客车行驶稳定性控制的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车操纵稳定性和侧倾稳定性是车辆行驶稳定性的主要指标,属于车辆主动安全控制的范畴;客车因其重心高、质量大和特别用途,其行驶稳定性控制问题显得尤为重要。目前,在客车行驶稳定性控制系统的开发中,设计者多单独针对操纵稳定性或侧倾稳定性,未从整体出发,考虑所涉及执行机构之间的动力学耦合关系,实现两者的集成控制。论文针对客车行驶中操纵稳定性或侧倾稳定性,研究行驶稳定性控制的关键技术,探讨客车防侧滑和防侧翻控制的新方法,以及两者协调集成控制问题。论文的主要研究工作如下:
     (1)针对客车行驶稳定性控制问题,建立客车底盘4自由度动力学模型,以及轮胎、悬架和制动器等各执行机构的动力学模型。
     (2)以客车防侧滑为目的,利用差动制动特性,建立客车防侧滑差动制动控制的数学模型;采用滑模控制方法,设计防侧滑差动制动控制器来实现客车的操纵稳定性,将其分为上位控制器和下位控制器:上位控制器根据控制指标输出期望横摆力矩,下位控制器根据期望横摆力矩输出各轮胎的制动压力。
     (3)以客车防侧翻为目的,利用半主动悬架特性,构建客车防侧翻半主动悬架控制的控制策略和数学模型,以及侧翻的预测模型;采用滑模控制方法,设计客车防侧翻半主动悬架控制器来实现客车的侧倾稳定性,同样将其分为上位控制器和下位控制器:上位控制器根据侧翻预测模型输出期望侧倾力矩,下位控制器根据期望侧倾力矩输出各半主动悬架减振器的驱动电流。
     (4)以客车的行驶稳定性为目的,分析差动制动与半主动悬架的动力学耦合关系,利用分层式集成控制结构,将控制系统划分为协调层与执行层,设计协调层的协调控制器,优化各执行层控制器的输出效果。
     (5)采用总线式的网络拓扑结构,设计客车行驶稳定性控制的通信网络。
     论文以某客车为对象,采用MATLAB/Simulink,建立客车行驶稳定性控制系统的仿真试验平台;以客车驾驶的规范工况,分析上述三种不同控制方式的控制效果;结果显示,集成控制方式更能有效提高控制输出效果。论文的研究结果可作为客车行驶稳定性控制系统开发的理论依据和技术基础,通过进一步实验研究,可有效提高客车行驶的主动安全性。
The main indicators of vehicle running stability consist of handling stability and roll stability which belong to the content of vehicle active safety. Due to some characteristics such as high center of gravity, large weight and special function of buses, the running stability control of buses is especially important. At present, during the development of these kinds of running stability control systems of buses, the handling stability or the roll stability is focused independently by most designers, while the dynamics coupling among correlative actuators is not considered integrally. As a result, it is hard to accomplish the integrated control of these two stabilities. The research of this paper focuses on key technologies of the running stability control for the handling stability or roll stability, new methods for slip prevention and rollover prevention control of buses, as well as the coordinated integrated control problems related to these two stabilities. The main contents of this study are as follows:
     (1) Four degrees of freedom of chassis dynamics model, some actuators dynamics model related to tire model, suspension, brake, etc. are established for running stability control problems of buses.
     (2) Aiming at the slip prevention, the mathematical model of Differential braking Yaw-moment Control (DYC) for buses is established by applying the performance of differential braking; using sliding mode control, DYC for buses is designed to guarantee handling stability. DYC is divided into the higher-level controller and the lower-level controller:the higher-level controller generates the desired yaw moment in terms of control indicators, while the lower-level controller outputs the braking pressure for each tire corresponding to the desired yaw moment.
     (3) Aiming at the rollover prevention, the control strategy, mathematical model and rollover prediction model for Counter-rollover Damping Control (CDC) for buses are established by applying the performance of semi-active suspension; using sliding mode control, CDC for buses is designed to guarantee roll stability. CDC is also divided into the high-level controller and the lower-level controller:the high-level controller generates the desired roll moment, while the lower-level controller outputs the driving current for each damper corresponding to the desired roll moment.
     (4) Aiming at the running stability for buses, the dynamics coupling of differential braking and semi-active suspension are analyzed, and the running stability control system is divided into the coordination layer and the regulation layer using hierarchical integrated control structure. The coordination controller (Coordinator) is designed to optimize the performance of regulation controllers.
     (5) The communication network of running stability control of buses is designed by applying bus-type topological structure.
     Targeting a type of bus, the simulating test platform for running stability control system of buses is established with MATLAB/Simulink; the performances of upper three different control modes are analyzed through standard maneuvers of bus driving. According to the result, the integrated control mode is more effective to improve the control performance. Research achievements in this paper could be used as the theoretical foundation and technological basis for developing running stability control system of buses, while the active safety for buses could also be enhanced by means of further test research.
引文
[1]National Center for Statistics and Analysis of the National Traffic Highway Safety Administration. Traffic Safety Facts 2005-A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System [R], Report No. DOT HS 810 631; Washington, DC,2006.
    [2]章贵华.基于滑模变结构控制的车辆动力学稳定性控制研究[D].合肥:合肥工业大学,2008.
    [3]刘喜东.大客车EPS助动力矩及控制策略研究[D].西安:长安大学,2009.
    [4]沈晓鸣.基于广义执行器——受控对象的车辆底盘集成控制的研究[D].上海:上海交通大学,2006.
    [5]聂佳梅.基于灰色预测的汽车SAS与EPS集成系统分层协调控制研究[D].镇江:江苏大学,2009.
    [6]R. Busch, K. Webers, Ford Integrated Vehicle Dynamics Control-Concept [C], Proceedings TUV Akademie:fahrwerk.tech 2003, March 11-12,2003.
    [7]K. Webers, R. Busch, Ford Integrated Vehicle Dynamics Control:Realization [J], TUV, Fahrwerk.tech, Munchen, March 11-12,2003
    [8]R. Busch, A. Seibertz, P. Schmitz, IVDC-The Development of Integrated Vehicle Dynamics Control [C],5th VDI-Mechatroniktagung, Fulda, May 7-8,2003.
    [9]Ackermann, J., Robust yaw damping of cars with front and rear wheel steering [C], Proc. of the 31st IEEE Conference on Decision and Control, Vol.3, pp.2586-2590,1992.
    [10]J. Ackermann, D. Odenthal, T. Bunte, Advantages of active steering for vehicle dynamics control [C], Proc. International Symposium on Automotive Technology and Automation, Vienna,1999.
    [11]Sergey V. Drakunov, Behrouz Ashrafi, Alessandro Rosiglioni, Yaw Control Algorithm via Sliding Mode Control[C], Proceedings of the American Control Conference, pp.580-583, Chicago, Illinois, USA,2000.
    [12]牛礼民.车辆半主动悬架和电动助力转向集成控制的研究与实现[D].镇江:江苏大学,2008.
    [13]Shibahata Y., Shimada K., Tomari T., Improvement of Vehicle Maneuverability by Direct Yaw Moment Control, Vehicle System Dynamics, Vol.22, pp.465-481,1993.
    [14]Buz. A. McCain, State Estimation for Semi-Active Control [D], Master's thesis, University of California, Berkeley, California, USA,1991.
    [15]M. Wargelin, Specifications for a Semi-active Suspension to Reduce Dynamic Tire Forces in Heavy Trucks [D], Master's thesis, University of California, Berkeley, California, USA,1993.
    [16]E. Guglielmino, et al., Semi-active Suspension Control:Improved Vehicle Ride and Road Friendliness [M], Springer-Verlag London,2008.
    [17]郭建华.双轴汽车电子稳定性协调控制系统研究[D].吉林:吉林大学,2008.
    [18]袁传义.半主动悬架与电动助力转向系统自适应模糊集成控制及其优化设计[D].镇江:江苏大学,2007.
    [19]胡剑.客车信息集成控制系统基础技术的研究与实践[D].武汉:武汉理工大学,2008.
    [20]Farmer, C.M., Effect of electronic stability control on automobile crash risk, Traffic Injury and Prevention [J], Vol.5, pp.317-325,2004.
    [21]NHTSA, Electronic Stability Control Systems [R], Office of Regulatory Analysis and Evaluation National Center for Statistics and Analysis, August 2006.
    [22]Transport Canada, TECHNICAL STANDARDS DOCUMENT No.126, Revision 0: Electronic Stability Control Systems [R], Standards Research and Development Branch, Road Safety and Motor Vehicle Regulation Directorate, TRANSPORT CANADA, Ottawa, Ontario.
    [23]J. Scully, S. Newstead, Preliminary Evaluation of Electronic Stability Control Effectiveness in Australasia [R], Report Documentation Page, Accident Research Centre, Monash University,2007.
    [24]Van Zanten, A.T., Erhardt, R., Pfaff, G., VDC-The Vehicle Dynamics Control System of Bosch [J], SAE Technical Paper No.950759,1995.
    [25]Van Zanten, A.T. Bosch ESP system:5 years of experience [J], SAE Technical Paper No. 2000-01-1633,2000.
    [26]Tseng, H. E., Ashrafi, B., Madau, D., Brown, T. A., Recker, D. The development of vehicle stability control at Ford [J]. IEEE/ASME Transactions on Mechatronics,4(3),223-234, 1999.
    [27]E. K. Liebemann, K. Meder, J. Schuh, G. Nenninger, Safety and Performance Enhancement:The Bosch Electronic Stability Control (ESP) [J], SAE Technical Paper No. 05-0471,2005.
    [28]Jianbo Lu, et al., An Enhancement to an Electronic Stability Control System to Include a Rollover Control Function [J], SAE Technical Paper No.2007-01-0809,2007.
    [29]E. Dincmen, T. Acarman, Active Coordination of The Individually Actuated Wheel Braking and Steering To Enhance Vehicle Lateral Stability and Handling [C], Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea,2008.
    [30]B.A. Guvenc, L. Guvenc, S. Karaman, Robust Yaw Stability Controller Design and Hardware-in-the-Loop Testing for a Road Vehicle [J], IEEE T. on Vehicular Technology, Vol.58, No.2,2009.
    [31]王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报,36(3):97-99,2000.
    [32]王德平,郭孔辉,宗长富.车辆动力学稳定性控制的理论研究[J].汽车工程,22(1):7-9,2000.
    [33]于良耀,宋健,李亮,王学辉.汽车动力学稳定性控制系统冬季试验[J].农业机械学报,2007(11).
    [34]李亮,宋健,祁雪乐.汽车动力学稳定性控制系统研究现状及发展趋势[J].农业机械学报,2006(2).
    [35]F. Yu, Li Jun, J. Z. Feng. Study of Vehicle Yaw Stability Control Based on Hardware-in-The-Loop Simulation [J], SAE Paper, No 2005-01-1845,2005.
    [36]J. Li, F. Yu, J. Z. Feng and H.P. Zhao, The rapid development of vehicle electronic control system by hardware-in-the-loop simulation[J], Proceedings of IMechE (Part D), Journal of Automotive Engineering,216(D2):95-105,2002.
    [37]李以农,杨柳,郑玲,卢少波.基于滑模控制的车辆纵横向耦合控制[J].中国机械工程,18(7):866-869,2007.
    [38]徐娟,谭继锦,陈无畏.基于横向和垂向动力学的整车模型与仿真[J].农业机械学报,2005(9).
    [39]王金湘,陈南,皮大伟.基于横摆角速度变门限值的车辆稳定性控制策略及实车场地试验[J].汽车工程,30(3):222-226,2008.
    [40]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率控制[J],汽车工程,2006(9):844-848.
    [41]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究[D].西安:长安大学,2008.
    [42]赵治国.车辆动力学及其非线性控制理论、技术的研究[D].西安:西北工业大学,2002.
    [43]D Karnopp, M Crosby, R Harwood. Vibration control semi-active force generators [J]. ASME J. of Engineering for Industry, Vol.5, pp.619-622,1974.
    [44]Margolis, D.L., Tylee, J.L., Hrovat, D., Heave Mode Dynamics of a Tracked Air Cushion Vehicle with Semi-Active Airbag Secondary Suspension [J], ASME J. of Dynamic Systems, Measurement and Control,1975.
    [45]Karnopp, D.C., Active Damping in Road Vehicle Suspension Systems [J], Vehicle System Dynamics, Vol.12, pp.291-316,1983.
    [46]Margolis, D., The response of Active and Semi-Active Suspensions to Realistic Feedback Signals [J], Vehicle Systems Dynamics, Vol.12, pp.317-330,1983.
    [47]T. Butsuen, The design of semi-active suspensions for automotive vehicles [D], Ph.D dissertation, Massachusetts Institute of Technology, Massachusetts, USA,1989.
    [48]K. Yi, Semi-active suspension design for vehicle tire force control [D], Ph.D dissertation, University of California, Berkeley, USA,1992.
    [49]H. E. Tseng, A methodology for optimizing semi-active suspensions for automotive applications [D], Ph.D dissertation, University of California, Berkeley, USA,1994.
    [50]Kutsche T., Raulf M., Becher H.-O., Optimized Ride Control of Heavy Vehicles with Intelligent Suspension Control [J], SAE Technique Paper No.973207,1997.
    [51]G.Z. Yao, F.F. Yap, G. Chen, W.H. Li, S.H. Yeo, MR damper and its application for semi-active control of vehicle suspension system [J], Mechatronics, Vol.12, pp.963-973, 2002.
    [52]G. Tsampardoukas, C.W. Stammers, E. Guglielmino, Semi-active control of a passenger vehicle for improved ride and handling [J], Proc. IMechE Part D:J. Automobile Engineering, Vol.222, pp.325-352,2008.
    [53]M. Biglarbegian,W. Melek, F. Golnaraghi, A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems [J], Vehicle System Dynamics, Vol. 46, No.8, pp.691-711,2008.
    [54]牛礼民.车辆半主动悬架和电动助力转向集成控制的研究与实现[D].镇江:江苏大学,2008.
    [55]聂佳梅.基于灰色预测的汽车SAS与EPS集成系统分层协调控制研究[D].镇江:江苏大学,2009.
    [56]朱茂飞,陈无畏,祝辉.基于磁流变减振器的半主动悬架时滞变结构控制[J].机械工程学报,Vo1.46,No.12,pp.113-120,2010.
    [57]Schwarz, R., Rieth, P., Global Chassis Control-Integration of Chassis Systems[J]. Automatisierungstechnik, Vol.51, pp.300-312,2003.
    [58]R. S. Sharp, D. A. Crolla.Road Vehicle Suspension System Design a review [J]. Vehicle System Dynamics, Vol.16, pp.167-192,1987.
    [59]T. Yoshimura, Y. Emoto.Steering and suspension system of a full car model using fuzzy reasoning based on single input rule modules [J]. International Journal of Vehicle Autonomous Systems, 1(2):237-254,2003.
    [60]Cherouat, H., An observer and an integrated braking/traction and steering control for a cornering vehicle[C]. Proceedings of the American Control Conference,2005.
    [61]Tanaka, H., Kurishige, M., et al, The Torque Controlled Active Steer for EPS[C], Proceeding of AVEC'04, pp.501-507,2004.
    [62]Suzumura, M., Kojo, T., et al, Development of the Active Front Steering Control System[C], Proceeding of AVEC'04, pp.53-58,2004.
    [63]Schilke, N.A., Fruechte, R.D., et al., Integrated Vehicle Control[C], International Congress on Transportation Electronics, Convergence 88, pp.97-106,1988.
    [64]Kiencke, U., Integrated Vehicle Control Systems [J]. Proceedings of the IFAC Intelligent Components for Autonomous and Semi-Autonomous Vehicle, pp.1-5,1995.
    [65]Shladover, S., Review of the State of Development of Advanced Vehicle Control Systems (AVCS) [J], Vehicle System Dynamics, Vol.24, pp.551-595,1995.
    [66]Ghoneim, Y.A., Lin, W.C., et al., Integrated Chassis Control System to Enhance Vehicle Stability [J], Internal Journal of Vehicle Design, Vol.23, pp.127-144,2000.
    [67]Nohtomi, S., Okada, K., et al., Application of Analytic Hierarchy Process to Stochastic Robustness Synthesis of Integrated Vehicle Controllers [J], Vehicle System Dynamics, Vol. 42, No,1-2, pp.3-21,2005.
    [68]武建勇.提高车辆操纵稳定性的底盘集成控制系统设计与方法研究[D].上海:上海交通大学,2008.
    [69]高晓杰,余卓平,张立军.集成底盘控制系统的控制构架研究[J].汽车工程,29(1):21-26,2007.
    [70]李君,喻凡等.车辆转向制动防抱死系统仿真研究[J].系统仿真学报,13(6),2001.
    [71]冯金芝,喻凡等.车辆防抱制动系统与主动悬架联合控制[J].农业机械学报,2002.
    [72]王启瑞,刘立强,陈无畏.基于随机次优控制的汽车电动助力转向与主动悬架集成控制[J].中国机械工程,16(8),2005.
    [73]Bosch, CAN Specification, Ver.2.0, Robert Bosch GmbH,1991.
    [74]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2003.
    [75]邬宽明.CAN总线原理和应用系统设计[M],北京:北京航空航天大学出版社,1996.
    [76]LIN consortium, Local Interconnect Network bus, Protocol Specification, Version 2.1 [EB/OL], http://www.lin-subbus.org/,2006.
    [77]FlexRay Consortium. FlexRay Communication System, Protocol Specification, Version 2.1 [EB/OL]. http://www.flexray.com/,2008.
    [78]T Fuhrer, et al., Time triggered communication on CAN (Time Triggered CAN-TTCAN) [C], Proceedings 7th International CAN Conference; 2000.
    [79]TTTech Computertechnik GmbH. Time-Triggered Protocol TTP/C, High-Level Specification Document, Protocol Version 1.1 [EB/OL]. http://www.tttech.com/,2007.
    [80]孟晓楠.SAEJ1939协议分析和SmartJ1939系统设计实现[D].浙江大学.2006.
    [81]过锡隽.汽车电控系统J1939协议和诊断通信模块的开发[D].浙江大学.2006.
    [82]刘豹,唐万生.现代控制理论(第三版)[M].机械工业出版社,2006.
    [83]Slotine, J.-J.E., Li, W., Applied Nonlinear Control [M], Prentice Hall, New Jersey,1991.
    [84]H. K. Khalil, Nonlinear Systems (3rd Edition) [M], Prentice Hall, Upper Saddle River, NJ, USA,2001.
    [85]Jihan Ryu, State and parameter estimation for vehicle dynamics control using GPS [D], Ph.D dissertation, Stanford Univeristy, California, USA,2004.
    [86]Slotine, J.-J. E., Hedrick, J.K., Misawa, E.A., On Sliding Obervers for Nonlinear Systems[J], ASME Trans., J. of Dyn. Sys., Meas., and Contr. Vol.109, pp.245-252,1987.
    [87]刘金坤,滑模变结构控制MATLAB仿真[M],北京:清华大学出版社,2005.
    [88]Luenberger, D.G., An Introduction to Observers [J], IEEE Trans. on Automatic Control, Vol. AC-16, No.6,pp.596-6021971.
    [89]P. M. SIEGRIST, P. R. MCAREE, Tyre-force estimation by Kalman inverse filtering: applications to off-highway mining trucks [J], Vehicle System Dynamics, Vol.44, No.12, pp.921-937,2006.
    [90]Shladover, S., Lu, X.-Y., et al., Demonstration of Automated Heavy-Duty Vehicles, Research Report, University of California, Berkeley:Institute of Transportation Studies, California PATH Program, UCB-ITS-PRR-2005-23,2005.
    [91]Pham, H., Tomizuka, M., Hedrick, J.K., Integrated maneuvering control for automated highway systems based on a magnetic reference/sensing system [R], University of California, Berkeley:Institute of Transportation Studies, California PATH Program, UCB-ITS-PRR-97-28,1997.
    [92]Tai M., Tomizuka M., Robust Lateral Control of Heavy Duty Vehicles [R], Technical Report:Final Report, University of California, Berkeley:Institute of Transportation Studies, California PATH Program, UCB-ITS-PRR-2003-24,2003.
    [93]Utkin V, Guldner J., Shi J., Sliding Mode Control in Electromechanical Systems (Second edition) [M], CRC Press, Taylor and Francis Group,2009.
    [94]Slotine, J.-J. E., Sastry S. S., Tracking Control of Nonlinear Systems Using Sliding Surfaces With Applications to Robot Manipulators [J], Int. J. Control, Vol.39, No.2,1983.
    [95]Young K. D., Utkin V, Ozguner U., A Control Engineer's Guide to Sliding Mode Control [J], IEEE T. on Control Systems Technology, Vol.7, No.3, May 1999.
    [96]Lu, X.-Y., Hedrick, J.K., Impact of combined longitudinal, lateral and vertical control on autonomous road vehicle design [J], Int. J. Vehicle Autonomous Systems, Vol.2, No.1/2, pp.40-70,2004.
    [97]H. Pham, Combined lateral and longitudinal control of vehicles for the automated highway system [D], Ph.D Dissertation, University of California, Berkeley, California, USA,1996.
    [98]H. Pham, M. Tomizuka, J.K. Hedrick. Integrated Maneuvering Control for Automated Highway Systems Based on a Magnetic Reference/Sensing System, University of California, Berkeley:Institute of Transportation Studies, California PATH Program, UCB-ITS-PRR-97-28,1997.
    [99]Chan C.-Y., Safety Assessment of Advanced Vehicle Control and Safety Systems (AVCSS), Research Report, University of California, Berkeley:Institute of Transportation Studies, California PATH Program, UCB-ITS-PRR-2005-19,2005.
    [100]Tan, Han-Shue, Adaptive and robust controls with application to vehicle traction control [D], Ph.D Dissertation, University of California, Berkeley, California, USA,1988.
    [101]Bakker, E., Nyborg, L., Pacejka, H. B., Tyre Modelling for Use in Vehicle Dynamics Studies [J], SAE Technical Paper Series, No.870421,1987.
    [102]Bakker, E., Pacejka, H. B. Lidner, L., A New Tyre Model with an Application in Vehicle Dynamics Studies [J], SAE Transactions, Journal of Pasenger Cars, Vol.98, No.890087, 1989.
    [103]Pacejka, H. B., Tyre and Vehice Dynamics [M], Butterworth Heinemann,2002.
    [104]J. Svendenius, Tire Modeling and Friction Estimation [D], Ph.D disseration, Department of Automatic Control, Lund University, Lund, Sweden,2007.
    [105]H.B. Pacejka, Tyre and Vehicle Dynamics (Second Edition) [M], Butterworth-Heinemann, London,2002.
    [106]J. P. Switkes, J. C. Gerdes, Guaranteeing Lanekeeping Performance with Tire Saturation using Computed Polynomial Lyapunov Functions [C], Proceedings of ASME International Mechanical Engineering Congress and Exposition Orlando, Florida, USA,2005.
    [107]李亮,宋健,于良耀,黄全安,低附路面汽车动力学稳定性控制系统控制策略[J],机械工程学报,Vo1.44,No.11,pp.229-235,2008.
    [108]ArcSim Vehicle Dynamics Simulation, User Reference Manual, Ver.1, The University of Michigan Transportation Research Institute (UMTRI), Ann Arbor, MI, USA,1997.
    [109]Jihan Ryu, State and parameter estimation for vehicle dynamics control using GPS [D], Ph.D Dissertation, Stanford University, California, USA,2004.
    [110]H-P威鲁麦特.车辆动力学:模拟及其方法[M].北京:北京理工大学出版社,1998.
    [111]R. Rajamani, Vehicle Dynamics and Control [M], Springer New York, NY, USA,2006.
    [112]U. Kiencke and L. Nielsen, Automotive Control Systems:For Engine, Driveline, and Vehicle (Second edition) [M], Springer-Verlag Berlin Heidelberg,2005.
    [113]D. Bevly, J. Ryu, J. Gerdes, Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness, Intelligent Transportation Systems, IEEE Transactions on, Vol.7, No.4, pp.483-493,2006.
    [114]R. CHUMSAMUTR, T. FUJIOKA, M. ABE, Sensitivity analysis of side-slip angle observer based on a tire model [J], Vehicle System Dynamics, Vol.44, No.7, pp.513-527,2006.
    [115]Y. FUKADA, Slip-Angle Estimation for Vehicle Stability Control [J], Vehicle System Dynamics, Vol.32, No.4, pp.375-388,1999.
    [116]Yi, K., Chung, T., Kim, J. and Yi, S., An investigation into differential braking strategies for vehicle stability control [D]. IMechE 217 (Part D), pp.1081-1093,2003.
    [117]于翔鹏.混合电动汽车制动系统的控制技术研究[D].武汉:武汉理工大学,2009.
    [118]Hac, A., Rollover Stability Index Including Effects of Suspension Design [J], SAE Technique Paper, No.2002-01-0965,2002.
    [119]Chrstos, J. P., An Evaluation of Static Rollover Propensity Measures, Interim Final Report. National Highway Traffic Safety Administration, Vehicle Research and Test Center, East Liberty, Ohio,112 p. Sponsor:National Highway Traffic Safety Administration, Washington, D.C. Report No. VRTC-87-0086/DOT/HS 807 747,1991.
    [120]Odenthal, D., Bunte, T., Ackermann, J., Nonlinear steering and braking control for vehicle rollover avoidance [C], In Proc. European Control Conference, Karlsruhe, Germany,1999.
    [121]D.-F. Chu, G.-Y. Li, X.-Y. Lu, J. K. Hedrick, Rollover Prevention or Vehicles with Elevated CG using Active Control [C], Proceedings of The 10th International Symposium on Advanced Vehicle Control (AVEC 10). Loughborough, UK,2010.
    [122]Yoon, J., Cho, W., Koo B., Yi K., Unified Chassis Control for Rollover Prevention and Lateral Stability [J], IEEE T. on Vehicular Technology, Vol.58, No.2,2009.
    [123]Guglielmino, E., et al., Semi-active Suspension Control:Improved Vehicle Ride and Road Friendliness [M], Springer London,2008.
    [124]初长宝.汽车底盘系统分层式协调控制研究[D].合肥:合肥工业大学,2008.
    [125]郭建华.双轴汽车电子稳定性协调控制系统研究[D].吉林:吉林大学,2008.
    [126]Chou H., D'ANDREA-NOVEL B., Global vehicle control using differential braking torques and active suspension forces [J], Vehicle System Dynamics, Vol.43, No.4, 261-284,2005.
    [127]Gaspar P., et al., Global chassis control using braking and suspension systems [C], Proc. of 20th Symposium of the International Association for Vehicle System Dynamics, Berkeley, California, USA,2007.
    [128]Gordon, T.J., Howell, M., et al., Integrated Control Methodologies for Road Vehicles [J]. Vehicle System Dynamics, Vol.40, No.1-3, pp.157-190,2003.
    [129]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学,2008.
    [130]Roppenecker, G, Wallenowitz H., Integration of Chassis and Traction Control System: What is possible- What makes sense-What is under development [J]. Vehicle System Dynamics, Vol.22, pp.283-298,1993.
    [131]D. Odenthal, T. Bunte, J. Ackermann, Nonlinear steering and braking control for vehicle rollover avoidance [C], Proc. European Control Conference, Karlsruhe, Germany,1999.
    [132]Guglielmino, E., et al., Semi-active Suspension Control:Improved Vehicle Ride and Road Friendliness [M], Springer London, Great Britain,2008.
    [133]Lin, R.C., An investigation of active roll control for heavy vehicle suspensions [D], PhD dissertation, Department of Engineering, University of Cambridge, Cambridge, UK,1994.
    [134]SAE, The Truck & Bus Control and Communications Network Subcommittee of the Truck and Bus Electrical Committee, SAE J1939/71,Application Layer,2006.
    [135]SAE, Recommended Practice for a Serial Control and Communications Vehicle Network, SAE J1939,2000.
    [136]SAE, The Truck & Bus Control and Communications Network Subcommittee of the Truck and Bus Electrical Committee, SAE J1939/21, Data Link Layer,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700