学与工程学报,2005,22(4):27-31.
    [157]陈波,武岳,沈世钊.大跨度屋盖结构等效风荷载中共振分量的确定方法研究[J].工程力学,2007,24(1):51-55.
    [158]段旻,倪振华,谢壮宁.大跨屋盖的包络等效静力风荷载[J].振动与冲击,2008,27(9):6-10.
    [159]李方惠,倪振华,沈世钊.大跨屋盖结构等效静风荷载研究[J].工程力学,2007,24(7):104-109.
    [160]傅继阳,谢壮宁,李秋胜,等.大跨度屋盖结构考虑模态耦合的等效风荷载[J].力学学报,2007,39(6):781-787.
    [161]Katsumura A, Tamura Y, Nakamura O. Universal wind load distribution simultaneously reproducing maximum load effects in all subject members on large-span cantilevered roof[C]//EACWE4—The Fourth European & African Conference on Wind Engineering. ITAM AS CR, Prague,2005:11-15.
    [162]Katsumura A, Tamura Y, Nakamura O. Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large-span cantilevered roof[J]. Journal of wind engineering and industrial aerodynamics,2007,95(9):1145-1165.
    [163]陈波,杨庆山.国家体育场多目标等效静风荷载[J].土木建筑与环境工程,2009,31(6):27-33.
    [164]Wu H. Numerical evaluation of equivalent static wind Loads of Long-span Roofs[J].2007.
    [165]梁枢果,吴海洋,郭必武,等.大跨度屋盖结构等效静力风荷载数值计算方法[J].华中科技大学学报(自然科学版),2008,36(4):110-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700