季冻区湖岸构筑物冻害机理及防治方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长春市区南湖公园、长春公园及雕塑公园的湖岸构筑物及作为其地基的季节性冻土为研究对象,结合建设部软科学研究项目“湖岸构筑物冻害分析及处理”(NO.06-K1-10),采用室内试验、室外观测和数值模拟相结合的方法,对研究区湖岸船台桩基础冻拔破坏和湖岸挡土墙水平冻胀破坏两种典型湖岸构筑物冻害形式的产生机理、发展规律及影响因素进行了系统的研究,填补了国内季冻区人工园林湖岸冻害研究的空白。
     本文结合室内外试验结果,基于O'Neill和Miller的刚性冰模型、局部热平衡及力平衡的观点、Duhamel原理、Harlan模型和热弹塑性冻胀计算模型分别建立了三维饱和冻土三场耦合方程和二维非饱和冻土三场耦合方程,应用大型有限元软件ANSYS对开放系统下饱和土体冻胀过程和非饱和土体冻胀过程进行了数值模拟,为防冻害措施的研究提供了理论基础和科学依据。采用精密水准测量法对船台桩基础的冻拔现象开展低温原位测量,首次在低温条件下运用精密钢尺量距法原位量测湖岸挡土墙的水平冻胀位移数据。研究发现,挡土墙曲线形状及墙背地貌对挡土墙冻胀特性的不同影响,填补了国内空白。研发的套筒防冻拔工程措施及单隔离层挡土墙冻害防治工程措施经济成本大幅度减少,防冻胀效果显著,并适于湖岸园林建筑。
     本文的研究为季冻区人工园林湖岸防冻胀工程的深入研究提供了客观依据,具有较高的技术与经济参考价值。
The construction experiences and research results show that the frost heaving deformation which is caused by the periodical freeze-thaw cycle role in the deep seasonal permafrost regions causes serious frost damage of the constructions that build there and shortens their application time. For many years, most studies are about the normal saturated soil, warm and ice-rich high land soil and the low-water contained subgrade soil, but few of them are about the underwater saturated soil, and cold and high-water contained soil in the seasonal frost regions. In fact, the lakeshore soil is quite wide in seasonal frozen region of the mid-latitude and high-altitude in the world, and the effect of different water containing level and the lowest temperature are various, so it is necessary to do some research on the mechanism and prevention technology to avoid or reduce the waste of labor and resources needed by the present inefficient and repeated repairing work. It will be beneficial to the anti-freeze design work of the lakeshore buildings in seasonal frost region as well as the treatment of the frost damage to the existing buildings.
     Combining the soft science project of the Ministry of Construction "Analysis and Treatment of Frost Damage to Lakeshore Structures" (NO.06-K1-10), which was taken the South Lake Park, Changchun Park and Changchun Sculpture Park as research objects, laboratory tests, outdoor observation and numerical simulation as research methods, this dissertation was done a systemic research about the forming mechanisms, developing laws and influencing factors of the two typical lakeshore structures frost damages that were the soil-lifting frost of the lakeshore slipway pile foundation and the level frost heaving of the lakeshore retaining wall.
     First, it was studied on the material composition, physical and chemical properties, heat exchange parameter and mass exchange parameter of the seasonal frozen soil in the study area. Secondly, it was done the indoor frost heaving sensitivity experiment on the saturated and unsaturated frozen soil samples of the three observation field. Then, it was taken a three-year insitu observation experiment on the two typical lakeshore structures frost damage, and analyzed the changing laws and affected factors of the frost damage displacement curves, and the essential reason for frozen damage. Finally, it was set up the three fields coupling models for the two cases basing on experimental data of indoor and outdoor, and carried on the numerical simulation on slipway pile foundation in South Lake Park and straight lakeshore retaining wall in Sculpture Park with the finite element software ANSYS, and then proposed the practical solutions.
     Based on the above process, the main conclusions were as follows:
     1. It was done the experimental analysis of grain composition, mineral composition and the physical properties of the seasonal frozen soil including easy soluble salt content, specific surface area and cation exchange capacity and so on, and summarized the characteristics related to the nature of the study area soil, which provided the basic data and theoretical basis for the frost heaving.
     2. It was focused on the changing law of the unfrozen water content with the different soil property, initial water content, dry density in the frozen process, and then done a further study on the relationship between the temperature change and heat exchange parameters and mass transfer parameters of freeze-thaw soil. It showed that, the frame specific heat of both frozen soil and thaw soil was lower than that of water and ice, the water content and pattern of the above two soils played a key role in the soil specific heat; as the temperature elevates, soil thermal conductivity and temperature diffusivity lowered lightly, and the extent was just obvious in the transformation zone. It showed that the heat preservation capability of frozen soil was significantly better than thaw soil. The soil grain composition, density, volumetric water content and temperature were the main factors of the diffusion coefficient and hydraulic conductivity.
     3. It was carried on the laboratory test on the effect of the initial water content, cold end temperature, multigelation and hydrating condition to the frost sensitivity of the silty clay sample of South Lake Park and clay samples of Sculpture Park. It was summarized the soil frost heaving law in various conditions, analyzed the reason of all kinds of changes during frost heaving process which was combined with the material composition and the results of the physical and chemical experiment, and provided the theoretical basis and support for the formulation of lakeshore structures frozen prevention project.
     4. It was conducted the low-temperature in-situ measurement on the soil-lifting frost phenomenon of slipway pile foundation by precise leveling measurement, and drawn the displacement characteristic curves of soil-lifting frost and analyzed the displacement characteristic according to the experimental result; presented the external factor for the soil-lifting frost of slipway pile foundation. It was the first to be measured the level frost heavy displacement of retaining wall at a low temperature with precise steel ruler measurement method. It was found that the different effects of the curve shape of retaining wall and the landscape to its frost heaving characteristic, and the national gap was filled.
     5. In combination with the indoor and outdoor research results, based on the O'Neill and Miller's rigid ice model, part heat balance and force balance attitude, Duhamel theory, Harlan model and thermal elastic-plastic frost heave calculation model, it was set up the three coupled equations of three-dimensional saturated frozen soil and the two-dimensional unsaturated frozen soil. With the finite element software ANSYS, it was carried on a numerical simulation about frost heaving processes of the saturated frozen soil and unsaturated frozen soil in the open system, and provided the theoretical basis and scientific evidence for the study of prevention methods of the frost heaving damage.
     6. It was proposed the ice thermal insulation, increasing weight, reducing pile numbers and adding sleeve setting, the four effective soil-lifting frost prevention methods. Among the above methods, adding sleeve setting was the one that costs was the least and suitable for repairing projects. It was taken a comparison and analysis among the observation results of the slipway pile foundations with rigidity sleeve setting, flexibility setting and without sleeve setting, and proved that the two methods were effective and feasible, but still need to observe for their the durability.
     7. It was compared with the frost heaving prevention methods provided by the< Anti-freeze hydraulic structure design> (SL211-98), the researched single-isolation-layer retaining wall anti-freezing prevention methods were cheaper, effective and suitable for lakeshore landscape architecture, which was filled the domestic gap in lakeshore retaining wall frost heaving prevention methods in seasonal frozen region. Finally, it was put forward the double-isolation barrier retaining wall frost damage prevention methods and provided the reference for the further study.
引文
[1]周幼吾,邱国庆,程国栋等.中国冻土[M].科学出版社,2000.
    [2]令锋,吴紫汪.渗流对多年冻土地区路基温度场影响的数值模拟[J].冰川冻土,1999,21(2):115-119.
    [3]廉乐明,史金艳.寒冷地区路面体冻结过程中湿迁移对温度场影响的研究[J].冰川冻土,1993,15(3):198-505.
    [4]李洪升,刘增利,李南生.基于冻土水分温度和外荷载相互作用的冻胀模式[J].大连理工大学学报,1998,38(1):29-3.
    [5]李东庆,魏春玲,吴紫汪.边坡渗流对冻土地区路基稳定性的影响分析[J].兰州大学学报(自然科学版),2000,36(3):175-179.
    [6]曹宏章.饱和颗粒土冻结过程中的多场耦合研究[D].中国优秀硕士学位论文全文数据库:中国知网,2007.
    [7]H.A.崔托维奇(H.A.(?)BITPBHY)著,中国科学院水利电力部水利水电科学研究院译.冻土上的地基与基础[M].北京:中国工业出版社,1962.
    [8]刘经仁.冻土学的结构和学术方向[J].冰川冻土译报,1986.
    [9]武憼民,汪双杰,章金钊.多年冻土地区公路工程[M].北京:人民交通出版社,2005.9-11.
    [10]美国陆军部冷区研究与工程实验室,沈忠言译.深季节冻土区和多年冻土区基础设计与施工[M].兰州:中国科学院兰州冰川冻土研究所.
    [11]中国科学院兰州冰川冻土沙漠研究所.冻土[M].北京:科学出版社,1975.
    [12]童伯良.从第三届国际冻土会议看普通冻土学的成就和动向[J].冰川冻土,1979,(1):65-73.
    [13]徐学祖,王家澄.土体冻胀和盐胀机理[M].北京:科学出版社会,1995.
    [14]邱国庆.甘肃省河西走廊季节冻结盐渍土及其改良利用[M].兰州:兰州大学出版社会,1996.
    [15]臧恩穆,吴紫汪.多年冻土退化与道路工程[M].兰州:兰州大学出版社会,1999.
    [16]冻土地区建筑地基基础设计规范(JGJ118-98)[M].北京:中国建筑出版社.
    [17]冻土工程地质勘查规范(GB50324-2001)[M].北京:中国计划出版社.
    [18]水工建筑物抗冰冻设计规范(SL211-98)[M].北京:中国水利水电出版社.
    [19]程国栋,孙志忠,牛富俊.“冷却路基”方法在青藏铁路上的应用[J].冰川冻土,2006,28(6):796-808.)
    [20]陈肖柏.第四届国际冻土会议在美国阿拉斯加举行[J].冰川冻土,1984,6(1):93-94.
    [21]朱元林,程国栋.从第六届国际冻土学大会(VIICOP)看冻土学研究现状及发展趋势[J].中国科学院院刊,1994.(1):84-87.
    [22]南卓铜.青藏高原冻土分布研究及青藏铁路数字路基建设[D].兰州:中国科学院寒区旱区环境与工程研究所,2003.
    [23]ETZELMULLER B,HOELZLE M,HEGGEM E S F,et al.Mapping and modeling the occurrence and distribution of mountain permafrost[J].Norwegian Journal of Geography,2001,55(4):186-194.
    [24]陈建兵,章金钊.国际冻土研究动态——第八届国际冻土大会综述[J].公路,2004,(1):94-98.
    [25]马 巍,金会军.正在变暖的地球上的多年冻土——2008年第九届国际冻土大会(NICOP)综述[J].冰川冻土,2008,30(5):843-854.
    [26]CHENG G D,WU Q B,MA W.Innovative design of the permafrost roadbed for the Qinghai-Tibet Railway[C].Proceedings,NICOP (Vol. I),2008:239-246.
    [27]ZHAO L,MARHENKO S S,SHARKHUU N,et al.Regional changes of permafrost in Central Asia [C].Proceedings,NICOP(Vol.I),2008:1061-1066.
    [28]EVERETT D H. The thermodynamics of frost damage to porous solid [J]. Transactions of the Faraday Society,1961,57:1541-1551.
    [29]PENNER E.Fundamental aspects of frost action[R].Int.Symp.on Frost action in soils, Sweden,1977.
    [30]WILLIAMS P J.Properties and behavior of freezing soils[R]. Oslo:Norw-egian Geotech.Inst.Publ.1968.
    [31]JONES R H, HURT K G.An osmotic method for determining rock and aggregate suction characteristics with applications to frost heave studies [J].Quarterly J. Eng. Geol.1978,11:245-252.
    [32]LOCH J P GMILLER R D.Tests of the concept of secondary frost heaving [J].Soil Sci.Soc.Am.Proc.1975,39:1036-1041.
    [33]MILLER R D.Freezing and heaving of saturated and unsaturated soils [J]. Highway Research Record.1972, (393):1-11.
    [34]MILLER R D.Lens initiation in secondary frost heaving[R].Int.Symp.on Frost action in soils,Sweden,1977.
    [35]KONRAD J M, MORGENSTERN N R.The segregation Potential of freezing soil [J].Can.Geotech.J.1981,18:482-491.
    [36]KONRAD J M,DUQUENNOI C.A model for water transport and ice flensing in freezing soils[J].Wat.Resour.Res.1993,29:3109-3123.
    [37]GILPIN R R.A model for the Prediction of ice flensing and frost heaven soils [J].Wat.Resour.Res.1980,16:918-930.
    [38]PENNER E. Aspects of ice lens growth in soils [J].Cold Region Science and Technology,1986,13(1):91-100.
    [39]SATOSHI AKAGAWA.Experimental study of frozen fringe characteristics [J].Cold Region Science and Technology,1988,15:209-223.
    [40]TAKEDA K, OkAMURA A.Microstructure of freezing front in freezing soils[C].International Symposium on Ground Freezing.Netherlands:Lulea University of Technology,1997.
    [41]HARLAN R L.Analysis of coupled heat-fluid transport in partially frozen soil [J]. Water Resource Research,1973,9(5):1314-1323.
    [42]NIXON J F.The role of convective heat transport in the thawing of frozen soils [J].Canadian Geotechnical Journal,1975,12:425-429.
    [43]TAYLOR G S, LUTHIN J N.A model for coupled heat and moisture transfer during soil freezing [J].Canadian Geotechnical Journal,1978,15:548-555.
    [44]杨诗秀,雷志栋,朱强.土壤冻结条件下水热耦合运移的数值模拟[J].清华大学学报,1988,23(增1):112-120.
    [45]尚松浩,雷志栋,杨诗秀.冻结条件下水热耦合运移的数值模拟的改进[J]. 清华大学学报,1997,37(8):62-64.
    [46]JAME Y W, NORUM D I. Heat and mass transfer in a freezing unsaturated porous medium [J].Water Resources Research,1980,16(5):918-930.
    [47]NEWMAN G P,WILSON G W.Heat and mass transfer in unsaturated soils during freezing[J].Canadian Geotechnical Journal,1997,34:63-70.
    [48]O'NEILL K, MILLER R D.Exploration of a rigid ice model of frost heave [J].Water Resources Research,1985,21(3):281-296.
    [49]O'NEILL K,MILLER R D.Numerical solutions for a rigid-ice model of secondary frost heave[R].CRREL Rep.82-13,Cold Reg.Res.And Eng.Lab.,N.H., 1982.
    [50]曹宏章,刘石,姜凡,等.饱和颗粒土一维冰分凝模型及数值模拟[J].力学学报,2007,39(6):848-857.
    [51]李萍,徐学祖,陈峰峰.冻结缘和冻胀模型的研究现状与进展[J].冰川冻土,2000,22(1):90-95.
    [52]KONRAD J M,MORGENSTERN N R.The segregation potential of a freezing soil[J].Canadian Geotechnical Journal,1981,18:482-491.
    [53]KONRAD J M, MORGENSTERN N R.A mechanistic theory of ice lens formation in fine-grained soils [J].Canadian Geotechnical Journal,1980,17:473-486.
    [54]KONRAD J M, MORGENSTERN N R.Effects of applied pressure on freezing soils [J].Canadian Geotechnical Journal,1982,19:494-505.
    [55]KONRAD J M, MORGENSTERN N R.Frost heave prediction of chilled pipelines buried in unfrozen soils [J].Canadian Geotechnical Journal,1984,21:100-115.
    [56]NIXON J F.Field frost heave predictions using the segregation potential concept [J].Canadian Geotechnical Journal,1982,19:526-529.
    [57]GASSEN W V,SEGO D C.Problems with the segregation potential theory[J].Cold Regions Science and Technology,1989,16:95-97.
    [58]NIXON J F.Discrete ice lens theory for frost heave in soils [J].Canadian Geotechnical Journal,1991,28:843-859.
    [59]DUQUENNOI C,FREMOND M,LEVY M.Modeling of thermal soil behavior[C].Proc.Int.Symp.Frost in Geotechnical Engineering,Finland,1989:895-915.
    [60]FREMOND M, MIKKOLA M.Thermomechanical modeling of freezing soil[C].6th International Symposium on Ground freezing, Beijing,1991.
    [61]FREMOND M, NICOLAS P.Macroscopic thermodynamics of porous media.Continuum Mech.Thermodyn [J].199O,2:119-139.
    [62]SHEN MU,BRANKO LADANYI.Modeling of coupled heat, moisture and stresses field in freezing soil[J].Cold Regions Science and Technology,1987,14:237-246.
    [63JGILPIN R R.A model of the"liquid-like"layer between ice and a substrate with applications to wire regulation and particle migration [J].J.Colloid Interface Sci., 1979,68(2):235-251.
    [64]GILPIN R R.Theoretical studies of particle engulfment [J].J.Colloid Interface Sci.,1980,74(1):9644-63.
    [65]GILPIN R R.A model for the prediction of ice flensing and frost heaven soils [J].Water Resources Research,1980,16:918-930.
    [66]杨成松,何平,程国栋等.冻土热融下沉研究的现状和进展[J].工程地质学报,2004,(12):147-151.
    [67]张兴,李萌荣,宋征远.吉林省1:200万季节冻深图集[J].冰川冻土,1987,9(3):239-250.)
    [68]赵云龙.铁路路基冻害及防治[M].北京:中国铁道出版社,1984.
    [69]童长江,管枫年.土的冻胀与建筑物冻害防治[M].北京:水利电力出版社,1985.
    [70]中国科学院兰州冰川冻土研究所,水利部西北水利科学研究所.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社出版,1989.
    [71]徐学祖,邓友生.冻土中水分迁移试验研究[M].北京:科学出版社,1991.
    [72]徐学祖.国内外对冻土中水分迁移课题的研究[J].冰川冻土,1982,4(3):97-104.
    [73]徐学祖.土水势、未冻水含量和温度[J].冰川冻土,1985,7(1):1-14.
    [74]徐学祖,何平,张健明.土体冻结和冻胀研究的新进展.冰川冻土.1997,19(3):281-283.
    [75]陈肖柏.砂砾石换填粘性土防治冻胀[J].科学通报,1979,20:935-939.
    [76]陈肖柏等.冻结速率与超载应力对冻胀的作用.第二届全国冻土学术会议论文选集[M].兰州:甘肃人民出版社.1983,223-228.
    [77]陈肖柏.砂砾土中的成冰作用及冻胀敏感性[J].科学通报,1987,23:1812-1815.
    [78]陈肖柏.我国土冻胀研究进展[J].冰川冻土,1988,10(3):319-326.
    [79]陈肖柏,刘建坤,刘鸿绪等.土的冻结作用与地基[M].北京:科学出版社,2006.
    [80]王正秋.细粒土冻胀分类[A].第二届全国冻土学术会议论文集[C].兰州:甘肃人民出版社,1983:218-222.
    [81]王正秋.粗粒土冻胀分类[J].冰川冻土,1986,8(3):195-200.
    [82]吴紫汪等.土的冻胀性试验研究.兰州冰川冻土所集刊第2号[M].北京:科学出版社.1981,82-96.
    [83]吴紫汪.冻土工程分类[J].冰川冻土,1982,4:43-48.
    [84]刘鸿绪.法向冻胀力计算[J].冰川冻土,1981,2:13-17.
    [85]刘鸿绪,对土冻结过程中若干冻胀力学问题的商榷[J].冰川冻土,1990,12(3):269-280.
    [86]戴惠民等.季节冻土区公路桥涵地基土冻胀性研究[J].冰川冻土.1993,15(2):377-382.
    [87]戴惠民,乐鹏飞等.季冻区公路路基土冻胀性的研究[J].中国公路学报,1994,7(2):1-8.)等
    [88]邱国庆,张伯纶等.莫玲粘土冻结过程中的离子迁移、水分迁移和冻胀[J].冰川冻土,1986,8(1):1-14.
    [89]田亚护.动、静荷载作用下细粒土冻结时水分迁移与冻胀特性实验研究[D].中国博士学位论文全文数据库:中国知网,2008.
    [90]冷毅飞.冻土未冻水室内综合试验研究[D].中国优秀硕士学位论文全文 数据库:中国知网,2006.
    [91]原国红.季节冻土水分迁移的机理及数值模拟[D].中国博士学位论文全文数据库:中国知网,2006.
    [92]谷宪明.季冻区道路冻胀翻浆机理及防治研究[D].中国博士学位论文全文数据库:中国知网,2007.
    [93]赵安平.季冻区路基土冻胀的微观机理研究[D].中国博士学位论文全文数据库:中国知网,2008.
    [94]张冬青.季节性冰冻路基病害及防治措施研究[D].中国优秀硕士学位论文全文数据库:中国知网,2008.
    [95]张婷.人工冻土冻胀、融沉特性试验研究[D].中国优秀硕士学位论文全文数据库:中国知网,2004.
    [96]吴海燕.模拟冻融界面的冻土模型实验研究[D].中国优秀硕士学位论文全文数据库:中国知网,2007.
    [97]宋珲,朱明,袁文忠.季节性冻土地区路基的冻胀与融沉[J].路基工程,2007,1:26-28.
    [98]宋晖.季节性冻土地区路基稳定性的数值分析[D].成都:西南交通大学,2006.
    [99]张玉富,单炜,柳俊哲.季节性冻土切向冻胀力与冻胀性关系[J].低温建筑技术,2004,5:70-71.
    [100]单炜,张玉富,柳俊哲.季节性冻土的冻胀因素及其分类[J].低温建筑技术,2004,5:72-73.
    [101]王铁行.多年冻土地区路基冻胀变形分析[J].中国公路学报,2005,4,18(2):1-5.
    [102]卢靖.非饱和黄土水分迁移问题的试验研究[D].中国优秀硕士学位论文全文数据库:中国知网.2006.
    [103]周金生,周国庆,马巍等.间歇冻结控制人工冻土冻胀的试验研究[J].中国矿业大学学报,2006,11,35(6):708-712.
    [104]周扬.冻土冻胀理论模型及冻胀控制研究[D].中国矿业大学,2009.
    [105]易富.风积砂土冻胀机理及铁路建设中防冻胀措施的研究[D].阜新:辽 宁工程技术大学,2003.
    [106]梁若筠.基于神经网络方法的冻土水分迁移研究[D].中国优秀硕士学位论文全文数据库:中国知网.2007.
    [107]张立新,徐学祖,邓友生.含氯化钠冻土未动水含量与冻融过程关系的特征[J].冰川冻土,1995,17(3):258-262.
    [108]唐大雄,刘佑荣,张文殊等.工程岩土学(第二版)[M].北京:地质出版社,1998.
    [109]徐学祖.冻土物理学[M].北京:科学出版社,2001
    [110]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [111]郭慧,李栋梁,张强,等.甘肃河西季节冻结深度年代际变化特征及其气候成因分析[J].冰川冻土,2005,27(4):503-508.
    [112]王秋香,李红军,魏荣庆等.1961-2002年新疆季节冻土多年变化及突变分析[J].冰川冻土,2005,27(6):820-826.
    [113]高春香,苏立娟,宋进化等.内蒙古东北部冻土分布与地温关系[J].内蒙古气象,2004,(1):19-22.
    [114]高荣,韦志刚,董文杰等.20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J].高原气象,2003,22(2):191-196.
    [115]南京水利科学研究院.土工试验方法标准(GB/T50123-1999)[M].北京:中国计划出版社,1999.
    [116]邱国庆,刘经仁,刘鸿绪.冻土学词典[M].兰州:甘肃科学技术出版社,1994.
    [117]杜兆成,孙瑛琳,蒋大恩.季节性冻土区路基土的冻胀特性分析[J].长春工程学院学报(自然科学版),2006,7(2):17-20.
    [118]林世文,包俊超,兰荣旺.冻融试验研究[J].岩土工程技术.2001,3:161-164.
    [119]KONRAD J.M.Physical process during freeze-thaw cycles in clayey silts [J].Cold Regions Science and Technology,1989,16(3):291-303.
    [120]YONG R N, ROONSINSUK P.Alteration of soil behavior after cyclic freezing and thawing[C].In:Proc.of Fourth International Symposium on Ground Freezing.Sapparo:[s.n],1985.
    [121]齐吉琳,张建明,朱元林.冻融作用对土结构性的影响的土力学意义[J].岩石力学与工程学报,2003,22(增2):2690-2694.
    [122]CHAMBERLAIN EDWIN J, GOW ANTHONY Jeffcott of freezing and thawing on the permeability and structure of soils [J].Engineering Geology,1979, 13(4):73-92.
    [123]BING Hui, HE Ping. Frost Heave and Dry Density Changes during Cyclic Freeze-Thaw of Silty Clay [J]. Permafrost and per glacial Processes,2009,20 (1):65-70.
    [124]Ql JILIN, PIETER A V, ChENG GUO DONG. Review of the Influence of Freeze-Thaw Cycles on Soil Geotechnical Properties [J]. Permafrost and Periglacial Processes,2006,17(3):245-252.
    [125]QI JILIN, MA Wei, SONG ChUNXIA. Influence of Freeze-Thaw on Engineering Properties of a Silty Soil [J]. Cold Regions Science and Technology, 2008,53 (3):397-404.
    [126]铁道第三勘察设计院.冻土工程[M].北京:中国铁道出版社,1994.
    [127]范建兵.冻融环境下单桩的沉降特性研究[D].西安:西安科技大学,2006.
    [128]苏盛奎.冰对水工建筑物的作用[J]海河水利,1992,3:42-48.
    [129]KONG W L, CAMPBELL T I.Thermal pressure due to an ice cap in an elevated water tank [J].Canada Journal of Civil Engineering,1987,14:519-526.
    [130]宋涛.静冰荷载对水工建筑物的影响研究[D].天津:天津大学,2007.
    [131]史庆增,徐阳.约束冰层温度膨胀力的研究[J].海洋学报,2000,22(3):144-148.
    [132]翟莲,窦立军,殷琨.季冻区人工湖岸船台冻害处理的技术和经济分析[J].硅谷,2010,4:137.
    [133]孙洪伟,王德君,曲祖光,周周,李宪民,窦立军.人工湖岸船台桩基础“冻拔”防治措施的提出和实验[J].长春工程学院学报(自然科学版),2008,9(1):91-94.
    [134]龚晓南.高等土力学[M]杭州:浙江大学出版社,1994.
    [135]MILLER R D.Short communication the adsorbed film controversy [J]. Cold Regions Science and Technology,1980,3:83-86.
    [136]GROENEVELT P H, KAY B D.On the interaction of water and heat transport in frozen and unfrozen soils [C].The liquid Phase. Soil Sci.Soc.Am.J.1974, 38:400-404.
    [137]GROENEVELT P H, KAY B D.Water and ice potentials in frozen soils[C].Wat.Resour.Res.1977,13:445-449.
    [138]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.
    [139]陈飞熊,李宁,徐彬.非饱和正冻土的三场耦合理论框架[J]力学学报,2005,37(2):204-214.
    [140]MILLER R Dolans initiation in secondary heaving[C].Int.Symp.On frost Action in Soils, Lulea University of Technology,Sweden,1977,2:68-74.
    [141]朱林楠.高原冻土区不同下垫面的附面层研究[J].冰川冻土,1988,10:8-14.
    [142]王钧.中国估算热流值的研究及其意义[J].1990年中国地球物理学会第六届学术年会论文集[C].1990,226.
    [143]翟莲,刘东辉,窦立军,殷琨.非直线型湖岸挡土墙冻害机理的研究[J].制造业自动化,2010,5:217-220.
    [144]孙洪伟,王德君,曲祖光,王坦,李宪民,窦立军.人工湖岸挡土墙“冻害”与防治措施研究[J].长春工程学院学报(自然科学版),2009,10(1):95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700