牛体细胞克隆中供体和受体细胞制备及重构胚构建的影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体细胞克隆技术是哺乳动物胚胎工程的组成部分,它不仅有利于缩短动物繁殖育种时间和提高优良种畜的利用率,也有利于精卵受精机制的研究。在哺乳动物体细胞克隆研究中,从受体卵母细胞培养、供体细胞制备、受体细胞去核、重构胚构建、重构胚激活、重构胚培养、胚胎移植到胎儿出生,每个技术环节都会影响克隆的效率。在这些环节中,供体细胞和受体卵母细胞制备以及重构胚构建尤为关键。本试验进行了牛体细胞克隆中供体和受体细胞生产及重构胚构建的影响因素研究。研究了牛卵巢颗粒细胞和输卵管上皮细胞制备过程中细胞培养代数、血清饥饿浓度和饥饿时间对细胞周期和凋亡的影响,同时研究了血清饥饿诱导细胞产生凋亡的机理和抗氧化剂对细胞凋亡的抑制;通过提前去除培养液中的微量元素铁和铜,得到不含微量元素铁和铜的培养液,然后在培养液中分别添加定量的微量元素铁和铜,通过体外受精技术研究微量元素铁和铜对牛卵母细胞体外成熟和早期胚胎体外发育的影响;研究了低渗液处理供体颗粒细胞对胞质直接注射克隆研究中重构胚构建和随后重构胚发育的影响。
     1.研究了体细胞克隆中供体细胞制备过程中细胞培养代数、血清饥饿浓度和饥饿时间对体细胞周期的影响。体细胞为牛卵巢颗粒细胞和输卵管上皮细胞,细胞以碘化丙啶染色法处理,用流式细胞仪检测细胞周期。细胞传代培养至第2代、10代和25代,在0.5%和0.05%的血清饥饿浓度下诱导处理2d、3d、4d和5d。实验结果如下:第2代、10代和25代的细胞在G0/G1期的比例没有显著差异(P>0.05)。培养液中添加0.5%FCS和0.05%FCS较对照组(10%FCS)显著提高了细胞G0/G1期的比例(P<0.05),0.5%FCS和0.05%FCS实验组获得了相近的细胞G0/G1期比例(P>0.05)。血清饥饿至第5d的细胞较第2d的细胞有高的G0/G1期的比例(P<0.05)。从结果得知体外培养至不同代的牛卵巢颗粒细胞和输卵管上皮细胞对G0/G1期的比例没有影响,血清饥饿和延长血清饥饿时间能够有效诱导体细胞进入G0/G1期。
     2.研究了克隆的供体细胞制备过程中细胞培养代数、血清饥饿和血清饥饿时间对体细胞凋亡的影响,同时研究了血清饥饿诱导细胞产生凋亡的机理。体细胞为牛卵巢颗粒细胞和输卵管上皮细胞,细胞以Annexin V/FITC双染色法染色,用流式细胞仪检测细胞凋亡。细胞传代培养至2代、10代和25代,在0.5%和0.05%的FCS饥饿浓度下诱导2d、3d、4d和5d。Caspase抑制剂z-VAD-fmk用来检测血清饥饿诱导细胞产生的凋亡是否由caspase介导。实验结果如下:第2代和第10代的细胞在凋亡率上差异不显著(P>0.05),第25代的细胞较第2代和第10代的细胞有高的凋亡率(P<0.05)。0.5%FCS和0.05%的FCS处理组显著提高了细胞凋亡率(P<0.05),而且0.05%FCS较0.5%FCS有更高的细胞凋亡率(P<0.05)。血清饥饿处理4d和5d的细胞显著提高了细胞的凋亡率(P<0.05)。培养液中添加z-VAD-fmk能够显著降低0.5%和0.05%FCS诱导细胞产生的细胞凋亡率(P<0.05),但对10%FCS实验组的细胞差异不显著(P>0.05)。从结果得知牛颗粒细胞和输卵管上皮细胞体外长期培养可提高细胞凋亡率,降低血清饥饿的浓度和延长血清饥饿的时间均可造成细胞高水平的凋亡。血清饥饿诱导牛颗粒细胞和输卵管上皮细胞产生凋亡的过程包括caspase的激活。
     3.研究了不同抗氧化剂对在体细胞血清饥饿诱导过程中产生凋亡的影响。体细胞为牛卵巢颗粒细胞和牛输卵管上皮细胞,细胞以AnnexinV/FITC双染色法染色,用流式细胞仪检测细胞凋亡。10%FCS培养的细胞和0.5%FCS血清饥饿诱导处理的第5代细胞在添加抗氧化剂维生素E、硒和谷胱苷肽后培养2d,然后检测细胞凋亡率。实验结果如下:添加有维生素E、硒和谷胺酰胺的10%FCS培养的牛卵巢颗粒细胞较对照组降低了细胞凋亡率,但差异不显著(P>0.05)。在0.5%FCS饥饿诱导处理的颗粒细胞实验组,对照组的细胞凋亡率显著高于维生素E、硒和谷胺酰胺实验组(P<0.05)。在10%FCS培养的牛输卵管上皮细胞实验组,抗氧化剂处理组的细胞凋亡率低于实验对照组但差异不显著(P>0.05)。在0.5%FCS饥饿诱导的牛输卵管上皮细胞实验组,维生素E、硒和谷胺酰胺处理组之间的细胞凋亡率差异不显著(P>0.05),但较对照组显著降低了细胞的凋亡率(P<0.05)。这些结果显示通过在培养过程中分别添加抗氧化剂维生素E、硒和谷胱苷肽能够有效抑制因血清饥饿诱导而产生的细胞凋亡,而抗氧化剂不能抑制10%FCS实验组细胞的凋亡。
     4.研究铁和铜对牛卵母细胞体外成熟、早期胚胎生长发育以及囊胚期细胞凋亡的影响。培养液中铁的浓度为:0(对照组),0.45mg/L,0.81mg/L,1.96mg/L和3.26mg/L;铜的浓度为:0mg/L(对照组),0.093mg/L,0.27mg/L,0.46mg/L和0.68mg/L。在卵母细胞成熟培养的22h、受精卵培养的48h、96h、144h和192h检测培养液中铁浓度(1.96mg/L)和铜浓度(0.46mg/L)的变化。在实验结果中,铁的不同添加组在卵母细胞成熟和卵裂率方面与对照组差异不显著(p>0.05),但是铁显著提高了8细胞胚胎、桑椹胚和囊胚的发育率(p<0.05),1.96mg/L的铁浓度显著提高了囊胚率(p<0.05)。铜和铁对卵母细胞成熟和卵裂有相似的影响,0.46mg/L和0.68mg/L的铜显著提高了桑椹胚和囊胚的发育率(p<0.05)。和对照组相比,铁和铜显著降低了囊胚期细胞的凋亡率(p<0.05)。在卵母细胞体外成熟的22h和受精卵培养的48h,培养中铁浓度分别下降了3.6%和9.2%,铜浓度分别下降了6.5%和10.9%。在受精卵培养的96h,144h和192h,培养液中铁浓度分别下降21.4%,25.5%和27.0%,铜浓度分别下降了23.9%,28.3%和30.4%。本试验结果说明:培养液中的铁和铜对早期胚胎培养至8细胞、桑椹胚和囊胚有重要的作用;长期的缺铁或缺铜造成囊胚期细胞凋亡率的上升;在早期胚胎培养至8细胞后,早期胚胎对微量元素铁和铜需求的主体可能由细胞本身转向培养液。
     5.研究了0.075 M KCl的低渗处理液在胞质直接注射的克隆研究中对供体细胞质膜破裂的影响,通过判定随后重构胚的形成、重构胚后期发育和囊胚期细胞的凋亡来评价低渗处理液对供体细胞破膜处理的影响。根据0.075 M KCl低渗液对供体颗粒细胞处理的不同时间,将用于克隆的去核卵母细胞分为五组:0s(对照组),30s,60s,90s和180s。细胞核荧光染色用Hoechst 33342。实验结果如下:0.075 M KCl低渗液对供体颗粒细胞的不同处理时间较对照组显著提高了重构胚的形成,但180 s的实验处理组显著抑制了重构胚发育至囊胚的比例(P<0.05),而且180s实验处理组的囊胚期细胞显示出典型的凋亡特征。这些结果显示:在胞质直接注射的克隆研究中,可以通过低渗液处理供体细胞促使供体细胞质膜的破裂来提高重构胚的构建效率,但对供体细胞长时间的低渗处理降低了重构胚发育后期囊胚的发育率,而且提高了囊胚期细胞的凋亡率。
Somatic cell nuclear transfer is a major content of mammal embryo engineering, and it is useful not only for shortening the time of animal breed and increasing the availability of good species but also for the study of fertilization mechanism. There are many steps in the procedure of mammal somatic cell nuclear transfer from recipient oocyte culture, donor cell preparation, nuclear transfer, reconstructed embryo formation, reconstructed embryo activation, reconstructed embryo culture, embryo transfer to foetus birth, and each of these steps influence the efficiency of somatic cell nuclear transfer. In these steps, donor cell preparation, recipient oocyte culture and reconstructed embryo formation play important role. In our study, we investigated several factors which affected donor cell preparation, recipient oocyte culture and reconstructed embryo formation in bovine nuclear transfer. We investigated the effects of culture passages, serum starvation concentration and serum starvation time on cell cycle and apoptosis of in vitro cultured bovine granulosa cells and oviduct epithelia cells, and we also studied the mechanism of apoptosis origined from serum starvation and the inhibit effect of different antioxidant for their apoptosis. We added various concentrations of iron or copper to culture media from which we had previously removed the respective element in order to examine the effects of iron and copper on bovine oocyte maturation and preimplantation embryo development in vitro. Furthermore, our study determined lower osmotic pressure duration optimal for breaking granulosa cell membrane, and to determine its effects on reconstructed embryos formation and reconstructed embryos developmental potential in bovine nuclear transfer by intraplasmic injection.
     1. Investigated the effects of culture time, serum starvation and starvation time on cell cycle of in vitro cultured bovine granulosa cells and oviduct epithelium cells. Cell cycleanalysis of propidium iodide staining was performed by flow cytometric assay. Bovine granulosa cells and oviduct epithelium cells were cultured to P 2, P 10 and P 25, and then the cells were cultured in 0.5% and 0.05% FCS seum starvation for 2 d, 3 d, 4 d, and 5 d. The results were as follows: bovine granulosa cells and oviduct epithelium cells of P 2, P 10 and P 25 have no significant differences in the percentages of G0/G1 phase (P>0.05). 0.5% and 0.05% FCS in culture medium significantly increased the percentages of G0/G1 phase than their control(10% FCS)(P<0.05), and there were no significant differences between 0.5% FCS and 0.05% FCS (P>0.05). The cells cultured for 5 d at 0.5% FCS starvation had significant higher percentages of G0/G1 phase than the cells cultured for 2 d at 0.5% FCS starvation. In concluded that culture time of bovine granulosa cells and oviduct epithelium cells in vitro has no effect on the percentages of G0/G1 phase, and serum starvation and prolonged serum starvation time synchronized the cell cycle effectively.
     2. Investigated the effects of culture time, serum starvation and serum starvation time on apoptosis of in vitro cultured bovine granulosa cells and oviduct epithelium cells and investigated its possible mechanisms. Cell apoptosis detection of Annexin V/FITC double staining were performed by flow cytometric assay. Bovine granulosa cells and oviduct epithelium cells were cultured to P 2, P 10 and P 25, and then the cells were cultured in 0.5%FCS and 0.05% FCS seum starvation for 2 d, 3 d, 4 d and 5 d. Caspase inhibitor z-VAD-fmk was used to determine whether serum starvation-induced apoptosis was mediated by caspase activation. The results were as follows: there were no significant differences in apoptosis rates of granulosa cells between P 2 and P 10, and the cells of P 25 had significantly higher apoptosis rates than the cells of P 2 and P 10. Apoptosis rates of 0.5%FCS and 0.05%FCS serum starvation were significant differences and significant greater than serum-fed treatment (10% FCS). The cells cultured for 4 d and 5 d at 0.5% FCS starvation had significantly higher apoptosis rates than the cells cultured for 2 d and 3 d. Culture medium with caspase inhibitor z-VAD-fmk significantly decreased the cells apoptosis rates of 0.5% and 0.05% FCS starvation than culture medium without z-VAD-fmk, and they were no significant differences in the cells apoptosis rates of 10% FCS between z-VAD-fmk and the control. In concluded that long-term curture in vitro, serum starvation and prolonged serum starvation time resulted in high apoptosis rate of bovine granulosa cells and oviduct epithelium cells, and serum starvation-induced apoptosis has the involvement of caspases.
     3. Investigated the effects of different antioxidant on inhibit of apoptosis origined from serum starvation, and somatic cells were bovine granulosa cells and oviduct epithelium cells. Cell apoptosis detection of Annexin V/FITC double staining was performed by flow cytometric assay. Cells of P 5 were detected in 2 d culture in 10% and 0.5% FCS culture medium with antioxidant vitamin E, selenium and tathion. The results were as follows: 10% FCS treatments with antioxidant vitamin E, selenium and tathion decreased apoptosis rates of granulosa cells compared with their control, but there were no significant differences. However, 0.5% FCS treatments with antioxidant vitamin E, selenium and tathion significantly decreased apoptosis rates of granulosa cells compared with their control. 10% FCS treatments with antioxidant decreased apoptosis rates of oviduct epithelium cells compared with their control, but there were no significant differences, and 0.5% FCS treatments with antioxidant significantly decreased apoptosis rates of the cells compared with their control. In concluded that bovine granulosa cells and oviduct epithelium cells apoptosis induced by serum starvation could be active suppression through adding antioxidant vitamin E, selenium and tathion in culture medium, and antioxidant vitamin E, selenium and tathion in culture medium could not inhibit apoptosis of the cells cultured in 10% FCS culture medium.
     4. This study was on the effects of iron and copper on bovine oocytes maturation, preimplantational embryos development and apoptosis in blastocysts. Iron concentrations in culture medium were 0 mg/L(control), 0.45mg/L, 0.81mg/L, 1.96mg/Land 3.26mg/L, and copper were 0mg/L(control), 0.093mg/L, 0.27mg/L, 0.46mg/Land 0.68mg/L. The variance of iron concentration (1.96mg/L) and copper concentration (0.46mg/L) in culture medium were mensurated at 22h of oocytes maturation and at 48h, 96h, 144h and 192h of zygotes culture. The results were as follows: there were no significant differences in oocytes maturation and cleavage between iron and control, but iron had higher (p<0.05) rate of 8-cell embryos, morulae and blastocysts than the control, and 1.96mg/Lof iron increased blastocysts rate (p<0.05). The effects of copper on oocytes maturation and cleavage was similar to iron, and 0.46 and 0.68mg/Lof copper increased the rate of morulae and blastocysts (p<0.05). Iron or copper had a significant decrease in apoptotic blastomeres than the control (p<0.05). At 22h of oocytes maturation and 48h of zygotes culture, decreased percentage of iron concentrations were 3.6% and 9.2%, respectively, and that of copper were 6.5 and 10.9%, respectively. At 96h, 144h and 192h of zygotes culture, decreased percentage of iron concentrations were 21.4%, 25.5% and 27.0%, respectively, and that of copper were 23.9%, 28.3% and 30.4%, respectively. In conclusion: iron or copper played an important role in the success of culture of 8-cell embryos, morulae and blastocysts, and long-term lack of iron or copper increased apoptotic blastomeres. There might has a transition of primary demand for trace element iron or copper utilized by zygotes from cytoplast to culture medium after 8-cell of in vitro zygotes culture.
     5. Determined lower osmotic pressure (0.075 M KCl) duration optimal for breaking granulosa cell membrane, and determined its effects on reconstructed embryos formation, reconstructed embryos developmental potential and cells apoptosis of blastocysts in bovine nuclear transfer by intracytoplasmic injection. Enucleated bovine oocytes were divided into five groups according to duration of 0.075 M KCl to granulosa cells: Os (control), 30s, 60s, 90s and 180s. Typical apoptotic nuclei was shown by staining of granulosa cells with DNA-binding fluorochrome Hoechst 33342. Different duration of 0.075 M KCl significantly increased the formation of reconstructed embryos than control. The treatment of 180s had significantly lower rate of blastocysts than other groups, and nuclei of blastocysts from 180s duration of 0.075 M KCl showed typical apoptosis morphology. These results suggested that lower osmotic pressure to bovine granulosa cells accelerated the formation of reconstructed embryos in nuclear transfer of intracytoplasmic injection, and long duration of lower osmotic pressure resulted in low blastocysts rate and high cells apoptosis rate of blastocysts.
引文
1.毕春明,文端成,陈大元.供体细胞的选择与动物克隆效率研究进展.生物化学与生物物理进展,2003,30(4):518-520
    2.陈大元.受精生物学.北京:科学出版社,2000
    3.鄂征.组织培养技术及其在医学研究中的应用.中国协和医科大学出版社,2004
    4.郭继彤,李煌,安志兴,李雪峰,李裕强,郭泽坤,张涌.成年耳细胞克隆山羊.中国科学C辑,2002,81-85
    5.郭志勤.胚胎工程技术.中国首届农业生物技术发展论坛论文集,中国农业出版社,2003
    6.何婕.体外细胞株G0期同步化模型建立及分析.暨南大学学报(自然科学版),2003,25(增刊):202-204
    7.李荣凤,薛晓先,刘哲,旭日干.牛卵母细胞皮层颗粒荧光染色法质成熟鉴定.畜牧兽医学报,2000,31(3):203-210
    8.李雪峰,谭丽玲,石德顺.电激活对完全体外化牛细胞核移植的影响.畜牧兽医学报.1996,27(6):495-500.
    9.刘志春.流式细胞仪分析法检测黑熊成纤维细胞周期同步化处理效果.西北农林科技大学学报(自然科学版),2003,31(4):77-79
    10.卢展盛,卢克焕.不同血清种类及其浓度对牛卵母细胞体外受精的影响.广西农业大学学报,1994,13:21-26
    11.马云.牛卵泡卵母细胞体外成熟,体外受精及受精卵体外培养的研究.[硕士学位论文].陕西杨凌:西北农林科技大学图书馆,2001
    12.钱云,师蔚群,丁家桐.哺乳动物体外受精的研究进展.动物科学与动物医学,2002,17(1):26-28
    13.汪堑仁,薛绍白,柳惠图.细胞生物学.北京:北京师范大学出版社,2001,436-526
    14.旭日干,张锁链,薛晓光.屠宰母牛卵巢卵母细胞的体外受精与早期发生.内蒙古大学学报(自然版),1989,20:407-414
    15.徐仙.月经周期血清微量元素与生殖激素关系的探讨.西安医科大学学报,1997,18(4):455
    16.薛庆善.体外培养的原理与技术.北京,科学出版社,2001:432
    17.张家骅,段恩奎,王建辰.牛卵泡卵母细胞体外成熟的超微结构变化.兽医产科学进展,陕西出版社,1994,89-91
    18.章静波.组织和细胞培养技术.人民卫生出版社,2002
    19.赵桂,徐美奕.微量元素铁与妊娠关系的探讨.微量元素与健康研究,2004,21:21-22
    20. Abe H, Hoshi H. Evaluation of bovine embryos produced in high performance serum-free media. J Reprod Dev, 2003, 49: 193-202
    21. Adrian F, Rolf D, Bernt J. Experimental copper and chromium deficiency and additional molybdenum supplementation in goats Ⅱ Concentrations of trace and minor elements in liver, kidneys and ribs: haematology and finical chemistry. Sci Total Environ, 2000, 249: 143-170
    22. Arat S, Gibbons J, Rzucidlo S J, Miyoshi K, Venable A, Walterburg R, Stice S. Bovine cloning using adult donor cells treated with roscovitine. Biol Reprod, 2001a, 64(suppl): 173 (abstract 171).
    23. Arat S, Rzucidlo S J, Gibbons J, Miyoshi K, Stice S L. Production of transgenic bovine embryos by transfer of transfected granulosa cells into enucleated oocytes. Mol Reprod Dev, 2001b, 60(1): 20-26
    24. Baguisi A, Behboodi E, Melican D T, Pollock J S, Destrempes M M, Cammuso C, Williams J L, Nims S D, Porter C A, Midura P, Palacios M J, Ayres S L, Denniston R S, Hayes M L, Ziomek C A, Meede H M, Godke R A, Gavin W G, Overstrom, E W, Echelard Y. Production of goats by somatic cell nuclear transfer. Nat Biotechnol, 1999, 17: 456-461
    25. Balasch J, Creus M, Fabregues F, Civico S, Carmona F, Puerto B, Casamitjana R, Vanrell J A. The effect of exogenous luteinizing hormone (LH) on oocyte viability: evidence from a comparative study using recombinant human follicle-stimulating hormone (FSH) alone or in combination with recombinant LH for ovarian stimulation in pituitary-suppressed women undergoing assisted reproduction. J Assist Reprod Genet, 2001, 18:250-256
    26. Beduwal R S, Bahuguma A. Zinc, copper and selenium in reproduction. Experientia, 1994, 50(7):626-640
    27. Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J, Forsythe T, Golueke P, Jurgella G, Koppang R, Lesmeister T, Mallon K, Mell G, Misica P, Pace M, Pfister-Genskow M, Strelchenko N, Voelker G, Watt S, Thompson S, Bishop M. Production of cloned pigs from in vitro systems. Nat Biotechnol, 2000, 18 (10) :1055-1059.
    28. Betts D H, Bordignon V, Hill J R, Winger Q, Westhusin M E, Smith L C, King W A. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Dev Biol, 2001, 98:1077-1082
    29. Bevers M M, Izadyar F. Role of growth hormone and growth hormone receptor in oocyte maturation. Mol Cell Endocrinol, 2002,197:173-178
    30. Bondioli K, Ramsoondar J, Williams B, Costa C, Fodor W. Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar. Mol Reprod Dev, 2001, 60:189-195
    31. Bondioli K R, Westhusin M E, Looney C R. Production of identical bovine offspring by nuclear transfer. Theriogenology, 1990, 33:165-174
    32. Booth P J, Tan S J, Reipurth R, Holm P, Callesen H. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique. Cloning Stem Cells, 2001, 3:139-150
    33. Booth P J, Viuff D, Tan S, Holm P, Greve T, Callesen H. Numerical chromosome errors in day 7 somatic nuclear transfer bovine blastocysts. Biology of Reproduction, 2003, 68(3):922-928
    34. Boquest A C, Day B N, Prather R S. Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol Reprod, 1999, 60:1013-1019
    35. Bracken B G, Zuelke K A. Analysis of factors involved in the in vitro production of bovine embryos. Theriogenology, 1993, 39:43-64
    36. Braw T R, Yossefi S. Study in vivo and in vitro the initiation pf follicle growth in the bovine ovary. J Reprod Fertil, 1997,109:165-171
    37. Brophy B, Smolenski G, Wheeler T, Wells D, L'Huillier P, Laible G. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechno, 2003, 21:157-62
    38. Buttke T M, Sandstrom P A. Oxidative Stress as a mediator of apoptosis. Immunol Today, 1994,15:17
    39. Byskov A G, Anderson C Y, Hossaini A. Cumulus cells of oocyte-cumulus complexes secret a meiosis I activating substance when stimulated with FSH. Mol.Reprod.Deve, 1997,46: 296-305
    40. Campbell K H, Loi P, Otaegui P J, Wilmut I. Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod, 1996,1:40-46
    41. Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P. Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol, 2003,4(4):387-393
    42. Chandra R K. Effect of vitamin and trace-element supplementation on cognitive function in elderly subjects. Nutrition, 2001,17:709-712
    43. Chen D Y, When D C, Zhang Y P, Sun Q Y, Han Z M, Liu Z H, Shi P, Li J S, Xiangyu J G, Lian L, Kou Z H, Wu Y Q, Chen Y C, Wang P Y, Zhang H M. Interspecies implantation and mitochondria fate of Panda-Rabbit cloned embryos. Biol Reprod, 2002, 67:637-642
    44. Chen S U, Chao K H, Chang C Y, Hsieh F J, Ho H N, Yang Y S. Technical aspects of the piezo, laser-assisted, and conventional methods for nuclear transfer of mouse oocytes and their efficiency and efficacy: Piezo minimizes damage of the ooplasmic membrane at injection. J Exp Zoolog Part A Comp Exp Bio, 2004, 1301:344-351
    45. Chesne P, Adenot P G, Viglietta C, Baratte M, Boulanger L, Renard J P. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol, 2002, 20:366-369
    46. Choi Y H, Love C C, Chung Y G., Varner D D, Westhusin M E, Burghardt R C, Hinrichs K. Production of nuclear transfer horse embryos by piezo-driven injection of somatic cell nuclei and activation withstallion sperm Cytosolic extract. Biol Reprod, 2002, 67:561-567
    47. Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, Ponce de Leon F A, Robl J M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280:1256-1258
    48. Collas P, Barnes F L. Nuclear transplantation by microinjection of inner cell mass and granulose cell nuclei. Mol Reprod Dev, 1994, 38:264-267
    49. Cui X S, Li X Y, Jeong Y J, Jun J H, Kim N H. Gene expression of cox5a, 5b, or 6bl and their roles in preimplantation mouse embryos. Biol Reprod, 2006, 74: 601-10
    50. Dai Y, Vaught T D, Boone J, Chen S H, Phelps C J, Ball S, Monahan J A, Jobst P M, McCreath K J, Lamborn A E, Cowell-Lucero J L, Wells K D, Colman A, Polejaeva I A, Ayares D L. Targeted disruption of the alpha 1, 3-galactosyl transferase gene in cloned pigs. Nat Biotecnol, 2002a, 20:251-255
    51. Dai Y C, Li J, Li J, Yu L, Dai G, Hu A G, Yuan L Y, Wen Z. Effects of rare earth compounds on growth and apoptosis of leukemic cell lines. In Vitro Cell Dev-An, 2002b, 38:373-375
    52. De Sousa P A, Watson A J, Schultz R M. Transient expression of a translation initiation factor is conservatively associated with embryonic gene activation in murine and bovine embryos. Biol Reprod, 1998, 59:969-977
    53. Dinnyes A, Dai Y, Barber M. Development of cloned embryos from adult rabbit fibroblasts : effect of activation treatment and donor cell preparation. Biol Reprod, 2001, 64 (1) :257-263
    54. Dominko T, Ramalho-Santos J, Chan A, Moreno R D, Luetjens C M, Simerly C, Hewitson L, Takahashi D, Martinovich C, White J M, Schatten G. Optimization strategies for production of mammalian embryos by nuclear transfer. Cloning, 1999,1:143-152
    55. Du F, Sung L Y, Tian X C, Yang X. Differential cytoplast requirement for embryonic and somatic cell nuclear transfer in cattle. Mol Reprod Dev, 2002, 63:83-91.
    56. Ector F J, Delval A, Smith L C, Touati K, Remy B, Beckers J F, Ectors F. Viability of cloned bovine embryos after one or two cycles of nuclear transfer and in vitro culture. Theriogenology, 1995,44:925-933
    57. Esener A, Bol G, Kossen N, Roels J A. Effect of water activity on microbial growth. In: M. Moo-Young, Robinson C W and Vesina C Editors. Advances in biotechnology. Pergamon Oxford, 1981.339-344
    58. Fairbanks, V F. Iron in medicine and nutrition. Modern nutrition in health and disease. Lea and Febiger Philadelphia PA, 1994,185-213
    59. Fayrer Hosken R A, Caudle A B. Bovine in vitro fertilization: will the technique be practical. Embryo Transfer, 1990, 5:1-5
    60. Feugang J M, Roover D E, Leonard S, Dessy F, Donnay I. Kinetics of apoptosis in preimplantation bovine embryos produced in vitro and in vivo. Theriogenology, 2002, 57: 494
    61. Galli C, Lagutina I., Crotti G, Colleoni S, Turini P, Ponderato N. A cloned horse born to its dam twin. Nature, 2003,424:635
    62. Gandolfi F, Milanesi E, Pocar P, Luciano A M, Brevini T A, Acocella F, Lauria A, Armstrong D T. Comparative analysis of calf and cow oocytes during in vitro maturation. Mol.Reprod.Deve, 1998, 49 (2): 168-175
    63. Gardner D K, Lane M, Spitzer A, Batt P A. Enhanced rates of cleavage and deveopment for sheep zygotes cultured to the blastocyst stage in vitro in the absence of senrm and somatic cells:amino acids,vitamin and culturing embryo in groups stimulate development. Bial Roprod, 1994, 50:390-400
    64. Gasparrini B, Gao S, Wilmut I, de Seasa P A. Cloned mice derived from embryonic stem cell karyoplasts and activated cytoplasts prepared by induced enucleation. Biol Reprod, 2003, 68:1259-1266
    65. Geshi M, Yonai M, Sakaguchi M, Nagai T. Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with β-mercaptoethanol.Theriogenology , 1999, 51:551 -558.
    66. Gibbons J, Arat S, Rzucidlo J, Miyoshi K, Waltenburg R, Respess D, Venable A, Stice S. Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol Reprod, 2002, 66: 895-900
    67. Gjorret J O, Knijn H M, Dieleman S J, Avery B, Larsson L, Maddox-Hyttel P. Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol reprod, 2003, 69:1193-1200
    68. Goldhaber S B. Trace element risk assessment: essentiality vs toxicity. Regul. Toxicol. Pharm 2003; 38: 232-242
    69. Gomez M C, Jenkins J A, Giraldo A, Harris R F, King A, Dresser B L. Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes. Biol Reprod, 2003, 69:1032-1041
    70. Gomez M C, Pope C E, Giraldo A, Lyons L A, Harris 1ZF, King A L, Cole A, Godke R A, Dresser B L. Birth of african wildcat cloned kittens born from domestic cats. Cloning Stem Cells, 2004, 6:247-258
    71. Gordon I. Transferring embryos and establishing pregnancies. In: Persley J, editor. Laboratory production of cattle embryos, 2nd ed. Oxon: CAB International; 2003: 329-354
    72. Gordon I and Lu K H. In vitro maturation (IVM) and Fertilization (IVF) of cattle ova Embryo transfer. News letter, 1990, 8:6-11
    73. Guler A, Poulin N, Mermillod P, Terqui M, Cognie Y. Effect of growth factor, EGF and IGF-I, and estradiol on in vitro maturation of sheep oocytes. Theriogenology, 2000, 54: 209-218
    74. Han Z, Han Z M, Chen D Y, Li J S, Sun Q Y, Wang P Y. Flow cytometric cell cycle analysis of cultured fibroblasts from the giant panda, Ailuropoda melanoleuca L. Cell Biol Intl , 2003, 27:349-353
    75. Hayes O, Ramos B, Rodr'iguez L L, Aguilar A, Bad'ia T, Castro F O. Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle. Anim Reprod Sci, 2005, 87: 181-192
    76. Hazeleger W, Kemp B. Recent developments in pig embryo transfer. Theriogenology, 2001, 56: 1321-31
    77. Heyman Y, Degrolaed J, Adenot P, Chesne P, Flechon B, Renard J P, Flechon J E. Cellular evaluation of bovine nuclear transfer embryos developed in vitro. Reprod Nutr Dev. 1995, 35: 713-723.
    78. Hill J R, Winger Q A, Burghardt R C, Westhusin M E. Bovine nuclear transfer embryo development using cells derived from a cloned fetus. Anita Reprod Sci, 2001, 67: 17-26
    79. Hockenbery D. Defining apoptosis. Am J Pathol, 1995, 146: 16-19
    80. Honda Y, Tanikawa H, Fukuda J, Kawamura K, Sato N, Sato T, Shimizu Y, Kodama H, Tanaka T. Expression of smac/diablo in mouse preimplantation embryos and its correlation to apoptosis and fragmentation. Molecular Human Reproduction, 2005, 11: 183-188
    81. Hyun S H, Lee G S, Kim D Y, Kim H S, Lee S H, Kim S, Lee E S, Lira J M, Kang S K, Lee B C, Hwang W S. Effect of maturation media and oocytes derived from sows or gills on the development of cloned pig embryos. Theriogenology, 2003, 59: 1641-1649
    82. Irina L, Giovanna L, Roberto D, Silvia C, Nunzia P, Paola T, Gabriella C, Cesare G. Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction, 2005, 130: 559-567
    83. Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene, 2004, 23(16): 2746-2756
    84. Joo B S, lim M K, Na Y J. The mechanism of action of co-culture on embryo development in the mouse model: direct embryo-to-cell contact and the removal of deleterious components. Fertil Steril, 2001, 75: 193-199
    85. Kamjoo M, Brison D R, Kimber S J. Apoptosis in the preimplantation mouse embryos: effect of strain difference and in vitro culture. Mol Reprod Dev, 2002, 61: 67-77
    86. Karoonuthaisiri N, Titiyevskiy K, Thomas J L. Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloids Surf B Biointerfaces, 2003, 4:365-375
    87. Kasinathan P, Knott J G, Moreira P N, Burnside A S, Jerry D J, Robl J M. Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear t ransfer embryos in vitro. Biol Reprod, 2001, 64(5) :1487-1493.
    88. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282:2095-2098
    89. Katska L, Bochenek M, Kania G, Rynska B, Smorag Z. Flow cytometric cell cycle analysis of somatic cells primary cultures established for bovine cloning. Theriogenology, 2002, 58:1733-1744
    90. Kerr J F R, Wyllie A H, Currie A R. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer, 1972, 26: 239-257
    91. Koo D B, Kang Y K, Choi Y H, Park J S, Kim H N, Kim T. Developmental potential and transgene expression of porcine nuclear transfer embryos using somatic cell. Mol Reprod Dev, 2001, 58:15-21
    92. Kragh P M, Vajta G, Corydon T J, Purup S, Bolund L, Callesen H. Production of transgenic porcine blastocysts by hand-made cloning. Reprod Fertil Dev, 2004, 16:315-318
    93. Kroemer G, Petit P, Zamzami N. FASEB J, 1995, 9:1277-1287
    94. Kubota C, Yamakuchi H, Todoroki J, Mizoshita K, Tabara N, Barber M, Yang X. Six cloned calves produced from adult fibroblast cells after long-term culture. Proc Natl Acad Sci. 2000, 97:990-995
    95. Kuhholzer B, Baguisi A, Overstrom E W. Long-term culture and characterization of goat primordial germ cells. Theriogenology, 2000, 53:1071-1079
    96. Lagutina I., Lazzari G, Duchi R, Colleoni S, Ponderato N, Turini P, Crotti G, Galli C. Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction, 2005, 130:559-567
    97. Lai L, Prather R S. Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells, 2003, 5:233-41
    98. Lanza R P, Cibelli J B, Diaz F, Moraes C T, Farin P W, Farin C E, Hammer C J, West M D, Damiani P. Cloning of an endangered species (Bos gaurus) using erspecies nuclear transfer. Cloning, 2000, 2:79-90
    99. Larson R C, lgnotz G G, Currie W B. Transforming growth factor beta and basic fibroblast growth factor synergistically promote early embryo development during the fourth cell cycle. Mol Reprod Dev, 1992,33: 432-435
    100.Lavoir M C, Rumph N, Moens A, King W A, Plante Y, Johnson W H, Ding J, Betteridge K J. Development of bovine nuclear transfer embryos made with oogonia. Biol Reprod. 1997, 56(1):194-199
    101.Lee G S, Hyun S H, Kim H S, Kim DY, Lee S H, Lim J M, Lee E S, Kang S K, Lee B C, Hwang W S. Improvement of a porcine somatic cell nuclear transfer technique by optimizing donor cell and recipient oocyte preparations. Theriogenology, 2003a, 59 (9) :1949-1957
    102.Lee J W, Wu S C, Tian X C, Barber M, Hoagland T, Riesen J. Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol Reprod, 2003b, 69:995-1001
    103.Lequarre A S, Marchandise J, Moreau B, Massip A, Donnay I. Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition. Biol Reprod, 2003, 69: 1707-1713
    104.Levy R R, Cordonier H, Czyba J C, Goerin J F. Apoptosis in preimplantation mammalian embryo and gengtics. Int J Anat Embryol, 2001,106:101-108
    105.Li E., Bestor T H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryomic lethality. Cell, 1992, 69:915-926
    106.Li Z Y, Sun X S, Chen J, Liu X M, Samantha M W, Zhou Q, Jean-Paul R, Gregory H L, John F E. Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol, 2006, 293:439-448
    107.Linder M C. Biochemistry of Copper. New York: Plenum Press, 199
    108.Liu C T, Yu K C, Ju J C. Cell cycle stage analysis of rabbit foetal fibroblasts and cumulus cells. Reprod Domest Anim, 2004, 39:385-390
    109.Logisz C C, Hovis J S. Effect of salt concentration on membrane lysis pressure. Biochim Biophys Acta, 2005, 1717:104-108
    110.Loi P, Ptak G, Barboni B, Fulka J J, Cappai P, Clinton M. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol, 2001,19: 962-964
    111.Lonergan P, Monaghan P, Rizes D. Effect of follicle size on bovine oocyte quality in vitro. Mot Reprod Dev, 1994, 37:48-53
    112.Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland M P. Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod Domest Anim, 2003, 38: 259-267
    113.Manami U, Atsushi I, Tokihiko S, Yoshito A. Examination of a modified cell cycle synchronization method and bovine nuclear transfer using synchronized early G1 phase fibroblast cells. Theriogenology, 2004, 62:714-728
    114.Mccaffery G, Lu K H, Screenan J M. Factors involved in the in vitro development of IVF cattle ova. Proceedings of the irish grassland and animal reduction association, 18th annual research meeting. Dublin:olkiely, 1992:33-34
    115.Mccreath K J, Howcroft J, Campbell K H S, Colman A, Schnieke A E, Kind A J. Production of gene-targeting sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405:1066-1069
    116.McGrath J, Solter D. Nuclear transplantation in mouse embryos by microsurgery and fusion. Science, 1983, 220:1300-1302
    117.Memili E, First N L. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 2000, 8:87-96
    118.Mochizulci H, Fukui Y, Ono H. Effect of the number of granuloa cell added to culture medium for in vitro maturation, fertilization and development of bovine oocytes. Theriogenology, 1991, 36:973-986
    119.Mosser D D, Caron A W, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp 70 in protection against stress-induced apoptosis. Mol Cell Biol, 1997,17: 5317-5327
    120.Motlik J, Fulka J, Flechon J E. Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro. J Reprod fertile, 1986,76:31-37
    121.Navarro P A, Lin L, Keefe D L. In vivo effects of arsenite on meiosis, preimplantation development, and apoptosis in the mouse. Biol Reprod, 2004, 70: 980-985
    122.Niwa K, Murase T. Effects of different protein supplements in fertilization medium on in vitro penetration of cumulus-intact and cumulus-free bovine oocytes matured in culture. Theriogenology, 1993, 40:949-958
    
    123.Oback B, Wells D N. Cloning cattle. Cloning Stem Cells, 2003a, 5:243-562
    124.Oback B, Wiersema AT, Gaynor P, Laible G, Tucker F C, Oliver J E, Miller A L, Troskie H E, Wilson K L, Forsyth J T, Berg M C, Cockrem K, McMillan V, Tervit H R, Wells D N. Cloned cattle derived from a novel zona-free embryo reconstruction system. Cloning Stem Cells, 2003b, 5:3-12
    125.O'Connor P M, Jackman J. Synchronization of mammalian cells. In: Pagno M, editor. Cell cycle-materials and methods. 1995, New York, Springer-Verlag: 63-74
    126.Oikawa T, Numabe T, Kikuchi T. Production of somatic cell clone calves from cumulus cells of a 20 years old Japanese black cow. Theriogenology, 2000, 53: 236
    127.Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000, 289:1188-1190
    128.Paria B C, Dey S K. Preimplantion embryo development in vitro: co-operation intraction among embryo and role of growth factors. Proc Natl Acad Sci, 1990, 87:4756-4760
    129.Pavlok A, Hahn A L, Niemann H. Fertilization and developmental competence of bovine oocytes derived from different categories, of antral follicles. Mol Reprod Dev, 1992, 31:63-67
    130.Payne C M, Bernstein C, Bernstein H. Apoptosis overview emphasizing the role of oxidative stress, DNA damage and signal-transduction pathways. Leuk Lymphoma, 1995, 19: 43-93
    131.Perone N. In vitro fertilization and embryo transfer: a historical perspective. J Reprod Med, 1994, 39: 695-700.
    132.Peura T T. Serum starvation can cause excessive DNA damage in sheep fetal fibroblasts. Theriogenology, 2001, 55: 285
    133.Peura T T, Lewis L M, Trousn A O. The effect of recipient oocyte volume on nuclear transfer in cattle. Mol Reprod Dev, 1998, 50:185-191
    134.Pinyopummintr T, Bavister B D. In vitro-matured/in vitro fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol Reprod, 1991, 45:736-742
    135.Piotrowska K, Modlinski J A, Korwin-Kossakowski M, Karasiewicz J. Effects of preactivation of ooplasts or synchronization of blastomere nuclei in G1 on preimplantation development of rabbit serial nuclear transfer embryos. Biol Reprod, 2000, 63:677-682
    136.Poleiaeva I A, Chen S H, Vaught T D, Page R L, Ball S. Cloned pigs produced by nuclear transfer from adult somatic cell. Nature, 2000, 407:86-90
    137.Prather R S, Barnes F L, Sims M M, Robl J M, Eyestone W H, First N L. Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod, 1987, 37: 859-866
    138.Prokofier M I, Ernst L K, Sruaeva N M. Bovine oocytes maturation, fertilization and further development in vitro and after transfer into recipients. Theriogenology, 1992, 38: 461-469
    139.Raquel D, Tegra B, Encarnacion S, Adela B. Study of the effect of different iron salts used to fortify infant formulas on the bioavailability of trace elements using ICP-OES. Int Dairy J, 2004, 14:1081-1087
    140.Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293:1089-1093
    141.Renard J P, Zhou Q, LeBourhis D, Chavatte-Palmer P, Hue I, Heyman Y, Vignon X. Nuclear transfer technologies :between successes and doubts. Theriogenology, 2002, 57:203-22
    142.Robl J M, Prather R, Barnes F, Eyestone W, Northey D, Gilligan B, First N L. Nuclear transplantation in bovine embryos. Anim Sci. 1987, 64:642-647.
    143.Saikhun J, Pavasuthipaisit K, Jaruansuwan M, Kitiyanant Y. Xenonuclear transplantation of buffalo (Bubalus bubalis) fetal and adult somatic cell nuclei into bovine (Bos indicus) oocyte cytoplasm and their subsequent development. Theriogenology, 2002, 57:1829-1837
    
    144.Saltman P. Oxidative Stress:A radical view. Seminars in Hematology, 1989, 26:249
    
    145.Sansinena M J, Hylan D, Hebert K, Denniston R S, Godke R A. Banteng (Bos javanicus) embryos and pregnancies produced by interspecies nuclear transfer. Theriogenology, 2005, 63:1081-1091
    146.Sara J L, Kathleen S, Elise H, Paul N, Christopher J M. Cell sorting but not serum starvation is effective for SV40 human corneal epithelial cell cycle synchronization. Experimental Eye Research, 2006, 83:61-68
    147.Schnieke A E, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I, Colman A, Campbell K H. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278:2130-2133
    
    148.Scott W J. Water relations of food spoilage microorganisms. Adv Food Res, 1957, 7:83-127
    149.Senbon S, Fukumi Y, Hamawaki A, Yoshikawa M, Miyano T. Bovine oocytes grown in serum-free medium acquire fertilization competence. J Reprod Dev, 2004, 50:541-547
    150.Shamsuddin M, Larsson B, Gustafsson H, Roderiguez-Martinez H. In vitro development up to hatching of bovine in vitro-matured and fertilized oocytes with or without support from somatic cells. Theriogenology, 1993, 39:1067-1097
    151.Shin T, Rraemer D, Pryor J, Liu L, Rugila J, Howe L. A cat cloned by nuclear transplantation. Nature, 2002, 415:859
    152.Shioya Y, Ueda S, Saitou A, Oota H, Hanada A. Effect of the time between slaughter and aspiration of follicles on the developmental capability of bovine oocytes matured and fertilized in vitro. J Anim Sci, 1998, 34: 39-44.
    153.Simerly C, Dominko T, Navara C, Payne C, Capuana S, Goasman G, Chong K Y, Takahashi D, Cahce C, Compton D, Hewitson L, Schatten G. Molecular correlates of primate nuclear transfer failures. Science, 2003, 300:297
    154.Smith L C, Wilmut I. Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biol Reprod, 1989, 40:1027-1035
    155.Stice S L, Keefer C L, Matthews L. Bovine nuclear transfer embryos: oocyte activation prior to blastomere fusion. Mol Reprod Dev, 1994, 38(1):61-68
    156.Tecirlioglu R T, French A J, Lewis I M, Vajta G, Korfiatis N A, Hall V J, Ruddock N T, Cooney M A, Trounson A O. Birth of a cloned calf derived from a vitrified hand-made cloned embryo. Reprod Fertil Dev, 2004,15:361-366.
    157.Trounda A, Lacham-Kaplan O, Diamente M. Reprogramming cattle somatic cels by isolated nuclear injection. Reprod Fertil Dev, 1998,10: 645-650
    158.Troy C M, Shelanski M I. Down-regulation of copper/zine superoxide dismutase acauses apoptotic death in PC120 neuronal cells. Proc Natl Acad Sci USA, 1994, 91:6384
    159.Tsafriri A, Dekel N, Bar-Ami S. The role of oocyte maturation inhibitor in follicular regulation of oocyte maturation. J Reprod Fertil, 1982, 64: 541-551
    160. Urakawa M, Ideta A, Sawada T, Aoyagi Y. Examination of a modified cell cycle synchronization method and bovine nuclear transfer using synchronized early Gl phase fibroblast cells. Theriogenology, 2004, 62: 714-728
    161.Vallee B L, Falchuk K H. The biochemical basis of zinc physiology. Physiol Rev, 1993, 73: 79-111
    162.Vaux D L. Toward and understanding of the molecular mechanisma of physiological cell death. Proc Natl Acad Sci USA, 1993, 90:786
    163.Wajih N S, Al-Awadhi F, Aziz A. Nutritional profile of Kuwaiti composite dishes: minerals and vitamins. J Food Compos Anal, 1998,11:70-88
    164.Wakayama T, Hayashi Y, Ogura A. Participation of the female pronucleus derived from the second polar body in full embryonic development of mice. J Reprod fertile,1997,110:263-266
    165.Wakayama T, Perry A C, Zuccotti M, Johnson K R, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 2002, 394:369-374
    166.Wakayama T, Rodriguez I, Perry A C, Yanagimachi R, Mombaerts P. Mice cloned from embryonic stem cells. Proc Natl Acad Sci USA, 1999, 96:14984-14989
    
    167.Wakayama T, Shinkai Y, Tamashiro K L, Niida H, Blanchard D C, Blanchard R J, Ogura A, Tanemura K, Tachibana M, Perry A C, Colgan D F, Mombaerts P, Yanagimachi R. Cloning of mice to six generations. Nature, 2000, 407(6802):318-319
    168.Wang M K, Liu J L, Li G P, Lian L, Chen D Y. Sucrose pretreatment for enucleation: an efficient and non-damage method for removing the spindle of the mouse MII oocyte. Mol Reprod Dev, 2001,58:432-436
    169.Wang W L, Jiang H S, Shi D S, Lu K H, Gordon I, Polge C. Maturation, fertilization and development of bovine oocytes effect of temperature on the in vitro proc seventh congress euro embryo transfer asso (Cambridge) 1991,216
    170.Wells D N, Misica P M, Tervit H R. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod, 1999, 60: 996-1005
    171.Wen X W, Nicholas S F. Effects of calcium and metabolic inhibitors on trace element uptake in two marine bivalves. J Exp Marine Biol Ecol, 1999, 233: 149-164
    
    172.Willadson S M. Nuclear transplantation in sheep embryos. Nature, 1986, 320:63-65
    
    173.Wilmut 1, Beaujean N, de Sousa P A, Dinnyes A, King T J, Paterson L A, Wells D N, Young L E. Somatic cell nuclear transfer. Nature, 2002,419:583-586
    174.Wilmut I, Schnieke A E, McWhir J, Kind K L, Campbell K H S. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385:810-813
    175.Winger Q, Hill J R, Jones K, Watson A J, Westhusin M E. Reprogramming of fibroblast nuclei after transfer into bovine oocytes. Cloning, 1999,1: 63-69
    176.Woods G L, White K L, Vanderwall D K, Li G P, Aston K I, Bunch T D, Meerdo L N, Pate B J. A mule cloned from fetal cells by nuclear transfer. Science, 2003, 301:1063
    177.Wyllie A H. Cell death: a new classification separating apoptosis from necrosis, in: ID Bowen, R.A. Lockshin (Eds.), Cell death in biology and pathology, Chapman and hall, New York; 1981: 9-34
    178.Xiang J, Chao D T, Korsmeyer S J. BAX-induced cell death may not require interleukin 1 β-converting .enzyme-like proteases. Proc Natl Acad Sci USA, 1996, 93(25): 14559-14563
    179.Xu J, Yang X. Telomerase activity in early bovine embryos derived from parthenogenetic activation and nuclear transfer. Biol Reprod, 2001, 64:770-774
    180.Yin X J, Kata Y, Tsunoda Y. Effect of enucleation procedures and maturation conditions on the development of nuclear transfer rabbit oocytes receiving male fibroblast cells. Reproduction, 2002,124: 41-47
    181.Yin X J, Tani T, Kato Y. Production of cloned pigs from adult somatic cells by chemically assisted removel of maternal chromosomes. Biol Reprod, 2002, 67: 442-446
    182.Zakhartchenko V, Durcova-Hills G, Stojkovic M, Schernthaner W, Prelle K, Steinborn R, Muller M, Brem G, Wolf E. Effects of serum starvation andre-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts. J Reprod Fertil, 1999a, 115(2):325-31
    183.Zakhartchenko V A, Alberio R, Stojkovic M. Adult cloning in cat the potential of nuclei from a permanent cell line and from primary cultures. Mol Reprod Dev, 1999b, 54(3) :264-272
    
    184.Zamzami N, Brenner C, Marzo I. Oncogene, 1998, 16:2265-2287
    185.Zetterberg A, Larsson O. Cell cycle progression and cell growth in mammalian cells: kinetic aspects of transition events. In: Hutchinson C, Glover DM, editors. Cell cycle control, 1995, New York: University Press: 206-227
    186.Zhang J Y, Wang X, Zhao Y H, Chen B, Suo G I, Dai J W. Neoplastic transformation of human diploid fibroblasts after long-term serum starvation. Cancer Lett, 2006, 243:101-108
    187.Zhou Q, Jouneau A, Brochard V, Adenot P, Renard J P. Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol Reprod, 2001, 65, 412-419
    188.Zhou Q, Renard J P, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J. Generation of fertile cloned rats by regulating oocyte activation. Science, 2003, 302:1179
    189.Zimmermann U, Vienken J. Electric field-induced cell-to-cell fusion. J Membr Biol, 1982, 67:165-182
    190.Zou X, Wang Y, Cheng Y, Yang Y, Ju H, Tang H, Shen Y, Mu Z, Xu S, Du M. Generation of cloned goats (Capra hircus) from transfected foetal fibroblast cells, the effect of donor cell cycle. Mol Reprod Dev, 2002,61:164-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700