基于受激布里渊散射的分布式光纤传感系统及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式光纤传感器可实现长距离、大范围、多参量的传感,在关系国防和人们群众生命财产安全的安防、油气输运管道、电力网络、舰船飞机及大型建筑物的结构健康监控等方面有着显著的技术优势和广阔的应用前景。在各种分布式光纤传感技术中,基于布里渊散射的分布式光纤传感技术能够实现光纤沿线温度应变的长距离、大动态、高精度连续检测,获得了国内外研究人员的广泛关注,已成为发达国家掌握的一项高新科学技术,国内的相关研究还比较滞后。
     论文深入研究了光纤中的布里渊散射及其传感机理,进行布里渊分布式光纤传感系统的功率预算;在此基础上,自主研制了基于受激布里渊散射(SBS)的分布式光纤传感系统(BOTDA);将该系统应用于某光纤水听器系统传输光缆的应力分布检测,实现了光缆的连续、在线受力状态分析;结合偏振分束器(PBS)将该系统应用于保偏光纤的均匀性检测,尤其保偏光纤陀螺环的绕制均匀性检测,使得陀螺环内部的光纤绕制状态直观可视;针对BOTDA系统中电光调制器微波移频存在的多边带和功率不稳定问题,创新性地利用DFB半导体激光注入锁定技术提取了稳定的具有布里渊频移的单频单边带;为了降低系统成本,深入研究了布里渊掺铒光纤激光器(BEFL),设计并实现了超短环形腔(~10m)BEFL,搭建了基于BEFL的BOTDA系统,验证了BEFL应用于布里渊传感系统的可行性。
     论文的主要研究成果和创新点如下:
     1、进行布里渊分布式光纤传感系统的功率预算。理论和实验研究了光纤的SBS阈值,得到了适合BOTDR系统的入射光功率上限,即后向散射光功率等于入射的泵浦光功率的1%时对应的泵浦光功率;通过仿真分析不同注入光功率下的泵浦光、Stokes光和布里渊增益沿光纤的分布,研究表明增益型BOTDA系统的泵浦光功率取值要大小合适,在泵浦光功率给定的情况下,探测光功率应尽可能小,以保证BOTDA系统中布里渊增益沿光纤的均匀分布同时维持一定的信噪比。这对布里渊分布式光纤传感系统具有重要的指导意义。
     2、自主研制了基于微波电光移频的BOTDA系统,通过温度和应变传感实验,标定出某单模光纤的温度系数和应变系数分别为1.01MHz/℃和0.57MHz/g(用重量表示),在25km的传感光纤上实现了1m的空间分辨率和优于0.5℃的温度测量精度。
     3、利用DFB半导体激光注入锁定技术提取了稳定的具有布里渊频移的单频单边带。针对BOTDA系统中电光调制器微波移频存在的多边带和功率不稳定问题,研究了DFB半导体激光注入锁定技术,结果表明处于弱注入锁定的从激光器能够起到窄带滤波器的作用,基于此将电光调制器移频后的光波注入从激光器,实现了稳定的具有布里渊频移的单频单边带的提取,该技术能够有效改善BOTDA系统的性能。
     4、首次将BOTDA系统应用于某光纤水听器系统传输光缆的连续、在线应力分布测试。将某光纤水听器系统传输光缆中的两根冗余光纤接入BOTDA系统,通过测试光缆的布里渊频移分布,分析了光缆在承受探头重量时及承重前后的应力分布状态,有助于光纤水听器系统的研制。该系统还可应用于光纤水听器湖上海上试验时的在线光缆状态监控。
     5、实现了保偏光纤陀螺环的绕制均匀性检测。利用偏振分束器(PBS)改进已有的BOTDA系统,保证BOTDA系统的泵浦光和探测光都被调制为线偏光且注入保偏光纤的同一主轴,实现了保偏光纤两轴各自的布里渊频移测试,利用该改进的BOTDA系统测试了两个保偏光纤陀螺环某一轴的布里渊频移分布,由于温度恒定,陀螺环的布里渊频移分布准确反映了环内部的应力分布,使得陀螺环内部的光纤绕制状态直观可视,据此对陀螺环进行初步筛选,有助于光纤陀螺的精度控制。
     6、首次提出并实现了超短环形腔(~10m)BEFL。这种激光器基于布里渊泵浦预放大技术,仅使用5m单模光纤提供非线性的布里渊增益,4m掺铒光纤提供线性EDFA增益;继续深入研究,设计并实现了紧凑型BEFL,该激光器仅采用4m掺铒光纤既提供布里渊增益又提供EDFA增益。由于BEFL输出光频相比其泵浦光频率下移了布里渊频移,可将其用于构建新型低成本的布里渊分布式光纤传感系统。
Distributed optical fiber sensors allow long-haul, large-dynamic andmulti-parameter measurement. This kind of sensor has found technical superiority andwide applications in the fields which relate to national defense and people life andwealth safety, such as safety defence, oil and gas pipeline, electric power network,structure health monitoring of ships, airplanes, and civil structures. Among all thesesensors, distributed optical fiber sensors based on Brillouin scattering have gainedglobal interest for their ability to allow long-haul, large dynamic, and high precisiontemperature and strain measurement along the fiber. At present, this kind of sensor hasbeen an advanced technology that the developed countries hold. Nevertheless, there stillhas a lot of work to do for the domestic research.
     Firstly, Brillouin scattering in fibers and its sensing principle are analyzed in detail;power estimation of the Brillouin distributed fiber sensing systems is implemented.Then, a distributed sensing system based on stimulated Brillouin scattering (SBS)(i.e.,a BOTDA system) is designed and constructed. This system is applied to monitor thestrain distribution of the optical transmission cable of some fiber optic hydrophone(FOH) system; consecutive and in-line strain monitoring of the cable is realized.Polarization beam splitters (PBSs) are used to upgrade the BOTDA system, which isused to measure the uniformity of polarization-maintaining (PM) fibers. In particular,this upgraded system is applied to inspect the winding uniformity of PM fiber opticgyroscopes (FOG), which makes winding state inside the FOG intuitionisticlyvisualized. Because the electro-optic modulator with microwave frequency modulationin the system brings problems of multi-sideband and power fluctuation, DFB laserinjection locking technology is adopted to generate stable single-sideband frequencywith Brillouin frequency shift. Brillouin-erbium fiber laser (BEFL) is deeplyinvestigated to cut the system cost. Ultra-short ring-cavity (~10m) BEFLs are realized.A BOTDA system with BEFL is constructed, which confirms the feasibility of applyingBEFL to Brillouin sensing systems.
     The main results are summarized as follows:
     1. Power estimation of Brillouin sensing systems is implemented. The SBSthreshold is investigated theoretically and experimentally. The upper input powerlimitation of the BOTDR system, i.e., the SBS threshold suitable for optical fibersensors, is achieved. This threshold is defined as the pump power whose1%is equal tothe backscattered power. The distribution of pump and Stokes powers as well asBrillouin gain along the fiber is simulated and analyzed under various injected powers,which is achieved by solving the SBS coupled wave equations numerically. Thesimulation indicates that an appropriate pump power value is needed. Once the pump power is chosen, the probe power should be low enough. Thus, the BOTDA system canachieve uniform Brillouin gain along the fiber at a certain signal-to-noise ratio (SNR).The power estimation is significant for constructing Brillouin sensing systems.
     2. A BOTDA system based on microwave electro-optic frequency shift is designedand constructed. The Brillouin frequency shift temperature and strain coefficients of thesensing single-mode fiber are1.01MHz/℃and0.57MHz/g (in weight), respectively.The spatial resolution is1m and the temperature resolution is better than0.5℃with asensing fiber length of25km.
     3. DFB laser injection locking technique is used to extract stable single-sidebandfrequency with Brillouin frequency shift. Because the electro-optic modulator withmicrowave frequency modulation in the system brings problems of multi-sideband andpower fluctuation, DFB semiconductor laser injection locking technique is investigated.The results indicate that the locked slave laser under weak injection acts as anarrow-bandwidth optical filter. On account of thin point, the frequency-shifted lightafter the EOIM is injected into the slave laser and stable single side-band frequencywith Brillouin frequency shift is obtained, which can improve the BOTDA systemperformance.
     4. The BOTDA system is for the first time applied to realize consecutive andin-line strain monitoring of the optical transmission cable of some FOH system. Twoidle fibers inside the cable are connected to the BOTDA system. The strain distributionof the cable before and after hanging hydrophone is analyzed through Brillouinfrequency shift measurement, which is beneficial to FOH design. The BOTDA systemcan also be used to monitor cable state during FOH test over lakes and seas.
     5. Winding uniformity inspection of PM-FOG coils is realized. PBSs are used toupgrade the BOTDA system, which guarantee that the pump and probe light are bothlinearly polarized and injected into the same axis of PM fibers. Thus, the Brillouinfrequency shift distribution of the two axes can be measured, respectively. Theupgraded BOTDA system is applied to measure the Brillouin frequency shiftdistribution of some axis of PM-FOG coils. Because the temperature is constant, thestrain distribution inside the coils is exclusively and accurately decided by the measuredBrillouin frequency shift. Consequently, the winding uniformity of FOG coils isintuitionisticly visualized. The primary FOG coil screening is thus made, which issignificant for the FOG precision control.
     6. Ultra-short ring-cavity (~10m) BEFLs are for the first time designed andconstructed. There are two ways to realize this kind of lasers. The first is based onBrillouin pump pre-amplification. Only5m single-mode fiber and4m erbium-dopedfiber are used to provide the nonlinear Brillouin gain and linear EDFA gain,respectively. The second one only uses4m erbium-doped fiber which provides both nonlinear Brillouin gain and linear EDFA gain. Because the BEFL frequency is nativelyBrillouin frequency shift lower than its pump frequency, it can be used to constructnovel low-cost Brillouin distributed fiber sensing systems.
引文
[1] A A Chtcherbakov, P L Swart, and S J. Spammer. A fibre optic disturbancelocation sensor using modified Sagnac and Mach-Zehnder interferometers.Proceeding of12th Optical Fiber Sensor,1997,16:516-519
    [2] S J Spammer, P L Swart, and A A Chtcherbakov. Merged Sagnac-Michelsoninterferometer for distributed disturbance detection [J]. Journal of LightwaveTechnology,1997,15(6):972-976
    [3] X Fang. A variable-loop Sagnac interferometer for distributed impact sensing[J]. Journal of Lightwave Technol.,1996,35(22):4522-4525
    [4]陈伟民,吴俊,谭靖等.双马赫-曾德尔分布式光纤传感系统定位技术[J].光学学报,2007,27(12):2128-2132
    [5] S J Spammer, A A Chtcherbakov, and P L Swart. Interferometric distributedfiber optical sensor. Applied Optics,1996,35(22):4522-4523
    [6] S J Russell, K R C Brady, and J P Darkin. Real-time location of multipletime-varing strain disturbances, acting over a40km Fiber section, using anovel dual-Sagnac interferometer [J]. Journal of Lightwave Technology,2001,19(2):205-213
    [7]孙雨南,王茜倩,伍剑.光纤传感技术—理论基础与应用,北京:北京理工大学出版社,2006:415
    [8]董贤子,吴重庆,付松年等.基于P-OTDR分布式光纤传感中信息提取的研究[J].北方交通大学学报,2003,27(6):106-110.
    [9] Yuelan Lu, Tao Zhu, Liang Chen, et al. Distributed vibration sensor based oncoherent detection of phase-OTDR [J]. Journal of Lighwave Technology,2010,28(22):3243-3249.
    [10]罗俊,饶云江,岳剑锋等.新型高灵敏分布式光纤入侵监测系统[J].仪器仪表学报,2009,30(6):1123-1128.
    [11]张在宣,金尚忠,王剑锋等.分布式光纤拉曼光子温度传感器的研究进展[J].中国激光,2010,37(11):2749-2761
    [12] http://www.boomdts.com/Showcase.asp?ID=20
    [13] http://www.boomdts.com/Showcase.asp?ID=17
    [14] Wait P.C. and Hartog A. Spontaneous Brillouin-based distributed temperaturesensor utilizing a fiber Bragg grating notch filter for the separation of theBrillouin signal [J]. IEEE Photonics Technology Letters,2001,13(5):508-510
    [15] T. R. Parker, M. Farhadiroushan, V. A. Handerek, et al. A fully distributedsimultaneous strain and temperature sensor using spontaneous Brillouinbackscatter [J]. IEEE Photonics Technology Letters,1997,9(7):979-981
    [16] Souza K D, Lees G P, Wait P C, et a1. Diode-pumped landau placzek baseddistributed temperature sensor utilizing an all-fibre Mach-Zehnderinterferometer [J]. Electron Letters,1996,32(23):2l74-2l75
    [17] Sally M. Maughan, Huai H. Kee, and Trevor P. Newson.57-km single-endedspontaneous Brillouin-based distributed fiber temperature sensor usingmicrowave coherent detection [J]. Optics Letters,2001,26(6):331-333
    [18] Kurashimina T, Horiguchi T, Lzumita H, et al. Brillouin optical fiber timedomain reflectometry [J]. IEICE Trans. Commun.,1993, E76B(4):382-389
    [19] Daisuke Iida and Fumihiko Ito. Cost-effective bandwidth-reduced Brillouinoptical time domain reflectometry using a reference Brillouin scattering beam[J]. Applied Optics,2009,48(22):4302-4309
    [20] Kaoru Shimizu, Toshio Kurashima, Tsuneo Horiguchi, et al. A new techniqueto shift lightwave frequency for distributed fiber-optic sensing. SPIE,1992,1797:18-30
    [21]宋牟平.微波电光调制的布里渊散射分布式光纤传感技术.光学学报,2004,24(8):1111-1114
    [22] V. Lecoeuche, M. W. Hathaway, D. J. Webb, et al.20-km distributedtemperature sensor based on spontaneous Brillouin scattering. IEEE PhotonicsTechnology Letters,2000,12(10):1367-1369
    [23] Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi. Novel technique toimprove spatial resolution in Brillouin optical time-domain reflectometry [J].IEEE Photonics Technology Letters,2007,19(23):1910-1912
    [24] Tsuneo Horiguchi and Mitsuhiro Tateda. BOTDA-nondestructivemeasurement of single-mode optical fiber attenuation characteristics usingBrillouin interaction: theory [J]. Journal of Lightwave Technology,1989,7(8):1170-1176
    [25] D. Culverhouse, F. Farahi, C. N. Pannell, et al. Potential of stimulatedBrillouin scattering as sensing mechanism for distributed temperature sensors[J]. Electronics Letters,1989,25(14):913-915
    [26] X. Bao, D. J. Webb, and D. A. Jackson.32-km distributed temperature sensorbased on Brillouin loss in an optical fiber [J]. Optics Letters,1993,18(18):1561-1563
    [27] Xiaoyi Bao and Liang Chen. Recent Progress in Brillouin Scattering BasedFiber Sensors [J]. Sensors,2011,11:4152-4187
    [28] Marc Niklés, Luc Thévenaz, and Philippe A. Robert. Simple distributed fibersensor based on Brillouin gain spectrum analysis. Optics Letters,1996,21(10):758-760
    [29] Anthony W. Brown, Bruce G. Colpitts, and Kellie Brown. Distributed sensorbased on dark-pulse Brillouin scattering. IEEE Photonics Technology Letters,2005,17(7):1501-1503
    [30] http://www.neubrex.com/
    [31] Seok-Beom Cho and Jung-Ju Lee. Strain event detection using a double-pulsetechnique of a Brillouin scattering-based distributed optical fiber sensor [J].Optics Express,2004,12(18):4339-4346
    [32] W. Li, X. Bao, Y. Li, et al. Differential pulse-width pair BOTDA for highspatial resolution sensing. Opt. Express2008,16(26):21616-21625
    [33] Y. Dong, L. Chen, and X. Bao. System optimization of a long-range Brillouinloss-based distributed fiber sensor. Appl. Opt.2010,49(27):5020-5025
    [34] Y. Dong, X. Bao, and W. Li. Differential Brillouin gain for improving thetemperature accuracy and spatial resolution in a long-distance distributed fibersensor. Appl. Opt.2009,48(22):4297-4301
    [35] L. Thévenaz and S. F. Mafang. Distributed fiber sensing using Brillouinechoes. Proc. SPIE,2008,7004:70043N
    [36] S. M. Foaleng, M. Tur, J. Beugnot, et al. High spatial and spectral resolutionlong-range sensing using Brillouin echoes [J]. Journal Lightwave Technol.2010,28(20):2993-3003
    [37] Y. Li, L. Chen, Y. Dong, et al. A novel distributed Brillouin sensor based onoptical differential parametric amplification [J]. Journal Lightwave Technol.2010,28(18):2621-2626
    [38] Marcelo A.Soto, Gabriele Bolognini, and Fabrizio Di Pasquale. Analysis ofoptical pulse coding in spontaneous Brillouin–based distributed temperaturesensors [J]. Optics Express,2008,16(23):19097-19111.
    [39] Marcelo A.Soto, Gabriele Bolognini, and Fabrizio Di Pasquale. Enhancedsimultaneous distributed strain and temperature fiber sensor employingspontaneous Brillouin scattering and optical pulse coding [J]. IEEE PhotonicsTechnology Letters,2009,21(7):450-452.
    [40] Marcelo A.Soto, Gabriele Bolognini, and Fabrizio Di Pasquale. Analysis ofpulse modulation format in coded BOTDA sensors [J]. Optics Express,2010,18(14):14878-14892.
    [41] Marcelo A.Soto, Gabriele Bolognini, Fabrizio Di Pasquale, et al.Simplex-coded BOTDA sensor with1m spatial resolution over a50km range[J]. Optics Letters,2010,35(2):259-261.
    [42] Marcelo A.Soto, Gabriele Bolognini, and Fabrizio Di Pasquale. Long-rangesimplex-coded BOTDA sensor over120km distance employing opticalpreamplification [J]. Optics Letters,2011,36(2):232-234.
    [43]宋牟平,马志刚.基于经典小波变换的布里渊光时域反射计光信号处理[J].光学学报,2007,27(5):819-823
    [44] Mu-Ping Song and Bin Zhao. Accuracy enhancement in Brillouin scatteringdistributed temperature sensor based on Hilbert transform [J]. OpticsCommunications,2005,250:252-257
    [45] K. De Souza and T. P. Newson. Brillouin-based fiber-optic distributedtemperature sensor with optical preamplification [J]. Optics Letters,2000,25(18):1331-1333
    [46] Mohamed N. Alahbabi, Yuh T. Cho, and Trevor P. Newson.150-km-rangedistributed temperature sensor based on coherent detection of spontaneousBrillouin backscatter and in-line Raman amplification. Journal of the OpticalSociety of America B,2005,22(6):1321-1324
    [47] M. N. Alahbabi, Y. T. Cho, and T. P. Newson. Coherent detection spontaneousBrillouin scattering combined with Raman amplification for long rangedistributed temperature and strain measurements. Proc. SPIE,2005,5855:84-87
    [48] X. H. Jia, Y. J. Rao, L. Chen, et al. Enhanced sensing performance in longdistance Brillouin optical time-domain analyzer based on Ramanamplification:theoretical and experimental investigation [J]. Journal ofLightwave Technology,2010,28:1624-1630
    [49] X. H. Jia, Y. J. Rao, K. Deng, et al. Experimental demonstration on2.5mspatial resolution and1℃temperature uncertainty over long-distance BOTDAwith combined Raman amplification and optical pulse coding [J]. IEEEPhotonics Technology Letters,2011,23:1041
    [50] M. A. Soto, G. Bolognini, and F. D. Pasquale. Optimization of long-rangeBOTDA sensors with high resolution using first-order bi-directional Ramanamplification [J]. Optics Express,2011,19(5):4444-4457
    [51] J. D. Ania-Castanon. Quasi-losses transmission using second-order Ramanamplification and fiber Bragg gratings [J]. Optics Express,2004,12:4372-4377
    [52] Xabier Angulo-Vinuesa, Sonia Martin-Lopez, Javier Nu o, et al.Raman-assisted Brillouin distributed temperature sensor over100km featuring2m resolution and1.2C uncertainty [J]. Journal of Lightwave Technology,2012,30(8):1060-1065
    [53] X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, et al. Raman-assistedBrillouin optical time-domain analysis with sub-meter resolution over100km[J]. Optics Express,2012,20(11):12147-12154
    [54] Dieter Garus, Torsten Gogolla, Katerina Krebber, et al. Brillouin optical fiberfrequency-domain analysis for distributed temperature and strainmeasurements [J]. Journal of Lightwave Technology,1997,15(4):654-662
    [55] R. Bernini, A. Minardo, and L. Zeni. An accurate high-resolution technique fordistributed sensing based on frequency-domain Brillouin scattering [J]. IEEEPhotonics Technology Letters,2006,18(1):280-282
    [56] Kazuo Hotate and Masato Tanaka. Enlargement of measurement range ofoptical-fiber Brillouin distributed strain sensor using correlation-basedcontinuous-wave techniques [P]. CLEO2001:119-120
    [57] Kazuo Hotate and Masato Tanaka. Distributed fiber Brillouin strain sensingwith1-cm spatial resolution by correlation-based continuous-wave technique.IEEE Photonics Technology Letters,2002,14(2):179-181
    [58] Kazuo Hotate and Sean S. L. Ong. Distributed Dynamic Strain MeasurementUsing a Correlation-Based Brillouin Sensing System [J]. IEEE PhotonicsTechnology Letters,2003,15(2):272-274
    [59] Yosuke Mizuno, Weiwen Zou, Zuyuan He, et al. Proposal of Brillouin opticalcorrelation-domain reflectometry (BOCDR)[J]. Optics Express,2008,16(16):12148-12153
    [60]张丹,施斌,吴志深等,BOTDR分布式光纤传感器及其在结构健康监测中的应用[J].土木工程学报,2003,36(11):83-87
    [61]施斌,丁勇,徐洪钟等,分布式光纤应变测量技术在滑坡早期预警中的应用[J].工程地质学报,2004:515-518
    [62]宋牟平,范胜利,陈好等,基于光相干外差检测的布里渊散射DOFS的研究[J].光子学报,2005,34(2):233-236
    [63]宋牟平,赵斌,章献民.基于微波电光调制的布里渊光时域分析传感器[J].光学学报,2005,25(8):1053-1056
    [64]宋牟平,励志成,裘超.50km长距离布里渊光时域分析分布式光纤传感器[J].中国激光,2010,37(6):1426-1429.
    [65] Xinhong Jia, Yunjiang Rao, Liang Chang, et al. Enhanced sensingperformance in long distance Brillouin optical time-domain analyzer based onRaman amplification: theoretical and experimental investigation[J]. Journal ofLightwave Technology,2010,28(11):1624-1630.
    [66]张超,饶云江等.基于双向拉曼放大的布里渊光时域分析系统[J].物理学报,2010,59(8):5223-5227.
    [67]张超,饶云江等.光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响[J].物理学报,2011,60(10):104211-1-4.
    [68] Yongkang Dong, Liang Chen, and Xiaoyi Bao. Time-divisionmultiplexing-based BOTDA over100km sensing length [J]. Optics Letters,2011,36(2):277-279
    [69] TR Parker, M. Farhadiroushan, R. Feced, et al. Simultaneous distributedmeasurement of strain and temperature from noise-initiated Brillouinscattering in optical fibers [J]. IEEE Journal of Quantum Electronics,1998,34(4):645-659
    [70] Rodrigo Kendy Yamashita, WeiWen Zou, Zuyuan He, et al. Measurementrange elongation based on temporal gating in Brillouin optical correlationdomain distributed simultaneous sensing of strain and temperature [J]. IEEEPhotonics Technology Letters,2012,24(12):1006-1008
    [71] Luc Thévenaz, Marc Niklès, Alexandre Fellay, et al. Applications ofdistributed Brillouin fibre sensing. Proc. SPIE,1998,3407:374-381
    [72] Hideaki Murayama, Kazuro Kageyama, Isao Kimpara, et al. Structural healthmonitoring of IACC yachts using fiber optic distributed strain sensor: Atechnical challenge for America’s Cup2000. Pro. SPIE,2000,3986:312-323
    [73] Akiyoshi Shimada, Hiroshi Naruse, Kiyoshi Uzawa, et al. Development of anintegrated damage detection system for International America’s Cup Classyacht structures using a fiber optic distributed sensor. Proc. SPIE,2000,3986:324-334
    [74] Anthony W. Brown, Michael D. DeMerchant, Xiaoyi Bao, et al. Strainmonitoring of the Rollinsford bridge using distributed sensing. Proc. SPIE,2000,4087:1149-1156
    [75] Chia Yee Chhoa, Xiaoyi Bao, Theodore W. Bremner, et al. Strainmeasurement in concrete structure using distributed fiber optic sensing basedon Brillouin scattering with single mode fibers embedded in glass fiberreinforcing vinyl ester rod and bonded to steel reinforcing bars. Proc. SPIE,2001,4337:466-476
    [76] Takayuki Shimizu, Takashi Yari, Kanehiro Nagai, et al. Strain measurementusing a Brillouin optical time domain reflectometer for development of aircraftstructure health monitoring system. Proc. SPIE,2001,4335:312-322
    [77] Luc Thévenaz, Alexandre Fellay, Massimo Facchini, et al. Brillouin opticalfiber sensor for cryogenic thermometry. Proc. SPIE,2002,4694:22-27
    [78] Fabien Ravet, Lufan Zou, Xiaoyi Bao, et al. Demonstration of the detection ofbuckling effects in steel pipelines and beams by the distributed Brillouinsensor. Proc. SPIE,2004,5579:58-65
    [79] John S. Selker, Luc Thévenaz, Hendrik Huwald, et al. Distributed fiber-optictemperature sensing for hydrologic systems [J]. Water Resources Research,2006,42: W12202
    [80] Zhishen Wu, Bin Xu, Keiji Hayashi, et al. Distributed optic fiber sensing for afull-scale PC girder strengthened with prestressed PBO sheets [J]. EngineeringStructures,2006,28:1049-1059
    [81] Marc Niklès. Long-distance fiber optic sensing solutions for pipeline leakage,intrusion and ground movement detection. Proc. SPIE,2009,7316:731602
    [82] Daniele Inaudi and Branko Glisic. Long-range pipeling monitoring bydistributed fiber optic sensing [J]. J. Pressure Vessel Technology,2010,132:011701
    [83] Hyuk-Jin Yoon, Kwang-Yong Song, Jung-Seok Kim, et al. Longitudinal strainmonitoring of rail using a distributed fiber sensor based on Brillouin opticalcorrelation domain analysis [J]. NDT&E International,2011,44:637-644
    [84] Aldo Minardo, Romeo Bernini, Lucio Amato, et al. Bridge monitoring usingBrillouin fiber-optic sensors [J]. IEEE Sensors Journal,2012,12(1):145-150
    [85] Liang Wang, Bin Zhou, Chester Shu, et al.. Stimulated Brillouin scatteringslow-light-based fiber-optic temperature sensor [J]. Optics Letters,2011,36(3):427-429
    [86] Kwang Yong Song, Sanghoon Chin, Nikolay Primerov, et al.. Time-domaindistributed fiber sensor with1cm spatial resolution based on Brillouindynamic grating [J]. Journal of Lightwave Technology,2010,28(14):2062-2067
    [87] Miguel González Herráez, Luc Thévenaz, and Philippe Robert. Distributedmeasurement of chromatic dispersion by four-wave mixing and Brillouinoptical-time-domain analysis [J]. Optics Letters,2003,28(22):2210-2212
    [88] Govind P. Agrawal著.贾东方,余震虹等译.非线性光纤光学原理及应用
    [M].北京:电子工业出版社,2010:245-273
    [89] T. Horiguchi, M. Tateda, N. Shibata, et al. Brillouin gain variation due to apolarization-state change of the pump or Stokes fields in standard single-modefibers [J]. Optics Letters,1989,14(6):329-331
    [90] M. Oskar van Deventer and Andre J. Boot. Polarization properties ofstimulated Brillouin scattering in single-mode fibers [J]. Journal of LightwaveTechnology,1994,12(4):585-590
    [91] Liang Chen and X. Bao. Analytical and numerical solutions for steady statestimulated Brillouin scattering in a single-mode fiber [J]. OpticsCommunications,1998,152:65–70
    [92] R. G. Smith. Optical power handing capacity of low loss optical fibers asdetermined by stimulated Raman and Brillouin scattering [J]. Applied Optics,1972,11(11):2489-2494
    [93] Marc Niklès, Luc Thévenaz, and Philippe A. Robert. Brillouin gain spectrumcharacterizationin in single-mode optical fibers [J]. Journal of LightwaveTechnology,1997,15(10):1842-1851
    [94] X. Bao, D. J. Webb, and D. A. Jackson. Combined distributed temperature andstrain sensor based on Brillouin loss in an optical fiber [J]. Optics Letters,1994,19(2):141-142
    [95] P. C. Wait and T. P. Newson. Landau Placzek ratio applied to distributed fibresensing [J]. Optics Communications,1996,122:141-146
    [96] H. K. Huai, G. P. Lees, and T. P. Newson. All-fiber system for simultaneousinterrogation of distributed strain and temperature sensing by spontaneousBrillouin scattering [J]. Optics Letters,2000,25(10):695-697
    [97] J. Smith, M. DeMerchant, A. Brown, et al. Simultaneous distributed strain andtemperature measurement. Applied Optics,1999,38(25):5372-5377
    [98] X. Bao, Q. Yu, and L. Chen. Simultaneous strain and temperaturemeasurements with PM fibers and their error analysis using distributedBrillouin loss system [J]. Optics Letters,2004,29(12):1341-1344
    [99] L. Zou, X. Bao, S. Afshar, et al. Dependence of the Brillouin frequency shifton strain and temperature in a photonic crystal fiber [J]. Optics Letters,2004,29:1485-1487
    [100] C. C. Lee, P. W. Chiang, and S. Chi. Utilization of a Dispersion-Shifted Fiberfor Simultaneous Measurement of Distributed Strain and TemperatureThrough Brillouin Frequency Shift [J]. IEEE Photonics Technology Letters,2001,13(10):1094-1096
    [101] M. N. Alahbabi, Y. T. Cho and T. P. Newson. Simultaneous distributedmeasurements of temperature and strain using spontaneous Raman andBrillouin scattering [P]. SPIE2004,5502:488-491
    [102] Kellie Brown, Anthony W. Brown, and Bruce G. Colpitts. Combined Ramanand Brillouin scattering sensor for simultaneous high-resolution measurementof temperature and strain [P]. SPIE2006,6167
    [103] M. N. Alahbabi, Y. T. Cho, and T. P. News. Simultaneous temperature andstrain measurement with combined spontaneous Raman and Brillouinscattering [J]. Optics Letters,2005,30(11):1276-1278
    [104] Gabriele Bolognini and Marcelo A.Soto. Optical pulse coding in hybriddistributed sensing based Raman and Brillouin scattering employingFabry-Perot lasers [J]. Optics Express,2010,18(8):8459-8465.
    [105] Fabien Ravet, Jeffrey Snoddy, Xiaoyi Bao, et al. Power thresholds and pumpdepletion in brillouin fiber amplifiers [J]. The Open Optics Journal,2008,2:1-5
    [106] Stella M. Foaleng and Luc Thévenaz. Impact of Raman scattering andmodulation instability on the performances of Brillouin sensors [P]. Proc.SPIE,2011,7753:77539V
    [107]周会娟,孟洲,廖毅.铌酸锂波导电光强度调制器的移频特性[J].中国激光,2009,36(4):901-905.
    [108] Jeffrey Snoddy, Yun Li, Fabien Ravet, et al. Stabilization of electro-opticmodulator bias voltage drift using a lock-in amplifier and aproportional-integral-derivative controller in a distributed Brillouin sensorsystem [J]. Applied Optics,2007,46(9):1482-1485
    [109]光电技术(内部讲义),国防科学技术大学,2006:259-260
    [110] Tsuneo Horiguchi, Toshio Kurashima, and Mitsuhiro Tateda. A technique tomeasure distributed strain in optical fibers [J]. IEEE Photonics TechnologyLetters,1990,2(5):352-354
    [111] S. Jetschke, U. Rǒpke, and E. Geinitz. Averaging of polarization modulationsin a distributed Brillouin fiber sensor system.12th International Conference onOptical Fiber Sensors,1997,16:528-531
    [112] Kazuo Hotate, Koji Abe, and Kwangyong Song. Suppression of signalfluctuation in Brillouin optical correlation domain analysis system usingpolarization diversity scheme [J]. IEEE Photonics Technology Letters,2006,18(24):2653-2655
    [113] Diren Liu, Muping Song, and Xianmin Zhang. Polarization insensitivecoherent detection for Brillouin scattering spectrum in BOTDR [J]. OpticsCommunications,2005,254:168-172
    [114] J. Yang, C. Yu, Z. Chen, et al. Suppression of polarization-induced signalfluctuation in optic distributed sensing system based on stimulated Brillouinscattering [J]. Electronics Letters,2009,45(3)
    [115]宋牟平,庄白云.布里渊光时域分析传感器的消偏振衰落技术[J].光学学报,2007,27(4):711-715
    [116] T. Kurashima, M. Tateda, T. Horiguchi, et al. Performance improvement of acombined OTDR for distributed strain and loss measurement by randomizingthe reference light polarization state [J]. IEEE Photonics Technology Letters,1997,9(3):360-362
    [117] Feng Wang, Cunlei Li, Xiaodong Zhao, et al. Using aMach-Zehnder-interference-based passive configuration to eliminate thepolarization noise in Brillouin optical time domain reflectometry [J]. AppliedOptics,2012,51(2):176-180
    [118] C. N. Pannell, J. Dhliwayo, and D. J. Webb. The accuracy of parameterestimation from noisy data with application to resonance peak estimation indistributed Brillouin sensing [J]. Measurement and Science Technology,1998,9:50-57
    [119] Michael D. DeMerchant, Anythony W. Brown, Xiaoyi Bao, et al. Automatedsystem for distributed sensing. Proc. SPIE,1998,3330:315-322
    [120] Anythony W. Brown, Michael D. DeMerchant, Xiaoyi Bao, et al. Analysis ofthe precision of a Brillouin scattering based distributed strain sensor. Proc.SPIE,1999,3670:359-365
    [121] Tsuneo Horiguchi, Kaoru Shimizu, Toshio Kurashima, et al. Development of adistributed sensing technique using Brillouin scattering [J]. Journal ofLightwave Technology,13(7):1296-1302
    [122] A Fellay, L. Thévenaz, M. Facchini, et al. Distributed sensing using stimulatedBrillouin scattering: towards ultimate resolution. OFS1997,12th InternationalConference on Optical Fiber Sensors,1997, Williamsburg Marriot Virginia,324OWD3
    [123] X. Bao, W. Li, C. Zhang, et al. Monitoring the distributed impact wave onconcrete slab due to the traffics based on polarization dependence on thestimulated Brillouin scattering. Smart Mater. Struct.2009,17,15003-15008
    [124] X. Bao, D. J. Webb, and D. A. Jackson. Distributed temperature sensor basedon Brillouin loss in an optical fiber for transient threshold monitoring. Can. J.Phys.1996,74:1-3
    [125] R. Bernini, A. Minardo, and L. Zeni. Distributed dynamic strain measurementusing a time-domain Brillouin sensing system. P. Malcovati et al.(eds.),Sensors and Microsystems: AISEM2009Proceedings,2010,237-240. DOI10.1007/978-90-481-3606-3_46
    [126] Yair Peled, Avi Motil, Lior Yaron, et al. Slope-assisted fast distributed sensingin optical fibers with arbitrary Brillouin profile [J]. Optics Express,2011,19(21):19845-19854
    [127] Yair Peled, Avi Motil, and Moshe Tur. Fast Brillouin optical time domainanalysis for dynamic sensing [J]. Optics Express,2012,20(8):8584-8591
    [128] Asher Voskoboinik, Omer F. Yilmaz, Alan W. Willner, et al. Sweep-freedistributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express,2011,19(26): B842-B847
    [129] Yongkang Dong, Liang Chen, and Xiaoyi Bao. Extending the sensing range ofBrillouin optical time-domain analysis combining frequency-divisionmultiplexing and in-line EDFA [J]. Journal of Lightwave Technology,2012,30(8):1161-1167
    [130] G. H. Smith, D. Novak, and Z. Ahmed. Technique for optical SSB generationto overcome dispersion penalties in fibre-radio systems [J]. Electronics Letters,1997,33(1):74-75.
    [131] A. Loayssa, D. Benito, and M. J. Garde. Single-sideband suppressed-carriermodulation using a single-electrode electrooptic modulator [J]. IEEEPhotonics Technology Letters,2001,13(8):869-871.
    [132] M. Y. Frankel and R. D. Esman. Optical single-sideband suppressed-carriermodulator for wide-band signal processing [J]. Journal of LightwaveTechnology,1998,16(5):859-863.
    [133] U. Lee, H. Jung, and S. Han. Optical single sideband signal generation usingphase modulation of semiconductor optical amplifier [J]. IEEE PhotonicsTechnology Letters,2004,16(5):1373-1375.
    [134] Z. Li, H. Chi, X. Zhang, et al. Optical single-sideband modulation using afiber-Bragg-grating-based optical Hilbert transformer [J]. IEEE PhotonicsTechnology Letters,2011,23(9):558-560.
    [135] R. Montgomery and R. Desalvo. A novel technique for double sidebandsuppressed carier modulation of optical fields [J]. IEEE Photonics TechnologyLetters,1995,7(4):434-436.
    [136] S. Tonda-Goldstein, D. Dolfi, J.–P. Huignard, et al. Stimulated Brillouinscattering for microwave signal modulation depth incress in optical inks [J].Electronics Letters,2000,36(11):944-946.
    [137] A. Loayssa, M. J. Garde, and D. Benito. Optical carrier-suppression techniquewith a Brillouin–erbium fiber laser [J]. Optics Letters,2000,25(4):197-199.
    [138] R.Hui, A. D’ Ottavi, A. Mecozzi, et al. Injection locking in distributedfeedback semiconductor lasers [J]. IEEE Journal of Quantum Electronics,1991,27:1688~1694
    [139] Erwin K. Lau, Hyuk-Kee Sung, Xiaoxue Zhao, et al. Bandwidth enhancementby optical amplitude and phase modulation of injection-locked semiconductorLasers [C]. IEEE International Topical Meeting on Microwave Photonics,2007:241~244
    [140] Hyuk-Kee Sung, Erwin K. Lau, and Ming C. Wu. Optical properties andmodulation characteristics of ultral-strong injection-locked distributedfeedback lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics,2007,13(5):1215~1221
    [141] Atsushi Murakami. Phase locking and chaos synchronization ininjection-locked semiconductor Lasers [J]. IEEE Journal of QuantumElectronics,2003,39(3):438~447
    [142] J. Troger, P.-A. Nicati, L. Thévenaz, et al. Novel measurement scheme forinjection-locking experiments [J]. IEEE Journal of Quantum Electronics,1999,35(1):32~38
    [143] L. Thévenaz, S. L. Floch, D. Alasia, et al. Novel schemes for optical signalgeneration using laser injection locking with applications to Brillouin sensing[J]. Measurement and Science Technology,2004,15:1519~1524
    [144] H. J. Troger. Injection locking in Semiconductor lasers [D]. Lausanne: SwissFederal Institute of Technology,1999:52
    [145]廖延彪编著,光纤光学[M].北京:清华大学出版社,2005:67-68
    [146] Qingrong Yu. Distributed Brillouin sensing using polarization-maintainingfibers with high measurement accuracy [D]. Ottawa: University of Ottawa,2006:33-38
    [147] Q. Yu, X. Bao, and L. Chen. Temperature dependence of Brillouin frequency,power, and bandwidth in panda, bow-tie and tiger polarization-maintainingfibers [J]. Optics Letters,2004,29(1):17-19
    [148] Q. Yu, X. Bao, and L. Chen. Strain dependence of Brillouin frequency,intensity, and bandwidth in polarization maintaining fibers [J]. Optics Letters,2004,29(14):1605-1607
    [149] J. Nayak. Fiber-optic gyroscopes: from design to production [J]. AppliedOptics,2011,50(25): E152-E161
    [150] K. Takada, J. Noda, and K. Okamoto. Measurement of spatial distribution ofmode coupling in birefringent polarization maintening fiber with newdetection scheme [J]. Optics Letters,1986,11:680-682
    [151] M. Tsubokawa. Measurement of mode coupling and extinction ratio inpolarization maintaining fiber [J]. Journal of Lightwave Technology,1989,7(1):45-50
    [152] P. Martin, G. Le Boudec, and H. C. Lefevre. Test apparatus of distributedpolarization coupling in fiber gyro coils using white light interferometry. Proc.SPIE,1991,1585:173-179
    [153] M. W. Kemmler and H. J. Buschelberger. White light interferometry fortesting FOG components. Proc. SPIE,1991,1585:357-364
    [154] S. P. Smith, F. Zarinetchi, and S. Ezekiel. Narrow-linewidth stimulatedBrillouin fiber laser and applications [J]. Optics Letters,1991,16(6):393-395
    [155] Gregory J. Cowle and Dmitrii Yu. Stepanov. Hybrid Brillouin/erbium fiberlaser [J]. Optics Letters,1996,21(16):1250-1252
    [156] G. J. Cowle, D. Yu. Stephanov, and Y. T. Chieng. Brillouin/erbium fiber laser[J]. Journal of Lightwave Technology,1997,15(7):1198-1204
    [157] G. J. Cowle and D. Yu. Stepanov. Properties of Brillouin/erbium fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics,1997,3(4):1049-1057
    [158] A. Loayssa, D. Benito, and M. J. Garde. High-resolution measurement ofstimulated Brillouin scattering spectra in single-mode fiber [J]. IEEProc.-Optoelectron,2001,148:143-148
    [159] L. Liu, Y. Shen, S. Zheng, et al. Optical generation ofmicrowave/millmeter-wave based on Brillouin-erbium fiber laser [J].Microwave and Optics Technology Letters,2011,53:1761-1763
    [160] Alayn Loayssa, David Bentio, and Maria J. Garde. Optical carrier-suppressiontechnique with a Brillouin-erbium fiber laser [J]. Optics Letters,2000,25(4):197-199
    [161] Y. J. Song, L. Zhan, J. H. Ji, et al. Self-seeded multiwavelengthBrillouin-erbium fiber laser [J]. Optics Letters,2005,30(5):486-488
    [162] L. Zhan, J. H. Ji, J. Xia, et al.160-line multiwavelength generation oflinear-cavity self-seeded Brillouin-ebium fiber laser [J]. Optics Express,2006,14(22):10233–10238
    [163] J. Tang, J. Sun, L. Zhao, et al. Tunable multiwavelength generation based onBrillouin-erbium comb fiber laser assisted by multiple four-wave mixingprocesses [J]. Optics Express,2011,19(15):14682–14689
    [164] Zhou Meng, George Stewart, and Gillian Whitenet. Stable single-modeoperation of a narrow-linewidth, linearly polarized, erbium-fiber ring laserusing a saturable absorber [J]. Journal of Lightwave Technology,2006,24(5):2179~2183
    [165]陈伟,张艳,任民等.单纵模布里渊掺铒光纤激光器的实验研究[J].光学学报,2008,28(9):1740~1744
    [166] S. W. Harun, S. Shahi and H. Ahmad. Compact Brillouin-erbium fiber laser[J]. Optics Letters,2009,34(1):46-48
    [167] S. Shahi and S. W. Harun. Brillouin fiber laser with significantly reduced gainmedium length operating in L-band region [J]. Progress in ElectromagneticsResearch Letters,2009,8:143-14
    [168]池灏,章献民,沈林放.基于光子晶体光纤的布里渊光纤激光器[J].浙江大学学报(工学版),2006,40(12):2126~2129
    [169] M. H. Al-Mansoori and M. A. Mahdi. Tunable range enhancement ofBrillouin-erbium fiber laser utilizing Brillouin pump pre-amplificationtechnique [J]. Optics Express,2008,16(11):7649-7654
    [170] N. Md. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, et al. Brillouin-Erbiumfiber laser with enhanced feedback couping using common Erbium gainsection [J]. Optics Express,2008,16(21):16475-16480
    [171] M. H. Al-Mansoori and M. A. Mahdi. Reduction of gain depletion andsaturation on a Brillouin-erbium fiber laser utilizing a Brillouin pumppreamplification technique [J]. Applied Optics,2009,48(18):3424-3428
    [172] Nor Azura Malini A. Hambali1, Mohd Adzir Mahdi1, Mohammed HayderAl-Mansoori, et al. Investigation on the effect of EDFA location in ring cavity
    Brillouin-Erbium fiber laser [J]. Optics Express,2009,17(14):11768-11775

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700