基于直接横摆力矩控制的车辆稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着车辆行驶速度的提高,以及人们对行车安全要求的提高,汽车的安全性成为当前汽车研究中重要的一部分。车辆稳定性控制系统(Vehicle Stability Control,VSC)在制动防抱死系统(Anti-lock Braking System,ABS)、驱动力控制系统(Traction Control System,TCS)的基础上增加了主动横摆控制(Active Yaw Control,AYC)功能。通过方向盘转角传感器和陀螺仪来监测汽车运行参数,并计算驾驶员的期望行车轨迹,在发现汽车有偏离期望行车轨迹的趋势时施加控制,从而避免汽车出现侧向的滑移。不同于传统的被动安全系统,如安全带、保险杠等,VSC作为主动安全装置,旨在危险发生前做出控制,避免事故的发生。由于VSC主要通过纵向力来施加控制车身的侧向运动姿态,因此其控制策略比较复杂,本文以VSC作为研究对象做了以下研究:
     (1)建立了七自由度整车模型、Dugoff轮胎模型、二自由度半车模型和液压制动系统模型,用于理论研究,在Matlab/simulink中对以上模型进行建模,并对汽车在高低附着路面的运行情况进行了仿真。
     (2)分析了汽车丧失侧向稳定性的原因,以及横摆角速度和质心侧偏角对汽车稳定性的影响;对直接横摆力矩控制(Direct Yaw-moment Control,DYC)策略的工作原理进行了分析,并采用滑模控制算法设计了控制器和滑移率控制器,最后在Matlab/simulink中进行了仿真。
     (3)建立了包含侧向风的8自由度整车模型,用于分析侧向风对直接横摆力矩控制的影响,并采用H_∞控制策略设计了抑制侧向风干扰的DYC控制器。
     (4)提出了采用动态边界来控制质心侧偏角的VSC控制策略。采用车轮侧向力的极限计算质心侧偏角的极限边界;采用横摆角速度增益判断汽车是否处于非线性状态,对处于非线性状态的汽车进行控制,使保持稳定状态。
     (5)分析了路面对车轮侧偏特性的影响,提出了在转向工况下通过前轮侧偏角估算路面附着系数的方法。设计了扩展卡尔曼滤波器来估算汽车的纵、侧向速度,采用BP神经网络算法设计了路面附着系数估算程序。
     (6)采用ARM7芯片设计了VSC ECU,基于μC/OS-Ⅱ设计了VSC控制程序,并建立了硬件在环平台,对该ECU进行了测试。
With the increased of driving speed and consumers’safety awareness, the safety of vehicles becomes an important research now days. Vehicle stability control (VSC) system is an active safety system, which consists of Anti-lock braking system (ABS), Traction Control System (TCS) and Active Yaw-moment Control system (AYC). A steering wheel angle sensor and a gyro are used to monitor the driving status of vehicle and an expected travel path is confined based on these messages. When it found that, the vehicle has the trend to beyond the expected travel path, VSC will active brake one wheel or two wheels at the same side to retrieve the vehicle to the expected travel path. Different from the passive safety system, such as seat belt and bumper, the active safety system is attend to avoid accident instead of reduce the harm caused by accident. For the available measures of control vehicle’s lateral motion is to change the longitudinal forces, the control strategy of VSC is complex. This paper focuses on the control strategy of VSC, and includes the following contents:
     (1) The following models: 7 degree of freedom (DOF) vehicle model, 2 DOF vehicle model, Dugoff tire model, hydraulic brake model, are adopted to study the dynamics of VSC. And the vehicle dynamics on both high and low friction road are simulated in Matlab/simulink.
     (2) Analysised the facts which caught vehicle loss the lateral stability, and the effect of yaw rate an side slip angle to vehicle stability; The Direct Yaw-moment Control strategy (DYC) is introduced, and the sliding mode control algorithm is involved to design the DYC and the slip ratio controller.
     (3) An 8 DOF vehicle model, includes the interference of lateral wind, is built to analysis the influence of lateral wind on vehicle. To overcome the influence, the nonlinear is adopt to design the DYC controller, and a normol DYC controller based on optimal Control is designed for comparison.
     (4) The feature of side slip angle and the effect of road friction to VSC are studied; a dynamic boundary method is studied, which has two bounds: the upper bound is defined by the limit lateral forces, and the lower bound is the linear bound of vehicle lateral forces. Based on this control threshold, a nonlinear siliding mode controller is designed.
     (5) Based on the study of road influence on tire side slip angle, the road friction estimation threshold is designed based on tire side slip angle in steering condition. A extened kalman filter is designed for vehicle’s longitudinal and lateral velocity estimation, and a neural network algorithm is adopted to design the estimation program.
     (6) The VSC electronic control unit (ECU) is designed based on ARM7, which program is designed inμC/OS-Ⅱsystem. And a VSC hardware-in-the-loop system is built based on labview.
引文
[1]杨财,周艳霞.方向盘转角传感器研究进展[J].传感器与微系统,2007,26(11):1~4.
    [2] Shin Ae Lee,Byung Hak Kwak. A Study on Optimal Yaw Moment Distribution Control Based on Tire Model[J]. SAE paper 2007-01-3563,2007.
    [3] Junmin Wang,Raul G. Longoria. Coordinated Vehicle Dynamics Control with Control Distribution [C]. Proceedings of the 2006 American Control Conference Minneapolis,2006.
    [4] Seunghan You,Jinoh Hahn,Youngman Cho,et al. Modeling and control of a hydraulic unit for direct yaw moment control in an automobile[J]. Control Engineering Practice,2006 ,14(9):1011–1022.
    [5] Van Zanten A.T. Control Aspects of the Bosch-VDC[C]. AVEC6,1996.
    [6] Tseng H.E,et al. The Development of Vehicle Stability Control at Ford[J]. IEEE/ASME Transactions on Mechatronics,1999,4(3): 223~234.
    [7] Park K,Heo S.J. Design of a Control Logic for Improving Vehicle Dynamic Stability[C]. Proceedings of AVEC,2000.
    [8] Masao Nagai,Yutaka Hirano,Sachiko Yamanaka. Integrated Control of Active Rear Wheel Steering and Direct Yaw Moment Control[J]. Vehicle System Dynamics,1997,27(5):357~370.
    [9] Nakazawa M,Isobe O,Takahashi S,et al. Braking force distributi on control for improved vehicle dynamics and brake performance[J]. Vehicle system dynamics, 1995, 24 (4): 413~426.
    [10] Stefan B?rjesson,Tomas Forsberg. Sliding Mode Control as design method for automotive Traction Control[R]Volvo Car Corporation,2003.
    [11] Rajesh Rajamani. Vehicle dynamics and control[M]. Springer,2005.
    [12] Van Zanten A. T. Bosch VSC: 5 Years of Experience[J]. SAE paper 2000-01-1633,2000.
    [13] Robert J. Rieveley,Bruce P. Minaker. Variable Torque Distribution Yaw Moment Control For Hybrid Powertrains[J]. SAE paper 2007-01-0278,2007.
    [14] Motoki Shino,Masao Nagai. Yaw-moment Control of Electric Vehicle for Improving Handling and Stability[C]. JSAE Review,2001,22 (4): 473–480.
    [15] Hiroshi Fujimoto,Akio Tsumasaka,Toshihiko Noguchi. Direct Yaw-moment Control of Electric Vehicle Based on Cornering Stiffness Estimation[C]. 31st Annual Conference of IEEE,2005.
    [16] Bo Chen,Hui Peng. Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations[J] Vehicle System Dynamics,2001,36(4-5):259~389.
    [17] Luca Piancastelli,Stefano Castelli. An VSC Fuzzy Control Algorithm optimized for tyre burst control[R]. University of Bologna,2004.
    [18] Taeyoung Chung,Kyongsu Yi. Design and Evaluation of Side Slip Angle-Based Vehicle Stability Control Scheme on a Virtual Test Track[J]. IEEE Transactions on Control Systems Technology,2006,14(2):224~234.
    [19] Taeyoung Chung,Kyongsu Yi. Side Slip Angle Based Control Threshold of Vehicle Stability Control System[J]. Journal of Mechanical Science and Technology,2005,19(4):985~992.
    [20] Cong Geng,Lotfi Mostefai,et al. Design on Adaptive Fuzzy Observer of Vehicle Side Slip Angle[C]. Technical Meeting on Vehicle Technology,IEE Japan,2007.
    [21] J. Dakhlallah,S. Glaser,S. Mammar,et al. Tire-Road Forces Estimation Using Extended Kalman Filter and Sideslip Angle Evaluation[C]. 2008 American Control Conference,USA,2008.
    [22] Yung-Hsiang J. Hsu,Shad Laws,J. Christian Gerdes. Experimental Studies of Using Teering Torque Under Various Road conditions for side slip and friction estimation[R]. Department of Mechanical Engineering Stanford University,2007.
    [23] Chia-shang Lliu , Huei Peng. Road Friction Coefficient Estimation for Vehicle Path Prediction[J]. Vehicle System Dynamics,1996,25(1):413-425.
    [24] Carlos Canudas-de-Wit,Roberto Horowitz. Observers for Tire/road Contact Friction using only wheel angular velocity information[C]. 38th IEEE Conference on Decision and Control,1999.
    [25] Bevly D.,Sheridan R.,Christian J. Integrating INS sensors with GPS velocity measurements forcontinuous estimation of vehicle sideslip and tire cornering stiffness[C]. American Control Conference,2001.
    [26] Ryu J.,Gerdes J. Integrating inertial sensors with GPS for vehicle dynamics control[J]. Journal of Dynamic Systems Measurement and Control,2004,126(6):1-26.
    [27]李刚,于学兵. BOSCH VDC系统的控制原理及展望[J].公路交通科技,2004,21(7):119~ 122.
    [28]王德平,郭孔辉,宗长富.汽车动力学稳定性控制的理论研究[J].汽车工程2000,22(1):7~ 9.
    [29]李亮,宋健,祁雪乐.汽车动力学稳定性控制系统研究现状及发展趋势[J].农业机械学报2006,37(2):141~144.
    [30]李亮,宋健,韩宗奇等.用于电子稳定程序在线控制的液压模型和反模型[J].机械工程学报,2008,44(2):139~144.
    [31]余卓平,高晓杰,张立军.用于汽车稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程,2006,28(9):844~848.
    [32]唐国元,宾鸿赞.基于模糊模型的汽车稳定性控制方法研究[J].中国机械工程,2004,15(22): 2064~2067.
    [33]王金湘,陈南,皮大伟.基于横摆角速度变门限值的汽车稳定性控制策略及实车场地试验[J].汽车工程,2008,30(3):222~226.
    [34]吴绍斌,李剑峰,高利.汽车稳定性控制的虚拟实验[J].农业机械学报,2008,39(5):6~9.
    [35]时培成,王立涛,高洪.基于四轮独立制动及整车模型的VSC系统仿真[J].农业机械学报,2007,38(6):14~18.
    [36]李亮,宋健,于良耀等.低附路面汽车动力学稳定性控制系统控制策略[J].机械工程学报,2008,44(11):1~7.
    [37]高振海,郑南宁,程洪.基于汽车动力学和Kalman滤波的汽车状态软测量[J].系统仿真学报,2004,16(1):22-24.
    [38]高越,高振海,李向瑜.基于自适应Kalman滤波的汽车横摆角速度软测量算法[J].江苏大学学报(自然科学版),2005,26(1):24-27.
    [39]陆丹.基于卡尔曼滤波的汽车行驶姿态的研究[D].江苏:江苏大学,2005.
    [40]乔涛.汽车状态的非线性估计及软测量[D].吉林:吉林大学,2006.
    [41]施树明,Henk Lupker,Paul Bremmer,et al.基于模糊逻辑的汽车侧偏角估计方法[J].汽车工程,2005,27(4):426-430.
    [42] Junmin Wang,Raul G. Longoria. Coordinated Vehicle Dynamics Control with Control Distribution[C],Proceedings of the 2006 American Control Conference,2006.
    [43] Dugoff H,Fancher P S. An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance[C]. SAE paper,700377,1970.
    [44]周红妮,陶建民.质心侧偏角和横摆角速度对汽车稳定性的影响研究[J].湖北汽车工业学院学报,2008,22(2):6~10.
    [45] Rajesh Rajamani. Vehicle dynamics and control [M]. Springer,2005.
    [46]王其东,章贵华,陈无畏等.基于滑模变结构的汽车动力学稳定性控制研究[J].中国机械工程,2009,20(5):622~625.
    [47]高为炳.变结构控制理论及设计方法[M].北京:科学出版社,1996.
    [48]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997.
    [49]高为炳.变结构控制基础科学出版社[M].北京:1989.
    [50]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995.
    [51] Masao Nagai,Motoki Shino,Feng Gao. Study on integrated control of active front steer angle and direct yaw moment[J]. JSAE Review,2002,23(3):309–315.
    [52]申铁龙.H∞控制理论与应用[M].北京:清华大学出版社,1996.
    [53]冯永华,赵又群,吴杰.非稳态侧风对高速汽车操纵稳定性影响的仿真研究[J].农业装备与汽车工程,2006,11(4):14~17.
    [54]方刚,谷正气.侧风对高速行驶汽车操纵稳定性影响初探[J].湖南大学学报,2001,28(4):60~63.
    [55]谷正气等.计及风压中心漂移的汽车侧风稳定性研究[J].湖南大学学报,2005,32(3):71~ 73.
    [56]韩善灵,朱平,林忠钦.侧向气动力对汽车稳态响应的影响[J].上海交通大学学报,2005,39(9):1445~1448.
    [57]海贵春等.侧风对汽车高速行驶性能影响的仿真研究[J].湖南大学学报,2006,33(2):40~ 43.
    [58]任秀欢等.基于ADAMS/Car的汽车侧风稳定性虚拟试验研究[J].东南大学学报,2009 39(4):774~778.
    [59] E. Esmailzadeh,A. Goodarzi,G.. R. Vossoughi. Optimal yaw moment control law for improved vehicle handling[J]. Mechatronics,2003,2003(13):659–675.
    [60]田宏奇.滑模控制理论及其应用[M].武汉出版社,1995.
    [61] R. van der Steen. Tyre/road friction modeling[R]. Department of Mechanical Engineering,Eindhoven University of Technology,2007.
    [62] A. Rabhi,et al. Estimation of contact forces and wheel road friction[C]. 15th Mediterranean conference on Control and Automation, Athens,2007.
    [63] Grip H,Imsland L,Johansen,et al. Nonlinear vehicle velocity observer with road-wheel friction adaptation[C]. 45th IEEE Conference on Decision and Control,San Diego, USA,2007.
    [64]喻凡,林逸等.汽车系统动力学[M].北京:机械工业出版社,2008
    [65] Naoto Ohkubo, Takehiro Horiuchi, Osamu Yamamoto etc.Brake Torque Sensing for Enhancement of Vehicle Dynamics Control Systems[C]. 2007 World Congress Detroit, Michigan April 16-19, 2007
    [66]李显生,霍娜,于海波等.基于Mtlab仿真的汽车转向稳定性控制策略[J].系统仿真学报, 2008. 20(11): 2982~2986.
    [67]赵杰,林辉.基于BP神经网络模型的目标属性识别仿真[J].系统仿真学报, 2007, 19(11): 2571~2573.
    [69]刘铁男等.多层前向神经网络的新型二阶学习算法[J].控制理论与应用2000,17(5):721~ 724.
    [70]李敏远,都延丽.基于遗传算法学习的复合神经网络自适应温度控制系统[J]控制理论与应用,2004,21(2):242~246.
    [71]杨群生,余英林.最大乘积模糊联想记忆的神经网络学习算法[J]控制理论与应用,2000,17(5):699~702.
    [72]戴文战,娄海川,杨爱萍.非线性系统神经网络预测控制研究进展[J]控制理论与应用,2009,26(5):521~528.
    [73]周洪煜,张坚,游立科等.基于混合神经网络的非线性预测函数控制[J]控制理论与应用,2005,22(1):110~113.
    [74]赵华敏,陈开周.全局优化的神经网络方法[J]控制理论与应用,2002,19(6):824~828.
    [75]汪秉文,沈艳军.何统洲多输出神经元模型的多层前向神经网络及其应用[J]控制理论与应用,2004,21(4):611~613.
    [76] E.Lim and J.Hedrick. Lateral and Longitudinal Vehicle Control Coupling for Automated Vehicle Operation[J]. Proceedings of American Control Conference, 1999.
    [77] Ken Koibuchi,Mosaki Yamaoto,et al. Vehicle Stability Control System in Limit Cornering by Active Brake[J]. SAE paper 960487
    [78] Schwarz. Ralf,et al. ESPⅡ-Driving Dynamics in the Next Generation Part2:Function Integration and Electronics[J]. Automobile Technique Zeitschrift,2003,105(11):12-15.
    [79] Peng H,Tomizuka M. Preview Control for Vehicle Lateral Guidance in Highway Automation [J]. ASME Journal of Dynamics Systems, Measurement and Control,1993,115(4):678-686.
    [80] Yasser Zeyada and Dean Karnopp, Mohammed EI-Arbi, EI-Sayed EI-Behiry. A Combined Active-Steering Differential-Braking Yaw Rate Control Strategy for Emergency Maneuvers[J]. SAE paper 980230.
    [81] Kyongsu Yi,Taeyoung Chung, Jeontae Kim, etc. An Investigation into Differential Braking Strategies for Vehicle Stability Vontrol[J]. Journal of Automobile Engineering, 2003,217(12): 1081-1093.
    [82] Nishimaki T,Yuhara N,Shibahata Y,et al. Two-Degree-of-Freedom Hydraulic Pressure Controller Design for Direct Yaw Moment Control System[J]. JSAE Review,1999,20(4): 517-522.
    [83] Yasui Y,Tozu K,Hattori N,et al. Improvement of Vehicle Directional Stability for Transient Steering Maneuvers Using Active Brake Control[J]. SAE paper 960485.
    [84] Tseng H. E.,Ashrafi B.,Madau D.,et al. The Development of Vehicle Stability Control at Ford[J]. Transactions on Mechatronics, 1999,4(3):223~234.
    [85] Pilutti T.,Ulsoy G.,Hrovat D. Vehicle Steering Intevention through Differential Braking [J]. Dynamic Systems Measurement and Control, 1995,120(3):314~321.
    [87] Yoshiyuki Y.,Kenji T.,Noriaki H. Improvement of Vehicle Directional Stability for Transient Steering Maneuvers Using Active Brake Control[J]. SAE paper 960485.
    [88] Ossama Mokhiamar , Masato Abe. Simultaneous Optimal Distribution of Lateral and Longitudinal Tire Forces for the Model Following Control[J]. Dynamic Systems , Measurement and Control, 2004,126(4):753~763.
    [89] E. Ono , Y. Hattori , Y. Muragish , et al. Vehicle Dynamics Integrated Control for Four-wheel-distributed Steering and Four Wheel Distributed Traction/braking Systems[J]. Vehicle System Dynamics, 2006,44(2):139-151.
    [90] L. R. Ray. Nonlinear State and Tire Force Estimation for Advanced Vehicle Control. [J]. Transactions on Control System Technology,1995,3(1):117~124.
    [91] L. R. Ray. Nonlinear Tire Force Estimation and Road Friction Iidentification:Simulation and Experiments[J].Automatica,33(10):1819~1833.
    [92] Chia-shang Liu , huei Peng. Road Friction Coefficient Estimation For Vehicle Path Prediction[J]. Vehicle System Dynamics, 1996, 25:413~425.
    [93] Mathieu Gerard. Tire-road friction estimation using slip-based observers[R]. Department of Automatic Control,Lund University,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700