远程干涉型光纤传感系统非线性效应影响及其抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电子技术和光纤传感技术的日趋成熟,以光纤水听器为典型代表的干涉型光纤传感系统在潜艇探测、石油天然气储层勘探和地震监测等领域取得了广泛应用。近年来,随着掺铒光纤放大技术和光纤拉曼放大技术的进步,干涉型光纤传感系统朝着远程化方向发展,在增大传感距离的同时不可避免的加剧了光纤中的非线性效应。前人对非线性效应的研究主要针对光纤通信系统或者效应本身,而鲜有基于干涉型光纤传感系统的非线性效应研究。与光纤通信系统以误码率为主要研究对象不同,干涉型光纤传感系统最为关注的是相位噪声特性,因为它决定了系统的探测灵敏度,而包括受激布里渊散射(SBS)、四波混频(FWM)、调制不稳定性(MI)、自相位调制(SPM)和交叉相位调制(XPM)在内的各种非线性效应都会引入相位噪声,导致系统性能的严重下降,因此各种非线性效应的影响及抑制是发展远程干涉型光纤传感系统的关键技术。
     论文在介绍远程干涉型光纤传感系统基本结构和基本原理的基础上,首次对考虑各种非线性效应的远程干涉型光纤传感系统的相位噪声结构进行了详细分析,得出系统相位噪声有两个来源:强度噪声转化的相位噪声和激光线宽引入的相位噪声,分别源于光强的起伏和光频的抖动。前者又称为GM噪声,其线性部分可由SBS和FWM引入,而非线性部分源于光克尔效应,即由SPM和XPM引入。SBS、FWM和MI还可引起线宽展宽,导致相位噪声的增加。系统相位噪声结构的提出为远程干涉型光纤传感系统的设计和应用提供了重要指导。
     利用SBS的定域起伏模型研究前向输出光和后向散射光的强度噪声,对于前向输出光,强度噪声开始时很小,达到SBS阈值后迅速增大,然后逐渐趋于稳定;对于后向散射光,超过SBS阈值后,强度噪声呈减小趋势,且减小速度由快变慢,最终趋于稳定,这与实测的前后向强度噪声变化趋势是一致的。实测了前向输出光的相位噪声,显示与相应的强度噪声变化趋势一致,验证了相位噪声可由强度噪声转化而来的结论;同时通过测量SBS发生前后的线宽变化,证实了SBS可引起线宽展宽从而引入相位噪声的结论。采用光频调制和相位调制抑制SBS,前者抑制效果有限,而后者可将SBS阈值提高7dB。但相位调制基于激光线宽展宽,在抑制SBS及其引入的相位噪声的同时,会引入与线宽相关的相位噪声,故实际应用中要综合考虑SBS抑制作用和激光线宽展宽作用,以实测相位噪声最小为标准寻找二者的最佳平衡,该结论是前人研究中未曾涉及的。此外,研究了SBS对分布式光纤拉曼放大器的影响,并用SBS慢光技术测得布里渊增益带宽为50MHz。
     数值模拟了FWM效率及强度噪声与信道间隔和光纤长度的关系,并利用FWM准相位匹配条件进行解释。以双波传输为例实测了FWM引入的强度噪声,发现由FWM新产生光与原信道光之间能量交换不稳导致的强度噪声可以忽略,对强度噪声影响最大的是SBS而非FWM。以三波传输和四波传输为例实测了FWM引入的相位噪声,发现FWM对相位噪声的影响可以忽略,这是由于信道不完全等间隔导致新产生光与原信道光之间存在拍频,且大于干涉型光纤传感系统中所用窄带光探测器的带宽,从而滤除了拍频噪声,并基于此提出利用窄带光探测器抑制FWM引入的相位噪声,这也是前人没有讨论过的。此外,利用泵浦回波技术研究了FWM和SBS结合的特殊情形并从FWM相位匹配的角度进行解释。
     阐述了产生MI的三种物理机制,并从光纤中脉冲传输的非线性薛定谔方程出发对MI进行了数值模拟。在掺铒光纤放大器产生的宽带放大自发辐射光背景上观察了自发MI和感应MI。研究了MI阈值与输入光谱和光纤长度的关系,发现宽带光谱比单频光谱的MI阈值要高,且MI阈值与有效光纤长度成反比。分析了MI与SBS的不同,即MI对脉冲峰值功率响应而SBS对平均功率响应,这是由于MI的响应时间仅为10fs而SBS的响应时间达10ns。考虑到MI发生后会引入大量相位噪声,利用脉冲峰值功率控制和窄带光纤光栅滤波的方法抑制MI。研究了MI与FWM结合的调制不稳定性共振现象并从FWM相位匹配的角度进行解释,首次提出了一种FWM边带的选择方法,该方法基于连续光信道和脉冲光信道的同时使用。
     从光放大链光纤段数、输入功率、光纤长度和信道数目四个方面,详细阐述了各种非线性效应对系统性能的影响。对于超过50km的远程传输,当输入平均功率大于4mW时,要考虑SBS对系统的影响;当输入峰值功率大于110mW时,要考虑MI对系统的影响;当信道数目多于20时,要考虑XPM对系统的影响;由于干涉型光纤传感系统的窄带探测特性,无需考虑FWM对系统的影响。利用SBS阈值和MI阈值,综合考虑系统时分复用效率和传输距离等因素,对所用脉冲占空比进行优化。当系统中采用相位调制器抑制SBS时,对于50km传输光纤和25MHz调制频率,输入功率为3mW至5mW、6mW至10mW、12mW至14mW时对应的最佳调制度分别为0.57π、0.71π和0.86π。上述结论为远程干涉型光纤传感系统实际应用时的参数选择提供了重要依据。
With the developments of optoelectronics and fiber sensing technologies,interferometric fiber sensing systems such as fiber hydrophone have been widely usedin the fields including submarine detection, oil and natural gas prospecting, andearthquake inspection. Recently, with the developments of erbium-doped fiber amplifier(EDFA) and fiber Raman amplifier (FRA), interferometric fiber sensing systemsdevelop towards the long-haul direction. Although the sensing distance is increased,fiber nonlinear effects also become significant. The foregone researches focus on fibercommunication system or nonlinear effects themselves, while pay little attention tononlinear effects in interferometric fiber sensing systems. Compared with fibercommunication systems which treats bit error rate (BER) as its research focus,interferometric fiber sensing systems pay great attention to phase noise, which decidesthe detection sensitivity of the system. Considering that a variety of nonlinear effectssuch as stimulated Brillouin scattering (SBS), four-wave mixing (FWM), modulationinstability (MI), self-phase modulation (SPM) and cross phase modulation (XPM)introduce phase noise and lead to system performance degradation, influences andsuppression techniques of nonlinear effects are key technologies for the long-haulinterferometric fiber sensing systems.
     Based on the structure and principle of the long-haul interferometric fiber sensingsystem, the phase noise structure of the system considering a variety of nonlinear effectsis analyzed for the first time. The phase noise results from two sources i.e. phase noisetransferred from intensity noise and phase noise induced by laser linewidth, originatingfrom intensity fluctuation and frequency dithering, respectively. The former is alsocalled GM noise with its linear part introduced by SBS and FWM and its nonlinear partresulting from optical Kerr effect i.e. SPM and XPM. SBS, FWM and MI can causelinewidth broadening, leading to the increase of phase noise. The proposition of phasenoise structure provides guidance for the design and application of long-haulinterferometric fiber sensing systems.
     The SBS localized fluctuating model is used for investigating the intensity noise ofthe forward output light and the backscattered light. It is found that, for the forwardoutput light, the intensity noise is small at first, increases dramatically when reachingthe SBS threshold, and then tends to stabilize gradually. For the backscattered light,after the SBS threshold, the intensity noise decreases fast at first and then slowly, andbecomes stable at last. The above results agree with the measured variations of theforward and backward intensity noise. The forward output phase noise is also measuredand its variation is accordant with that of the corresponding intensity noise, whichverifies that phase noise can be transferred from intensity noise. The linewidth with and without SBS are measured, which confirms that SBS can cause linewidth broadeningand introduce phase noise. Frequency modulation and phase modulation are used tosuppress SBS. The suppression effect of the former method is very limited, while thelatter method can improve the SBS threshold by7dB. However, phase modulation isbased on laser linewidth broadening. Although SBS as well as its induced phase noise issuppressed, the phase noise related to linewidth is induced. Therefore, in practicalapplications, both SBS suppression and laser linewidth broadening should be considered,and the measured phase noise is used for finding the optimum balance of the twoopposite effects, which has been not referred in former researches. Furthermore, theinfluence of SBS on FRA is investigated, and the Brillouin bandwidth is measured to be50MHz using SBS slow light technique.
     The relations between FWM efficiency as well as its intensity noise and thechannel spacing and fiber length are numerically simulated, and the results areexplained using FWM quasi-phase-matching condition. Taking two-wave transmissionfor example, FWM induced intensity noise is measured and it is found that the intensitynoise caused by the energy exchange instability between FWM generated light andoriginal light can be ignored, and what should be concerned most is SBS rather thanFWM. Taking three-wave and four-wave transmission for examples, FWM inducedphase noise is measured and it is found that the influence of FWM on phase noise canalso be ignored, which is because the channels are not perfectly equally spaced and thebeat frequency between the generated light and original light is larger than thebandwidth of the narrowband photodetector used in the interferometric fiber sensingsystem, leading to that the beat noise is filtered. Based on this, suppressing FWMinduced phase noise with narrowband photodetector is proposed, which has not beendiscussed in the former researches. Furthermore, the pump echo technique is used tostudy the case when FWM and SBS are combined, and the result is explained from theFWM phase-match point of view.
     Three kinds of physical mechanisms of MI are introduced. MI is numericallysimulated using nonlinear Schordinger equation which describes pulse transmission inthe fiber. Spontaneous MI and induced MI are observed on the background ofbroadband amplified spontaneous emission (ASE) caused by EDFA. The relationsbetween the MI threshold and the input spectrum and fiber length are investigated and itis found that broadband spectrum has a higher MI threshold than monochromaticspectrum, and MI threshold is inversely proportional to effective fiber length. Thedifference between MI and SBS is analyzed and it is found that MI responds to pulsepeak power while SBS responds to average power, which is due to that the respondingtime of MI and SBS are10fs and10ns, respectively. Considering that MI causes amass of phase noise, the methods of pulse peak power control and narrowband fibergrating filtering are used to suppress MI. The modulation instability resonance (MIR) introduced by the combination of MI and FWM is investigated and explained fromFWM phase-match point of view. A method of selecting FWM sidebands is proposedfor the first time, which is based on the simultaneous utilization of a CW channel and apulse channel.
     Influences of nonlinear effects on system performance are discussed from fouraspects including fiber segment number of optical amplifier link, input power, fiberlength and channel number. For long-haul transmission over50km, the influence ofSBS should be considered when input average power is above4mW, and the influenceof MI should be considered when input peak power is above110mW, and the influenceof XPM should be considered when channel number is more than20, while theinfluence of FWM need not to be considered due to the narrowband detectioncharacteristic of interferometric fiber sensing system. Using SBS and MI thresholds andconsidering both the time-domain multiplexing (TDM) efficiency and transmissiondistance, pulse duty cycle is optimized. When phase modulator is used for SBSsuppression, for50km fiber and25MHz modulation frequency, the optimummodulation indices are0.57π,0.71π and0.86π when the input power is between3mWand5mW, between6mW and10mW, between12mW and14mW, respectively. Theabove conclusions provide good guidance for the parameter selection in the practicalapplications of interferometric fiber sensing systems.
引文
[1] Nash P, Strudley A, Crickmore R et al. High Efficiency TDM/WDMArchitectures for Seismic Reservoir Monitoring [C]. Proc. of SPIE,2009,7503:75037T-1~75037T-4.
    [2] Kringlebotn J T, Nakstad H, Eriksrud M. Fibre optic ocean bottom seismiccable system–from innovation to commercial success [C]. Proc. of SPIE,2009,7503:75037U-1~75037U-4.
    [3] Nash P J, Cranch G A, Hill D J. Large scale multiplexed fibre-optic arrays forgeophysical applications [C]. Proc. of SPIE,2000,4202:55~65.
    [4]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [5] Nash P J. Review of interferometric optical fibre hydrophone technology [J].IEE Proceedings-Radar, Sonar-Navigation,1996,143(3):204~209.
    [6] Bucaro J A, Dardy H D, Carome E. Fiber-optic hydrophone [J]. The Journal ofthe Acoustical Society of America,1977,62(5):1302~1304.
    [7]高学民.光纤水听器及阵列的发展状况[J].光纤与电缆及其应用技术,1996,1:48~51.
    [8]梁迅.光纤水听器系统噪声分析及抑制技术研究[D].国防科技大学博士学位论文,2008.
    [9] Kirkendall C K, Davis A R, Dandridge A et al.64-Channel all-opticaldeployable array [J].1997NRL Review,63~65.
    [10]Davis A R, Kirkendall C K, Dandridge A et al.64Channel All OpticalDeployable Acoustic Array [C].12thInternational Conference on Optical FiberSensors,1997,16:616~619.
    [11]Cranch G A, Nash P J. High Multiplexing Gain Using TDM And WDM InInterferometric Sensor Arrays [C]. Proc. of SPIE,1999,3860:531~537.
    [12]Havsgard G B, Wang G, Skagen P et al. Four channel fiber optic hydrophonesystem [C].2000, P1-22,122~125.
    [13]Cranch G A, Nash P J. Large-Scale Multiplexing of InterferometricFiber-Optic Sensors Using TDM and DWDM [J]. Journal of LightwaveTechnology,2001,19(5):687~699.
    [14]Nash P J, Latchem J, Cranch G et al. Design, Development and Constructionof Fibre-Optic Bottom Mounted Array [C]. IEEE,2002, WD5:333~336.
    [15]Farsund O, Erbeia C, Lachaize C et al. Design and Field Test of a32-elementFiber Optic Hydrophone System [C]. IEEE,2002, WD4:329~332.
    [16]Cranch G A, Kirkendall C K, Darley K et al. Large-Scale Remotely Pumpedand Interrogated Fiber-Optic Interferometric Sensor Array [J]. IEEE PhotonicsTechnology Letters,2003,15(11):1579~1581.
    [17]Hill D, Nash P. Fibre-Optic Hydrophone Array for Acoustic Surveillance inthe Littoral [C]. Proc. of SPIE,2005,5780:1~10.
    [18]Kersey A D, Jackson D A, Corke M. HIGH-SENSITIVITY FIBRE-OPTICACCELEROMETER [J]. Electronics Letters,1982,18(13):559~561.
    [19]Gardner D L, Hofler T, Baker S R et al. A Fiber-optic InterferometricSeismometer [J]. Journal of Lightwave Technology,1987, LT-5(7):953~960.
    [20]Pechstedt R D, Jackson D A. Design of a compliant-cylinder-type fiber-opticaccelerometer: theory and experiment [J]. Applied Optics,1995,34(16):3009~3017.
    [21]Pechstedt R D, Jackson D A. Performance analysis of a fiber opticaccelerometer based on a compliant cylinder design [J]. Review of ScientificInstruments,1995,66:207~214.
    [22]Vohra S T, Danver B, Tveten A B et al. High Performance Fiber OpticAccelerometers [C].11thInternational Conference on Optical Fiber Sensors,1996, Th5-5:654~657.
    [23]Cranch G A, Nash P J. High-Responsivity Fiber-Optic Flexural DiskAccelerometers [J]. Journal of Lightwave Technology,2000,18(9):1233~1243.
    [24]Shindo Y, Yoshikawa T, Mikada H. A Large Scale Seismic Sensing Array onthe Seafloor with Fiber Optic Accelerometers [C]. IEEE,2002, P1-40:1767~1770.
    [25]Li Y, Wang X Z, Bao X Y. Sensitive acoustic vibration sensor usingsingle-mode fiber tapers [J]. Applied Optics,2011,50(13):1873~1878.
    [26]Chen G Y, Zhang X L, Brambilla G et al. Theoretical and experimentaldemonstrations of a microfiber-based flexural disc accelerometer [J]. OpticsLetters,2011,36(18):3669~3671.
    [27]Crickmore R I, Nash P J, Wooler J P F. Fibre Optic Security Systems for Landand Sea Based Applications [C]. Proc. of SPIE,2004,5611:79~86.
    [28]熊水东,罗洪,胡永明等.干涉型保偏光纤微振动矢量传感器研究[J].中国激光,2004,31(7):843~847.
    [29]熊水东,罗洪,胡永明等.基于加速度传感的三维光纤矢量水听器实验研究[J].压电与声光,2005,27(5):483~489.
    [30]罗洪,熊水东,陈儒辉等.全保偏光纤加速度矢量传感器的设计与实验[J].光电技术应用,2004,25(3):242~245.
    [31]罗洪,熊水东,胡永明等.三分量全保偏光纤加速度传感器的研究[J].中国激光,2005,32(10):1382~1386.
    [32]罗洪,陈儒辉,熊水东等.芯轴式干涉型保偏光纤加速度传感器研究[J].光电子激光,2004,15(6):675~678.
    [33]Chen C H, Zhang D L, Ding G L et al. Broadband Michelson fiber-opticaccelerometer [J]. Applied Optics,1999,38(4):628~630.
    [34]傅深泳,丁桂兰,陈才和等.干涉型全光纤加速度地震检波器[J].光电工程,2003,30(6):39~42.
    [35]丁桂兰,刘振富,陈才和等.三分量全光纤加速度地震检波器的设计[J].光电子激光,2002,13(1):50~52.
    [36]严志刚,丁桂兰,陈才和等.三分量全光纤加速度检波器及数字处理系统[J].光学学报,2003,23(12):1413~1417.
    [37]丁桂兰,刘振富,崔宇明等.顺变柱体型全光纤加速度检波器[J].光学学报,2002,22(3):340~343.
    [38]Pang M, Zhou H P, Zhang M. Analysis and Amelioration About theCross-Sensitivity of a Fiber-Optic Accelerometer Based on CompliantCylinder [J]. Journal of Lightwave Technology,2008,26(3):365~372.
    [39]邹琪琳,王利威,庞盟等.3维VSP光纤检波器井下地震采集系统[J].光子学报,2008,37(1):77~81.
    [40]曾楠,施纯峥,张敏等.一种可用于油藏监测的3分量光纤加速度传感器[J].光电子激光,2005,16(8):901~905.
    [41]Lin Q, Chen L H, Li S et al. A high-resolution fiber optic accelerometer basedon intracavity phase-generated carrier (PGC) modulation [J]. MeasurementScience and Technology,2011,22:015303.
    [42]林巧,李书,潘建彬等.高分辨率光纤加速度计[J].光学学报,2009,29(9):2374~2377.
    [43]林巧,陈柳华,李书等.基于光纤-镜面干涉腔的光纤加速度计[J].光学精密工程,2011,19(6):1179~1184.
    [44]Wang Y J, Xiao H, Zhang S W et al. Design of a fibre-optic discaccelerometer: theory and experiment [J]. Measurement Science andTechnology,2007,18:1763~1767.
    [45]Wang Y J, Li F, Xiao H et al. Unattended Ground Sensor System Based onFiber Optic Disk Accelerometer [C]. IEEE,2006, Fri2:33~36.
    [46]Peng F, Yang J, Li X L et al. In-fiber integrated accelerometer [J]. OpticsLetters,2011,36(11):2056~2058.
    [47]Hodgson C W, Digonnet M J F, Shaw H J. Large-scale interferometric fibersensor arrays with multiple optical amplifiers [J]. Optics Letters,1997,22(21):1651~1653.
    [48]Rao Y J, Feng S, Jiang Q et al. Ultra-long distance (300km) fiber Bragggrating sensor system using hybrid EDF and Raman amplification [C]. Proc.of SPIE,2009,7503:75031Q-1~75031Q-4.
    [49]Shimizu T, Nakajima K, Shiraki K et al. Evaluation methods and requirementsfor the stimulated Brillouin scattering threshold in a single-mode fiber [J].Optical Fiber Technology,2008,14:10~15.
    [50]Agrawal G P. Nonlinear Fiber Optics [M]. Beijing: Publishing House ofElectronics Industry,2002.
    [51]Boyd R W, Rzazewski K. Noise initiation of stimulated Brillouin scattering [J].Physical Review A,1990,42(9):5514~5521.
    [52]Nguyen-Vo N M, Pfeifer S J. A Model of Spontaneous Brillouin Scattering asthe Noise Source for Stimulated Scattering [J]. IEEE Journal of QuantumElectronics,1993,29(2):508~514.
    [53]Kovalev V I, Harrison R G. Observation of Inhomogeneous SpectralBroadening of Stimulated Brillouin Scattering in an Optical Fiber [J]. PhysicalReview Letters,2000,85(9):1879~1882.
    [54]Randoux S, Zemmouri. Comment on “Observation of Inhomogeneous SpectralBroadening of Stimulated Brillouin Scattering in an Optical Fiber”[J].Physical Review Letters,2002,88(2):029401.
    [55]Kovalev V I, Harrison R G. Physical Review Letters,2002,88(2):029402.
    [56]Fotiadi A A, Kiyan R, Deparis O et al. Statistical properties of stimulatedBrillouin scattering in single-mode optical fibers above threshold [J]. OpticsLetters,2002,27(2):83~85.
    [57]Kobyakov A, Darmanyan S A, Chowdhury D Q. Exact analytical treatment ofnoise initiation of SBS in the presence of loss [J]. Optics Communications,2006,260:46~49.
    [58]Jenkins R B, Sova R M, Joseph R I. Steady-State Noise Analysis ofSpontaneous and Stimulated Brillouin Scattering in Optical Fibers [J]. Journalof Lightwave Technology,2007,25(3):763~770.
    [59]Kovalev V I, Harrison R G. Threshold for stimulated Brillouin scattering inoptical fiber [J]. Optics Express,2007,15(26):17625~17630.
    [60]Kovalev V I, Harrison R G, Simonotto J D. Emergence and collapse ofcoherent periodic emission in stochastic stimulated Brillouin scattering in anoptical fiber [J]. Physical Review A,2008,78:043820.
    [61]Tartara L, Codemard C, Maran J N et al. Full modal analysis of the Brillouingain spectrum of an optical fiber [J]. Optics Communications,2009,282:2431~2436.
    [62]Tkach R W, Chraplyvy A R, Derosier R M. SPONTANEOUS BRILLOUINSCATTERING FOR SINGLE-MODE OPTICAL-FIBRECHARACTERISATION [J]. Electronics Letters,1986,22(19):1011~1013.
    [63]Shibata N, Waarts R G, Braun R P. Brillouin-gain spectra for single-modefibers having pure-silica, GeO2-doped, and P2O5-doped cores [J]. OpticsLetters,1987,12(4):269~271.
    [64]Nikles M, Thevenaz L, Robert P A. Brillouin Gain Spectrum Characterizationin Single-Mode Optical Fibers [J]. Journal of Lightwave Technology,1997,15(10):1842~1851.
    [65]Fry E, Katz J, Liu D H et al. Temperature dependence of the Brillouinlinewidth in water [J]. Journal of Modern Optics,2002,49(3):411~418.
    [66]Yeniay A, Delavaux J M, Toulouse J. Spontaneous and Stimulated BrillouinScattering Gain Spectra in Optical Fibers [J]. Journal of LightwaveTechnology,2002,20(8):1425~1432.
    [67]Villafranca A, Lazaro J A. Stimulated Brillouin scattering gain profilecharacterization by interaction between two narrow-linewidth optical sources[J]. Optics Express,2005,13(19):7336~7341.
    [68]Zou W W, He Z Y, Hotate K. Analysis on the influence of intrinsic thermalstress on Brillouin gain spectra in optical fibers [C]. Proc. of SPIE,2006,6371:637104.
    [69]Kovalev V I, Harrison R G. Means for easy and accurate measurement of thestimulated Brillouin scattering gain coefficient in optical fiber [J]. OpticsLetters,2008,33(21):2434~2436.
    [70]Lanticq V, Jiang S F, Gabet R et al. Self-referenced and single-ended methodto measure Brillouin gain in monomode optical fibers [J]. Optics Letters,2009,34(7):1018~1020.
    [71]Lee J H, Song K Y, Yoon H J et al. Brillouin gain-coefficient measurement forbismuth-oxide-based photonic crystal fiber under significant beam reflection atsplicing points [J]. Optics Letters,2009,34(17):2670~2672.
    [72]Dragic P D, Ward B G. Accurate Modeling of the Intrinsic BrillouinLinewidth via Finite-Element Analysis [J]. IEEE Photonics TechnologyLetters,2010,22(22):1698~1700.
    [73]Mizuno Y, Nakamura K. Experimental study of Brillouin scattering inperfluorinated polymer optical fiber at telecommunication wavelength [J].Applied Physics Letters,2010,97:021103.
    [74]Galindez C A, Ullan A, Madruga F J et al. BRILLOUIN GAIN SPECTRUMTAILORING TECHNIQUE BY USING FIBER CONCATENATION ANDSTRAIN FOR FIBER DEVICES [J]. Microwave and Optical TechnologyLetters,2010,52(4):787~790.
    [75]Mizuno Y, Ishigure T, Nakamura K. Brillouin Gain Spectrum Characterizationin Perfluorinated Graded-Index Polymer Optical Fiber With62.5-m CoreDiameter [J]. IEEE Photonics Technology Letters,2011,23(24):1863~1865.
    [76]PreuBler S, Wiatrek A, Jamshidi K et al. Brillouin scattering gain bandwidthreduction down to3.4MHz [J]. Optics Express,2011,19(9):8565~8570.
    [77]Wiatrek A, PreuBler S, Jamshidi K et al. Frequency domain aperture for thegain bandwidth reduction of stimulated Brillouin scattering [J]. Optics Letters,2012,37(5):930~932.
    [78]Mamdem Y S, Burov E, de Montmorillon L A et al. Importance of residualstresses in the Brillouin gain spectrum of single mode optical fibers [J]. OpticsExpress,2012,20(2):1790~1797.
    [79]Aoki Y, Tajima K, Mito I. Input Power Limits of Single-Mode Optical Fibersdue to Stimulated Brillouin Scattering in Optical Communication Systems [J].Journal of Lightwave Technology,1988,6(5):710~719.
    [80]Lichtman E, Waarts R G, Friesem A A. Stimulated Brillouin ScatteringExcited by a Modulated Pump Wave in Single-Mode Fibers [J]. Journal ofLightwave Technology,1989,7(1):171~174.
    [81]Dammig M, Zinner G, Mitschke F et al. Stimulated Brillouin scattering infibers with and without external feedback [J]. Physical Review A,1993,48(4):3301~3309.
    [82]Kim H S, Kim S H, Ko D K et al. Threshold reduction of stimulated Brillouinscattering by the enhanced Stokes noise initiation [J]. Applied Physics Letters,1999,74:1358~1360.
    [83]Russell T H, Roh W B. Threshold of second-order stimulated Brillouinscattering in optical fiber [J]. Journal of Optical Society of America B,2002,19(10):2341~2345.
    [84]Mocofanescu A, Wang L, Jain R et al. SBS threshold for single mode andmultimode GRIN fibers in an all fiber configuration [J]. Optics Express,2005,13(6):2019~2024.
    [85]沈一春,宋牟平,章献民等.单模光纤中受激布里渊散射阈值研究[J].中国激光,2005,32(4):497~500.
    [86]吕捷,于晋龙,Hsu H等.光纤通信中声子损耗对受激布里渊散射的影响[J].光电子激光,2005,16(11):1321~1324.
    [87]Li M J, Chen X, Wang J et al. Al/Ge co-doped large mode area fiber with highSBS threshold [J]. Optics Express,2007,15(13):8290~8299.
    [88]Kovalev V I, Harrison R G. Abnormally low threshold gain of stimulatedBrillouin scattering in long optical fiber with feedback [J]. Optics Express,2008,16(16):12272~12277.
    [89]Ferrario M, Marazzi L, Boffi P et al. Impact of Rayleigh backscattering onStimulated Brillouin Scattering threshold evaluation for10Gb/s NRZ-OOKsignals [J]. Optics Express,2009,17(20):18110~18115.
    [90]Massey S M, Russell T H. The Effect of Phase Conjugation Fidelity onStimulated Brillouin Scattering Threshold [J]. IEEE Journal of Selected Topicsin Quantum Electronics,2009,15(2):399~405.
    [91]Shi J, Chen X, Ouyang M et al. Theoretical investigation on the thresholdvalue of stimulated Brillouin scattering in terms of laser intensity [J]. AppliedPhysics B,2009,95:657~660.
    [92]Ajiya M, Mahdi M A, Al-Mansoori M H et al. Reduction of stimulatedBrillouin scattering threshold through pump recycling technique [J]. LaserPhysics Letters,2009,6(7):535~538.
    [93]Gao W, Lu Z W, Wang S Y et al. Measurement of stimulated Brillouinscattering threshold by the optical limiting of pump output energy [J]. Laserand Particle Beams,2010,28:179~184.
    [94]Harrison R G, Uppal J S, Johnstone A et al. Evidence of Chaotic StimulatedBrillouin Scattering in Optical Fibers [J]. Physical Review Letters,1990,65(2):167~170.
    [95]Gaeta A L, Boyd R W. Stochastic dynamics of stimulated Brillouin scatteringin an optical fiber [J]. Physical Review A,1991,44(5):3205~3209.
    [96]Horowitz M, Chraplyvy A R, Tkach R W et al. Broadband transmittedintensity noise induced by Stokes and anti-Stokes Brillouin scattering insingle-mode fibers [J]. IEEE Photonics Technology Letters,1997,9(1):124~126.
    [97]Peral E, Yariv A. Degradation of Modulation and Noise Characteristics ofSemiconductor Lasers After Propagation in Optical Fiber Due to a Phase ShiftInduced by Stimulated Brillouin Scattering [J]. Journal of QuantumElectronics,1999,35(8):1185~1195.
    [98]Zhang J Y. Intensity noise induced by stimulated Brillouin scattering in opticalfiber transmission systems [D]. Evanston: ProQuest Information and LearningCompany,2005.
    [99]Cotter D. SUPPRESSION OF STIMULATED BRILLOUIIM SCATTERINGDURING TRANSMISSION OF HIGH-POWER NARROWBAND LASERLIGHT IN MONOMODE FIBRE [J]. Electronics Letters,1982,18(15):638~640.
    [100] Yoshizawa N, Imai T. Stimulated Brillouin Scattering Suppression byMeans of Applying Strain Distribution to Fiber with Cabling [J]. Journal ofLightwave Technology,1993,11(10):1518.
    [101] de Oliveira C A S, Jen C K, Shang A et al. Stimulated Brillouin scatteringin cascaded fibers of different Brillouin frequency shifts [J]. OSACommunications,1993.
    [102] Willems F W, Muys W, Leong J S. Simultaneous Suppression ofStimulated Brillouin Scattering and Interferometric Noise in ExternallyModulated Lightwave AM-SCM Systems [J]. IEEE Photonics TechnologyLetters,1994,6(12):1476~1478.
    [103] Shiraki K, Ohashi M, Tateda M. Suppression of stimulated Brillouinscattering in a fibre by changing the core radius [J]. Electronics Letters,1995,31(8):668~670.
    [104]杨建良,查开德.光纤AM-CATV系统附加相位调制法的研究[J].电视技术,1999,990511.
    [105]杨建良,查开德.光纤AM-CATV系统外调制传输系统中双频调相抑制SBS的理论分析[J].中国激光,2000,27(8):724~728.
    [106]杨建良,查开德,涂涛.外调制光纤CATV中SBS与MPI的激光器高频微扰抑制理论分析[J].光子学报,2000,29(1):53~56.
    [107] Hansryd J, Dross F, Westlund M et al. Increase of the SBS Threshold in aShort Highly Nonlinear Fiber by Applying a Temperature Distribution [J].Journal of Lightwave Technology,2001,19(11):1691.
    [108] Kobyakov A, Kumar S, Chowdhury D Q et al. Design concept for opticalfibers with enhanced SBS threshold [J]. Optics Express,2005,13(14):5338~5346.
    [109] Chavez Boggio J M, Marconi J D, Fragnito H L. Experimental andNumerical Investigation of the SBS-Threshold Increase in an Optical Fiber byApplying Strain Distributions [J]. Journal of Lightwave Technology,2005,23(11):3808~3814.
    [110]李长春.色散补偿对SBS效应抑制作用的研究.光学与光电技术,2005,3(5):9~11.
    [111] Ward B, Spring J. Finite element analysis of Brillouin gain in SBSsuppressing optical fibers with non-uniform acoustic velocity profiles [J].Optics Express,2009,17(18):15685~15699.
    [112] Mitchell P, Janssen A, Luo J K. High performance laser linewidthbroadening for stimulated Brillouin suppression with zero parasitic amplitudemodulation [J]. Journal of Applied Physics,2009,105:093104.
    [113] Petit S, Kurosu T, Takahashi M et al. Continuously tunable wavelengthconverter by four-wave mixing in SBS suppressed highly nonlinear fibre [J].Electronics Letters,2009,45(21).
    [114] Liu Y F, Lu Z W, Dong Y K et al. Research on stimulated Brillouinscattering suppression based on multi-frequency phase modulation [J]. ChineseOptics Letters,2009,7(1):29~31.
    [115] Lu B, Gong T R, Chen M et al. Suppression of stimulated Brillouinscattering with phase modulator in soliton pulse compression [J]. ChineseOptics Letters,2009,7(7):656~658.
    [116] Waarts R G, Braun R P. CROSSTALK DUE TO STIMULATEDBRILLOUIN SCATTERING IN MONOMODE FIBRE [J]. ElectronicsLetters,1985,21(23):1114~1115.
    [117] Sugie T. Transmission Limitations of CPFSK Coherent LightwaveSystems Due to Stimulated Brillouin Scattering in Optical Fiber [J]. Journal ofLightwave Technology,1991,9(9):1145~1155.
    [118] Fishman D A, Nagel J A. Degradations Due to Stimulated BrillouinScattering in Multigigabit Intensity-Modulated Fiber-Optic Systems [J].Journal of Lightwave Technology,1993,11(11):1721~1728.
    [119] van Deventer M O, van der Tol J G M, Boot A J. Power Penalties Due toBrillouin and Rayleigh Scattering in a Bidirectional Coherent TransmissionSystem [J]. IEEE Photonics Technology Letters,1994,6(2):291~294.
    [120] Djupsj backa A, Jacobsen G, Tromborg B. Dynamic Stimulated BrillouinScattering Analysis [J]. Journal of Lightwave Technology,2000,18(3):416~424.
    [121] Hill K O, Johnson D C, Kawasaki S et al. cw three-wave mixing insingle-mode optical fibers [J]. Journal of Applied Physics,1978,49(10):5098~5106.
    [122] Shibata N, Braun R P, Waarts R G. Phase-Mismatch Dependence ofEfficiency of Wave Generation Through Four-Wave Mixing in a Single-ModeOptical Fiber [J]. Journal of Quantum Electronics,1987, QE-23(7):1205~1210.
    [123] Shibata N, Azuma Y, Tateda M et al. EXPERIMENTAL VERIFICATIONOF EFFICIENCY OF WAVE GENERATION THROUGH FOUR-WAVEMIXING IN LOW-LOSS DISPERSION-SHIFTED SINGLE-MODEOPTICAL FIBRE [J]. Electronics Letters,1988,24(24):1528~1529.
    [124] Inoue K. Polarization Effect on Four-Wave Mixing Efficiency in aSingle-Mode Fiber [J]. Journal of Quantum Electronics,1992,28(4):883~894.
    [125] Inoue K. Experimental Study on Channel Crosstalk Due to Fiber Four-Wave Mixing Around the Zero-Dispersion Wavelength [J]. Journal ofLightwave Technology,1994,12(6):1023~1028.
    [126] Onaka H, Otsuka K, Miyata H et al. Measuring the LongitudinalDistribution of Four-Wave Mixing Efficiency in Dispersion-Shifted Fibers [J].IEEE Photonics Technology Letters,1994,6(12):1454~1456.
    [127] Inoue K, Toba H. Fiber Four-Wave Mixing in Multi-Amplifier Systemswith Nonuniform Chromatic Dispersion [J]. Journal of Lightwave Technology,1995,13(1):88~93.
    [128] Hedekvist P O, Andrekson P A, Bertilsson K. Impact of Spectral InverterFiber Length on Four-Wave Mixing Efficiency and Signal Distortion [J].Journal of Lightwave Technology,1995,13(9):1815~1819.
    [129] Darwish A M, Ippen E P, Le H Q et al. Optimization of fourwave mixingconversion efficiency in the presence of nonlinear loss [J]. Applied PhysicsLetters,1996,69:737~739.
    [130]宋健,范崇澄.波分复用系统中四波混频引入光信噪比的恶化及其抑制[J].通信学报,1996,17(1):120~125.
    [131] Chavez Boggio J M, Grosz D F, Guimaraes A et al. SIGNALAMPLIFICATION BY FOUR-WAVE MIXING IN LOW-DISPERSIONOPTICAL FIBERS [J]. Microwave and Optical Technology Letters,1999,23(5):318~321.
    [132] Tsuji K, Yokota H, Saruwatari M. Influence of Dispersion Fluctuations onFour-Wave Mixing Efficiency in Optical Fibers [J]. Electronics andCommunications in Japan,2002,85(8):1075~1082.
    [133] Kawanami K, Ishizawa Y, Imai M et al. Polarization Dependence ofFour-Wave Mixing in Dispersion-Shifted Fibers and Its Application toNonlinear Refractive Index Measurements Using Maximum Mixing Efficiency[J]. Electronics and Communications in Japan,2004,87(3):130~138.
    [134]刘艳,李康,孔繁敏等.四波混频功率估计的数值仿真[J].山东大学学报(理学版),2004,39(1):79~83.
    [135] Ono H, Yamada M. Four-Wave Mixing Crosstalk Measurement in aHighly Doped L-Band Erbium-Doped Fiber Amplifier by Using Half of theSignal Channels [J]. Journal of Lightwave Technology,2008,26(14):2175~2183.
    [136] Kaur G, Singh M L. Effect of four-wave mixing in WDM optical fibresystems [J]. Optik,2009,120:268~273.
    [137] Jr. S. A C, Marconi J D, Hernandez-Figueroa H E et al. Broadbandcascaded four-wave mixing by using a three-pump technique in optical fibers[J]. Optics Communications,2009,282:4436~4439.
    [138] Wang L, Ban W Z, Song Y et al. Effect of FWM Output Power Induced byPhase Modulation in Optical Fiber Communication [C]. PIERS Proceedings,2009,1874~1878.
    [139] Inoue K. Phase-mismatching characteristic of four-wave mixing in fiberlines with multistage optical amplifiers [J]. Optics Letters,1992,17(11):801~803.
    [140] Inoue K. Four-Wave Mixing in an Optical Fiber in the Zero-DispersionWavelength Region [J]. Journal of Lightwave Technology,1992,10(11):1553~1561.
    [141] Yamamoto T, Nakazawa M. Highly Efficient Four-Wave Mixing in anOptical Fiber with Intensity Dependent Phase Matching [J]. IEEE PhotonicsTechnology Letters,1997,9(3):327~329.
    [142] Song S X, Allen C T, Demarest K R et al. Intensity-DependentPhase-Matching Effects on Four-Wave Mixing in Optical Fibers [J]. Journal ofLightwave Technology,1999,17(11):2285~2290.
    [143] Schroder J, Boucon A, Coen S et al. Interplay of four-wave mixingprocesses with a mixed coherent-incoherent pump [J]. Optics Express,2010,18(25):25833~25838.
    [144] Maeda M W, Sessa W B, Way W I et al. The Effect of Four-Wave Mixingin Fibers on Optical Frequency-Division Multiplexed Systems [J]. Journal ofLightwave Technology,1990,8(9):1402~1408.
    [145] Inoue K, Nakanishi K, Oda K et al. Crosstalk and Power Penalty Due toFiber Four-Wave Mixing in Multichannel Transmissions [J]. Journal ofLightwave Technology,1994,12(8):1423~1439.
    [146] Yu A, OMahony M J. Effect of four-wave mixing on amplifiedmultiwavelength transmission systems [J]. Electronics Letters,1994,30(11):876~878.
    [147] Zeiler W, Pasquale F D, Bayvel P et al. Modeling of Four-Wave Mixingand Gain Peaking in Amplified WDM Optical Communication Systems andNetworks [J]. Journal of Lightwave Technology,1996,14(9):1933~1942.
    [148] Hamazumi Y, Koga M, Sato K. Beat induced crosstalk reduction againstwavelength difference between signal and four-wave mixing lights in unequalchannel spacing WDM transmission [J]. IEEE Photonics Technology Letters,1996,8(5):718~720.
    [149] Taga H. Long Distance Transmission Experiments Using the WDMTechnology [J]. Journal of Lightwave Technology,1996,14(6):1287~1298.
    [150] Eiselt M. Limits on WDM Systems Due to Four-Wave Mixing: AStatistical Approach [J]. Journal of Lightwave Technology,1999,17(11):2261~2267.
    [151] Wegener L G L, Povinelli M L, Green A G et al. The effect of propagationnonlinearities on the information capacity of WDM optical fiber systems:cross-phase modulation and four-wave mixing [J]. Physica D,2004,189:81~99.
    [152] Akhtar A, Pavel L, Kumar S. Modeling and Analysis of the Contributionof Channel Walk-Off to Nondegenerate and Degenerate Four-Wave-MixingNoise in RZ-OOK Optical Transmission Systems [J]. Journal of LightwaveTechnology,2006,24(11):4269~4285.
    [153] Singh S P, Kar S, Jain V K. Performance of All-optical WDM Network inPresence of Four-wave Mixing, Optical Amplifier Noise, and WavelengthConverter Noise [J]. Fiber and Integrated Optics,2007,26:79~97.
    [154] Gao Y, Zhang F, Chen Z Y et al. Statistics of Intra-channel Four-WaveMixing induced phase noise in coherent RZ-DQPSK transmission systems [C].Proc. of SPIE,2008,7136:71362R.
    [155] Yang D, Kumar S. Intra-Channel Four-Wave Mixing Impairments inDispersion-Managed Coherent Fiber-Optic Systems Based on BinaryPhase-Shift Keying [J]. Journal of Lightwave Technology,2009,27(14):2916~2923.
    [156]杜建新.DWDM系统非简并四波混频串扰的分析[J].物理学报,2009,58(2):1046~1052.
    [157] Inoue K. Fiber Four-Wave Mixing Suppression Using Two IncoherentPolarized Lights [J]. Journal of Lightwave Technology,1993,11(12):2116~2122.
    [158] Forghieri F, Tkach R W, Chraplyvy A R et al. Reduction of Four-WaveMixing Crosstalk in WDM Systems Using Unequally Spaced Channels [J].IEEE Photonics Technology Letters,1994,6(6):754~756.
    [159] Forghieri F, Tkach R W, Chraplyvy A R. WDM Systems with UnequallySpaced Channels [J]. Journal of Lightwave Technology,1995,13(5):889~897.
    [160] Chang K D, Yang G C, Kwong W C. Determination of FWM Products inUnequal-Spaced-Channel WDM Lightwave Systems [J]. Journal of LightwaveTechnology,2000,18(12):2113~2122.
    [161] Bogoni A, Poti L. Effective Channel Allocation to Reduce Inband FWMCrosstalk in DWDM Transmission Systems [J]. Journal of Selected Topics inQuantum Electronics,2004,10(2):387~392.
    [162] Lee J S, Lee D H, Park C S. Periodic Allocation of a Set of UnequallySpaced Channels for WDM Systems Adopting Dispersion-Shifted Fibers [J].IEEE Photonics Technology Letters,1998,10(6):825~827.
    [163] Nakajima K, Ohashi M, Shiraki K et al. Four-Wave Mixing SuppressionEffect of Dispersion Distributed Fibers [J]. Journal of Lightwave Technology,1999,17(10):1814~1822.
    [164] Thing V L L, Shum P, Rao M K. Bandwidth-Efficient WDM ChannelAllocation for Four-Wave Mixing-Effect Minimization [J]. Transactions onCommunications,2004,52(12):2184~2189.
    [165] Ito Y, Onishi J, Kojima S et al. Influence of modulation formats on FWMnoises in FDM optical fiber transmission systems [J]. Optics Communications,2008,281:4515~4522.
    [166] Ito Y, Tamo T, Numai T. Reduction of four-wave mixing noises in FDMoptical fiber transmission systems with quaternary bit-phase arrangedreturn-to-zero [J]. Optics Communications,2009,282:3989~3994.
    [167] Jia N, Li T J, Zhong K P et al. Suppression intra-channel four-wave mixingby strong dispersion management in160Gb/s OTDM RZ100kmtransmission [J]. Chinese Science Bulletin,2011,56(25):2744~2747.
    [168] Foaleng S M, Thevenaz L. Impact of Raman scattering and modulationinstability on the performances of Brillouin sensors [C]. Proc. of SPIE,2011,7753:77539V.
    [169] Matera F, Mecozzi A, Romagnoli M et al. Sideband instability induced byperiodic power variation in long-distance fiber links [J]. Optics Letters,1993,18(18):1499~1501.
    [170] Yu M, Agrawal G P, McKinstrie C J. Pump-wave effects on thepropagation of noisy signals in nonlinear dispersive media [J]. Journal ofOptical Society of America B,1995,12(6):1126~1132.
    [171] Murdoch S G, Thomson M D, Leonhardt R et al. Quasi-phase-matchedmodulation instability in birefringent fibers [J]. Optics Letters,1997,22(10):682~684.
    [172] Seve E, Millot G, Trillo S. Strong four-photon conversion regime ofcross-phase-modulation-induced modulational instability [J]. Physical ReviewE,2000,61(3):3139~3150.
    [173] Simaeys G V, Emplit P, Haelterman M. Experimental study of thereversible behavior of modulational instability in optical fibers [J]. Journal ofOptical Society of America B,2002,19(3):477~486.
    [174] Pitois S, Millot G. Experimental observation of a new modulationalinstability spectral window induced by fourth-order dispersion in a normallydispersive single-mode optical fiber [J]. Optics Communications,2003,226:415~422.
    [175] Amans D, Brainis E, Massar S. Higher order harmonics of modulationalinstability [J]. Physical Review E,2005,72:066617.
    [176] Dinda P T, Nagbireng C M, Porsezian K et al. Modulational instability inoptical fibers with arbitrary higher-order dispersion and delayed Ramanresponse [J]. Optics Communications,2006,266:142~150.
    [177] Mussot A, Kudlinski A, Louvergneaux E et al. Impact of the third-orderdispersion on the modulation instability gain of pulsed signals [J]. OpticsLetters,2010,35(8):1194~1196.
    [178] Betti S, Duca E, Giaconi M et al. MODULATION INSTABILITY ANDCONSERVATION OF ENERGY: TOWARD A NEW MODEL [J].Microwave and Optical Technology Letters,2011,53(10):2411~2414.
    [179] Bejot P, Kibler B, Hertz E et al. General approach to spatiotemporalmodulational instability processes [J]. Physical Review A,2011,83:013830.
    [180] Li J H, Chiang K S, Chow K W. Modulation instabilities in two-coreoptical fibers [J]. Journal of Optical Society of America B,2011,28(7):1693~1701.
    [181] Sarma A K, Saha M. Modulational instability of coupled nonlinear fieldequations for pulse propagation in a negative index material embedded into aKerr medium [J]. Journal of Optical Society of America B,2011,28(4):944~948.
    [182] Dudley J M, Genty G, Dias F et al. Modulation instability, AkhmedievBreathers and continuous wave supercontinuum generation [J]. Optics Express,2009,17(24):21497~21508.
    [183] Kibler B, Fatome J, Finot C et al. The Peregrine soliton in nonlinear fibreoptics [J]. Nature Physics,2010.
    [184]钟先琼,向安平.饱和非线性下零色散附近的交叉相位调制非稳[J].光子学报,2009,38(6):1380~1385.
    [185]钟先琼,向安平.高阶色散和饱和非线性下的交叉相位调制不稳定性[J].中国激光,2009,36(2):391~397.
    [186]胡涛平,颜森林,罗青.零色散附近的交叉相位调制不稳定性分析[J].光子学报,2006,35(9):1367~1373.
    [187]胡涛平,罗青,颜森林等.五阶非线性下零色散附近的调制不稳定性[J].光子学报,2008,37(7):1325~1328.
    [188]任志君,王晶,杨爱玲等.五次非线性对光纤反常色散区调制不稳定性的影响[J].中国激光,2004,31(5):595~598.
    [189]任志君,王辉,金洪震等.具有高阶色散项的交叉相位调制不稳定性分析[J].光学学报,2005,25(2):165~168.
    [190]杨慧敏,朱宏娜.光纤中的交叉相位调制不稳定性研究[J].光通信研究,2008,145:29~32.
    [191]张书敏,徐文成.零色散附近的调制不稳定性[J].半导体光电,2001,22(6):390~393.
    [192]黄菁,赖声礼.调制不稳定性对波分复用系统的影响[J].光电子激光,2002,13(5):483~486.
    [193] Xu Z Y, Li L, Li Z H et al. Modulation instability and solitons on a cwbackground in an optical fiber with higher-order effects [J]. Physical Review E,2003,67:026603.
    [194] Hermansson B, Yevick D. MODULATIONAL INSTABILITY EFFECTSIN PSK MODULATED COHERENT FIBER SYSTEMS AND THEIRREDUCTION BY OPTICAL LOSS [J]. Optics Communications,1984,52(2):99~102.
    [195] Christensen N, Leonhardt R, Harvey J D. Noise characteristics ofcross-phase modulation instability light [J]. Optics Communications,1993,101:205~212.
    [196] Miyamoto Y, Kataoka T, Sano A et al.10Gbit/s,280km nonrepeateredtransmission with suppression of modulation instability [J]. Electronics Letters,1994,30(10):797~798.
    [197] Saunders R A, Patel B L, Garthe D. System Penalty at10Gb/s Due toModulation Instability and Its Reduction Using Dispersion Compensation [J].IEEE Photonics Technology Letters,1997,9(5):699~701.
    [198] Hui R Q, O’Sullivan M, Robinson A et al. Modulation Instability and ItsImpact in Multispan Optical Amplified IMDD Systems: Theory andExperiments [J]. Journal of Lightwave Technology,1997,15(7):1071~1082.
    [199] Dinda P T, Millot G, Louis P. Simultaneous achievement of suppression ofmodulational instability and reduction of stimulated Raman scattering inoptical fibers by orthogonal polarization pumping [J]. Journal of OpticalSociety of America B,2000,17(10):1730~1739.
    [200] Gordon A, Fischer B. Inhibition of modulation instability in lasers by noise[J]. Optics Letters,2003,28(15):1326~1328.
    [201] Kumar A, Labruyere A, Dinda P T. Modulational instability in fibersystems with periodic loss compensation and dispersion management [J].Optics Communications,2003,219:221~232.
    [202] Alahbabi M N, Cho Y T, Newson T P et al. Influence of modulationinstability on distributed optical fiber sensors based on spontaneous Brillouinscattering [J]. Journal of Optical Society of America B,2004,21(6):1156~1160.
    [203] Alasia D, Herraez M G, Abrardi L et al. Detrimental effect of modulationinstability on distributed optical fibre sensors using stimulated Brillouinscattering [C]. Proc. of SPIE,2005,5855:587~590.
    [204] Tang X F, Wu Z Y. Suppressing Modulation Instability in Midway OpticalPhase Conjugation Systems by Using Dispersion Compensation [J]. IEEEPhotonics Technology Letters,2005,17(4):926~928.
    [205] Hickmann J M, Cavalcanti S B, Borges N M et al. Modulational instabilityin semiconductor-doped glass fibers with saturable nonlinearity [J]. OpticsLetters,1993,18(3):182~184.
    [206] Sauter A, Pitois S, Millot G et al. Incoherent modulation instability ininstantaneous nonlinear Kerr media [J]. Optics Letters,2005,30(16):2143~2145.
    [207] Tehranchi A, Granpayeh N. Induced modulational instability in EDFAs inthe presence of higher-order nonlinear and dispersive effects [J]. Opt QuantElectron,2007,39:651~658.
    [208] Labruyere A, Ambomo S, Ngabireng C M et al. Suppression of sidebandfrequency shifts in the modulational instability spectra of wave propagation inoptical fiber systems [J]. Optics Letters,2007,32(10):1287~1289.
    [209] Hammani K, Finot C, Millot G. Emergence of extreme events infiber-based parametric processes driven by a partially incoherent pump wave[J]. Optics Letters,2009,34(8):1138~1140.
    [210] Turitsyn S K, Rubenchik A M, Fedoruk M P. On the theory of themodulation instability in optical fiber amplifiers [J]. Optics Letters,2010,35(16):2684~2686.
    [211] Rubenchik A M, Turitsyn S K, Fedoruk M P. Modulation instability inhigh power laser amplifiers [J]. Optics Express,2010,18(2):1380~1388.
    [212] Babin S A, Ismagulov A E, Podivilov E V et al. Modulation Instability atPropagation of Narrowband100_ns Pulses in Optical Fibers of Various Types[J]. Laser Physics,2010,20(2):334~340.
    [213] Xiang Y J, Dai X Y, Wen S C et al. Modulation instability inmetamaterials with saturable nonlinearity [J]. Journal of Optical Society ofAmerica B,2011,28(4):908~916.
    [214] Droques M, Barviau B, Kudlinski A et al. Symmetry-breaking dynamics ofthe modulational instability spectrum [J]. Optics Letters,2011,36(8):1359~1361.
    [215] Foaleng S M, Thevenaz L. Impact of Raman scattering and modulationinstability on the performances of Brillouin sensors [C]. Proc. of SPIE,2011,7753:77539V.
    [216] Kumar S, Yang D. Second-Order Theory for Self-Phase Modulation andCross-Phase Modulation in Optical Fibers [J]. Journal of LightwaveTechnology,2005,23(6):2073~2080.
    [217] Pendock G J, Shieh W. Fast Simulation of WDM Transmission in Fiber [J].IEEE Photonics Technology Letters,2006,18(15):1639~1641.
    [218] Costa N M S, Cartaxo A V T. Influence of the Channel Number on theOptimal Dispersion Map Due to XPM in WDM Links [J]. Journal ofLightwave Technology,2008,26(22):3640~3649.
    [219]张欢,李蔚,梅君瑶.动态光网络中交叉相位调制和放大自发辐射噪声积累效应的传输代价[J].中国激光,2009,36(5):1111~1117.
    [220]朱莉娟.自相位调制的频谱展宽研究[J].光通信研究,2009,155:30~32.
    [221] Sheetal A, Sharma A K, Kaler R S. Impact of optical modulation formatson SPM-limited fiber transmission in10and40Gb/s optimumdispersion-managed lightwave systems [J]. Optik,2010,121:246~252.
    [222] Foaleng S M, Rodriguez-Barrios F, Martin-Lopez S et al. Detrimentaleffect of self-phase modulation on the performance of Brillouin distributedfiber sensors [J]. Optics Letters,2011,36(2):97~99.
    [223] Kikuchi K, Lorattanasane C. Design of Highly Efficient Four-WaveMixing Devices Using Optical Fibers [J]. IEEE Photonics Technology Letters,1994,6(8):992~994.
    [224] Tanemura T, Goh C S, Kikuchi K et al. Highly Efficient ArbitraryWavelength Conversion Within Entire C-Band Based on Nondegenerate FiberFour-Wave Mixing [J]. IEEE Photonics Technology Letters,2004,16(2):551~553.
    [225] Ajiya M, Mahdi M A, Al-Mansoori M H et al. Reduction of stimulatedBrillouin scattering threshold through pump recycling technique [J]. LaserPhysics Letters,2009,6(7):535~538.
    [226] Han S H, Park C S, Hann S et al. MILLIMETER-WAVE CARRIERGENERATION BY OPTICAL FREQUENCY MULTIPLICATION USINGSTIMULATED BRILLOUIN SCATTERING AND FOUR-WAVE MIXING[J]. Microwave and Optical Technology Letters,2011,53(9):2185~2189.
    [227] Yeh C H, Chow C W, Wu Y F et al. Stable MultiwavelengthSemiconductor Laser Using FWM and SBS-Assisted Filter [J]. IEEEPhotonics Technology Letters,2011,23(21):1627~1629.
    [228] Petit S, Kurosu T, Takahashi M et al. Low Penalty Uniformly TunableWavelength Conversion Without Spectral Inversion Over30nm UsingSBS-Suppressed Low-Dispersion-Slope Highly Nonlinear Fibers [J]. IEEEPhotonics Technology Letters,2011,23(9):546~548.
    [229] Tang J G, Sun J Q, Chen T et al. A stable optical comb withdouble-Brillouin-frequency spacing assisted by multiple four-wave mixingprocesses [J]. Optical Fiber Technology,2011,17:608~611.
    [230] Grosz D F, Fragnito H L. POWER MODULATION DUE TOMODULATION INSTABILITY EFFECTS IN WDM OPTICALCOMMUNICATION SYSTEMS [J]. Microwave and Optical TechnologyLetters,1998,18(4):275~278.
    [231] Grosz D F, Fragnito H L. PULSE DISTORTION AND INDUCEDPENALTIES DUE TO MODULATION INSTABILITY IN WDM SYSTEMS[J]. Microwave and Optical Technology Letters,1998,19(2):149~152.
    [232] Grosz D F, Mazzali C, Celaschi S et al. Modulation Instability InducedResonant Four-Wave Mixing in WDM Systems [J]. IEEE PhotonicsTechnology Letters,1999,11(3):379~381.
    [233] Jisha C P, Kuriakose V C, Porsezian K et al. Modulational instability ofoptical beams in photorefractive media due to two-wave or parametricfour-wave mixing effects [J]. Journal of Optics A,2008,10:115101.
    [234] Liu X M. Enhanced Efficiency of Multiple Four-Wave Mixing Induced byModulation Instability in Low-Birefringence Fibers [J]. Journal of LightwaveTechnology,2011,29(2):179~185.
    [235] Armaroli A, Trillo S. Collective modulation instability of multiplefour-wave mixing [J]. Optics Letters,2011,36(11):1999~2001.
    [236] Zhu Y H, Cabrera-Granado E, Calderon O G et al. Competition betweenthe modulation instability and stimulated Brillouin scattering in a broadbandslow light device [J]. Journal of Optics,2010,12:104019.
    [237] Chraplyvy A R. Limitations on Lightwave Communications Imposed byOptical-Fiber Nonlinearities [J]. Journal of Lightwave Technology,1990,8(10):1548~1557.
    [238] Lichtman E. BIT RATE-DISTANCE PRODUCT LIMITATIONS DUETO FIBRE NON LINEAR Ill ES IN MULTICHANNEL COHERENTOPTICAL COMMUNICATION SYSTEMS [J]. Electronics Letters,1991,27(9):757~759.
    [239] Gordon J P, Mollenauer L F. Effects of Fiber Nonlinearities and AmplifierSpacing on Ultra-Long Distance Transmission [J]. Journal of LightwaveTechnology,1991,9(2):170~173.
    [240] Marcuse D, Chraplyvy A R, Tkach R W. Effect of Fiber Nonlinearity onLong-Distance Transmission [J]. Journal of Lightwave Technology,1991,9(1):121~128.
    [241] Zou X Y, Hayee M I, Hwang S M et al. Limitations in10Gb/s WDMOptical-Fiber Transmission When Using a Variety of Fiber types to ManageDispersion and Nonlinearities [J]. Journal of Lightwave Technology,1996,14(6):1144~1152.
    [242] Lee E H, Kim K H, Lee H K. Nonlinear effects in optical fiber:Advantages and disadvantages for high capacity all-optical communicationapplication [J]. Optical and Quantum Electronics,2002,34:1167~1174.
    [243]张兴建.SPM/XPM/FWM对高速光传输的影响与对策探讨[J].光通信研究,2002,109:37~40.
    [244] Xu B. Study of fiber nonlinear effects on fiber optic communicationsystems [D]. ProQuest Information and Learning Company,2003.
    [245]孙学明,张慧剑,左萌等.偏振模色散及非线性效应对40Gbit/s密集波分复用系统的影响[J].光学学报,2004,24(10):1363~1369.
    [246] Djordjevic I B, Vasic B, Ivkovic M et al. Achievable Information Rates forHigh-Speed Long-Haul Optical Transmission [J]. Journal of LightwaveTechnology,2005,23(11):3755~3763.
    [247]廖同庆,吴先良,惠荣庆.SCM/WDM光纤通信系统中光纤的非线性效应[J].中国科学技术大学学报,2005,35(5):711~715.
    [248] Bang S W. Analysis of optical communication systems employing densewavelength division multiplexing in the presence of fiber nonlinearities [D].ProQuest Information and Learning Company,2006.
    [249]刘鹏.WDM光纤通信系统中非线性影响及其仿真研究[D].2008.
    [250] Li Y, Li W, Han Q S et al. Accurate computations of the nonlinear phasenoise and BER in DPSK modulation-balanced direct detection high-speedoptical fiber communication systems [J]. Photon Netw Commun,2010,19:284~291.
    [251] Sabapathi T, Sundaravadivelu S. Analysis of bottlenecks in DWDM fiberoptic communication system [J]. Optik,2011,122:1453~1457.
    [252] Agrawal G P. Nonlinear fiber optics: its history and recent progress [J].Journal of Optical Society of America B,2011,28(12): A1~A10.
    [253] Gordon J P, Mollenauer L F. Phase noise in photonic communicationssystems using linear amplifiers [J]. Optics Letters,1990,15(23):1351~1353.
    [254] Meng Z, Hu Y M, Xiong S D et al. Phase noise characteristics of adiode-pumped Nd:YAG laser in an unbalanced fiber-optic interferometer [J].Applied Optics,2005,44(17):3425~3428.
    [255] Kovalev V I, Harrison R G. Spectral broadening of continuous-wavemonochromatic pump radiation caused by stimulated Brillouin scattering inoptical fiber [J]. Optics Letters,2004,29(4):379~381.
    [256] Okawachi Y, Bigelow M S, Sharping J E et al. Tunable All-Optical Delaysvia Brillouin Slow Light in an Optical Fiber [J]. Physical Review Letters,2005,94:153902.
    [257] Hyama K, Hayashi K, Ida Y et al. Delayed self-homodyne method usingsolitary monomode fiber for laser linewidth measurements [J]. ElectronicsLetters,1989,25(23):1589~1590.
    [258]易明.普通物理学教程光学[M].北京:高等教育出版社,1999.
    [259] Tkach R W, Chraplyvy A R, Derosier R M. Spontaneous Brillouinscattering for single-mode optical-fiber characterization [J]. Electronics Letters,1987,22:1011~1013.
    [260] Nikles M, Thevenaz L, Robert A. Brillouin gain spectrum characterizationin single-mode optical fibers [J]. Journal of Lightwave Technology,1997,15:1842~1851.
    [261] Thevenaz L. Slow and fast light in optical fibres [J]. Nature Photonics,2008,2:474~481.
    [262] Gardiner C W, Zoller P. Quantum Noise [M]. Springer,2000.
    [263]陈伟,孟洲,周会娟等.远程干涉型光纤传感系统的非线性相位噪声分析[J].物理学报,2012,61(18):184210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700