多年冻土区砼灌注桩竖向承载性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前多年冻土区混凝土灌注桩使用数量与规模在我国急剧增长,由此而带来的施工过程中单桩承载力形成时间计算、夏季融沉时承载力的变化规律、使用阶段桩周冻土蠕变沉降对承载力影响等一系列问题已成为国内外普遍关注的热点问题,对其承载性能研究一直是冻土工程中的前沿课题。
     本文在对国内外相关研究进行系统总结与深入分析基础上,采用桩基冻害调查,试验与数值模拟相对照的方法。以冻土温度为主线,完成了三个方面的研究工作:
     1.研发相关试验设备,完成冻土导热系数、冻结强度、不同外加剂成分的水泥水化热、不同含水量冻土融沉时桩侧负摩阻力等四个系列(27个土样)试验工作,为有限元计算参数的确定创造了条件。
     2.基于不同的热传导模型、冻土非线性模型、冻土静三轴试验资料编制了桩周冻土温度场、桩承载沉降变形的计算程序。通过15种工况计算,得到冻结力沿桩分布规律与各个因素对其影响规律。
     3.根据冻土流变试验资料,构建了一个全新的非线性粘弹流变模型,采用编制的相关程序对实际工程中单桩极限承载力进行了修正,为工程冻害治理提供了依据。
     通过以上工作,本文在以下方面取得了一些有意义的研究成果:
     1.给出桩周温度场计算程序,通过不同热源温度(砼灌注温度)、不同砼外加剂成分的桩周冻土温度场数值计算对比,证明砼外加剂选用粉煤灰10%+硅粉5%+早强剂3%+减水剂0.8%配比、砼浇筑温度为5℃时,承载力形成时间可缩短至33天,提前了30天左右。
     2.给出多年冻土区单桩荷载—变形有限元计算方法与相关程序,发现增大桩径有利于加大桩侧冻结力数值,可有效减小沉降量30%。通过冻结力在桩侧分布随冻土温度变化规律研究发现存在“温度中性点”处,在该处桩侧冻结力发挥不受冻土温度影响,在其上桩侧冻结力随温度降低而递增,以下反之减小。
     3.根据融沉负摩阻力试验结果,运用Mindlin解,推导出融沉产生的附加力及其分布规律的理论计算公式。夏季冻土融化时,正融土中桩的承载能力衰减了8%左右。
     4.提出考虑冻土蠕变的单桩沉降有限元计算方法,对比某工程桩的单桩承载力数值计算、静载荷试验结果发现,单桩极限承载力在冻土流变影响下,其数值将降低10%左右。
Currently, the application of cast-in-place concrete pile rapidly rises in quantity and scale in domesticTT TTpermafrost region, and there are such a series of problems as calculation of bearing capacity forming time of single pile during construction, change law of bearing capacity with thawing settlement in summer and influence of creep settlement of frozen soil around pile on bearing capacity in service stage. All the problems have been generally concerned focal problem at home and abroad and the research on bearing capacity has been one of the front subjects in frozen soil engineering.
     Based on systematic summary and deep analysis of relevant research at home and abroad, the following research in three aspects was carried out on the principle of temperature of frozen soil through the investigation of freezing damage and comparison between test and numerical simulation.
     1.The relevant experimental devices were developed, four series of tests were conducted such as thermal conductivity test on frozen soil, freezing strength test, hydration heat test on cement with different ingredients of admixture and thaw-settlement negative friction test on pile with different water content frozen soil, so all the above research provided important parameters for FEM calculation. 2. Grounded on different heat transfer model, nonlinear model of frozen soil and test data of static triaxial experiment on frozen soil, the calculation program was designed to compute temperature field of frozen soil surrounding pile and settlement of pile under load. Through plenty of calculation work, the distribution rule of adfreezing force of pile was obtained, as well as the affecting law of every parameter on it. 3. According to the data of rheology experiment on frozen soil, a whole new nonlinear viscoelastic rheological model was founded. The bearing capacity of single pile in correlative engineering was modified through the developed program, which gave theoretical basis to control the freezing damage of projects in permafrost.
     The main research results as follows:
     1. The calculation program of temperature field of frozen soil around pile was designed and provided. In terms of numerical calculation and comparison of temperature field of frozen soil around pile with different temperature of heat source (temperature of cast-in-place concrete) and different ingredients of concrete admixture, it was proved that the forming time of bearing capacity was shorten to 33 days, about 30 in advance, when the concrete admixture consisted of 10% fly ash, 5% silica fume, 3% early strength admixture and 0.8% water reducing agent.
     2. This paper proposed FEM calculation method and program of load-deformation of single pile in permafrost. It was founded that adfreezing force increased with the increment of pile diameter, which can effectively reduce amount of settlement by 30%.“Neutral point of temperature”was founded through investigation into the change law of adfreezing force along pile length with variation of temperature of frozen soil. At the point, the forming of adfreezing force was free of the influence of temperature of frozen soil; above the neutral point side, adfreezing force increased with the reduction of temperature of frozen soil, but, below the neutral point side, it decreased with the reduction.
     3. According to experimental results of thaw-settlement negative friction, by Mindlin’s solution, the theoretical calculation formula was proposed to compute the additional force owing to thawing collapse and its distribution law. In summer, bearing capacity of pile decreased by 8% or so in permafrost active layer thawing.
     4. FEM calculation method of settlement of single pile was proposed considering creep deformation of frozen soil. The calculation result of bearing capacity of single pile was compared with the experimental data of static load test in certain engineering, and it was concluded that ultimate bearing capacity of single pile reduced by about 10% under the influence of rheology of frozen soil.
引文
1周幼吾,郭东信,邱国庆,等著.中国冻土.科学出版社, 2000:161,394
    2程国栋.冻土力学与工程的国际研究新进展-2000年国际地层冻结和土冻结作用会议综述.地球科学进展. 2001,(3): 293~299
    3王晓黎,陈频志,等.青藏铁路桩基础形式的研究及应用.中国铁路. 2003, (1):33~35
    4Ю.О.塔尔古良, B.戈尔斯特,著.贝加尔—阿穆尔铁路干线条件下设置桩基的方法.童伯良,译.多年冻土区交通建设和环保工程冻土译文集第3辑, 2001:39~43
    5朱元林,吴紫汪,何平.我国冻土力学研究新进展及展望.冰川冻土. 1995,17(增刊):6~14
    6 C.C.维亚洛夫,著.冻土流变学.刘建坤,刘尧军,徐艳,译.中国铁道出版社, 2005:1~44,46
    7 B. Ladanyi. An Engineering Theory of Creep of Frozen soil. Canadian Geotechnical Journal.1972,9(1):63~68
    8 A.M. Fish. An Acoustic and Dressuremeter Method for Investigation of the Rheological Properties of Ice. Ph.D. Thesis, Arctic and Antarctic Research Institute, Leningrad, USSR.1976:33
    9 A. Assur. TTSome Promising Trends in Ice MechanicsTT, IUTAM Symposium on TTPhysics and MechanicsTT of TTIceTT. Springer-Verlag, Berlin.1980:1~12
    10 J.M. Ting. Tertiary Creep Model for Frozen Sand. ASCE Journal of Geotehnical Enginering. 1983,109(7):932~945
    11 A.R. Gardner, R.H. Jones, J.S. Harris. A new creep equation for frozen soils and ice. Cold Region Science and Technology. 1984,9:271~274
    12 U.G. Puswewala, R.K. Rajapakse.TT Computational Analysis of Creep in Ice and Frozen Soil Based on Fish's Unified Model.TT Can. J. Civ. Eng. 1993, 20(1):120~132
    13何平,程国栋,朱元林.土体冻结过程中的热质迁移研究进展.冰川冻土. 2001,23(1):92~98
    14朱元林, D.L. Carbee.冻结粉砂在常应力下的蠕变特性.冰川冻土. 1984,(1): 7~52
    15 Zhu yuanli, D.L. Carbee. Creep and Strength Behavior of Frozen Silt in Uniaxial Compression. USA CRREL Report. 1987,(10):10~24
    16蔡中民,朱元林,张长庆.冻土的粘弹塑性本构模型以及材料参数的确定.冰川冻土. 1990,12(01):31~40
    17 Zhu yuanlin, Zhangjiayi,et al.. Constitutive Relations of Frozen Soil in Uniaxial Compression. Proc. Of 6PPthPP ISGF, Beijing, China. 1991:211~216
    18 Cai zhongmin, Nie zifeng. A visco-elastic-plastic damage model for frozen silt. Proc. of CJCR, Beijing, China. 1991:91
    19马巍,吴紫汪.冻土的蠕变及蠕变强度.冰川冻土. 1994,16(2):113~118
    20苗天德.冻土蠕变过程的微结构损伤理论.中国科学(B辑). 1995,2(3):309~317
    21王廷栋,吴紫汪.冻土蠕变的光粘弹性模拟试验可行性研究.冰川冻土. 1995,17(2):159~163
    22何平,程国栋,朱元林. T冻土粘弹塑损伤耦合本构理论TT.中国科学D辑. 1999,29(s1):34~39
    23马巍,吴紫汪,张长庆.冻土的强度与屈服准则.冰川冻土.1993,(01):133~137
    24沈忠言,吴紫汪.冻土三轴强度破坏准则的基本形式及其与未冻水含量的相关性.冰川冻土. 1999,(01): 22~26
    25马巍,朱元林,等.冻结粘性土的变形分析.冰川冻土. 2000,(01):43~47
    26 Li Haipeng, Zhu Yuanlin, He Ping. Experimental Study on the Dynamic Creep Strength of Frozen Soil under Dynamic Loading with Confining Pressure. Ground Freezing 2000. Jean-Francois Thimus. Rotterdam. 2000:131~136
    27 Sheng yu, et al.. Normalized Analysis of Uniaxial Compressing Creep of Frozen Soil. Ground freezing 2000. Jean-Francois Thimus. Rotterdam. 2000:178~181
    28苗大德,等.正冻土中水热迁移问题的混合物理论模型.中国科学(D辑).1999,29(s): 8~14
    29何平,程国栋,等.饱和正冻上中的水、热、力场耦合模型.冰川冻土. 2000,(2): 135 ~137
    30 Shujuan Zhang, Yuanming Lai, Xuefu Zhang. Study on the Damage Propagation of Surrounding Rock from a Cold-region Tunnel under Freeze-thaw Cycle Condition. Tunnelling and Underground Space Technology. 2004, (19):295~302
    31 Jiankun Liu,Yahu Tian. Numerical Studies for the Thermal Regime of a2002,(35):1~13
    32 Wang Shaoling, Niu Fujun, Zhao Lin. The Thermal Stability of Roadbed in Permafrost Regions a Long Qinghai-Tibet Highway. Cold Regions Science and Technology. 2003,(37):25~34
    33 Wei Ma, Xiaoxiao Chang. Analyses of Strength and Deformation of an Artificially Frozen Soilwall in Underground Engineering. Cold Regions Science and Technology. 2002,(34):11~17
    34 Xuefu Zhang, Yuanming Lai, Wenbing Yu. Non-linear Analysis for the Freezing-thawing Situation of the Rock Surrounding the Tunnel in Cold Regions under the Conditions of Different Construction Seasons, Initial Temperatures and Insulations. Tunneling and Underground Space Technology. 2002,(17):315~325
    35 Yuanming Lai, Qiusheng Wang, Fujun Niu. Three-dimensional Nonlinear Analysis for Temperature Characteristic of Ventilated Embankment in Permafrost Regions. Cold Regions Science and Technology. 2004,(38):165~184
    36 Zhang Xuefu, Lai Yuanming, Yu Wenbing. Nonlinear Analysis for the Three-dimensional Temperature Fieldsin Cold Region Tunnels. Cold Regions Science and Technology. 2002,(35):207~219
    37 Lai Yuanming, Liu Songyu, Wu Ziwang. Approximate Analytical Solution for Temperature Fieldsin Cold Regions Circular Tunnels. Cold Regions Science and Technology. 2002,(34):43~49
    38赖远明.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析.中国科学院寒区旱区环境与工程研究所博士学位论文. 1999:10~50
    39李洪升,刘增利,梁承姬.冻土水热力耦合作用的数学模型及数值模拟.力学学报. 2001,33(5):621~629.
    40 J.W. HWendt.H A Soil Probe Pulling Device Facilitates Soil Sampling. TTSoil Science Society of America Journal. 2006,70(6):2161TT~TT2163TTTT
    41 L.U. HArensonH. D.C. HSegoH. Modeling the Freezing in Coarse Grained Sands on a Microstructural LevelTT Proceedings of the International Conference on Cold Regions Engineering, Cold Regions Engineering 2006: Current Practice in Cold Regions Engineering, 2007:38
    42 K.S. HHenryH, K. HBjellaH. History of the Fairbanks Permafrost Experiment Station,Alaska. Proceedings of the International Conference on Cold Regions Engineering, Cold Regions Engineering 2006: Current Practice in Cold Regions Engineering, 2007:51 43 H. HZubeck, HL. HAleshire, HS. HHagood.H Pile Load Tests in Permafrost using Spiral Legs to Support Hot Ice No. 1 Drilling Platform. Proceedings of the International Conference on Cold Regions Engineering. 2006:52 44 B. HElberlingH, J. HSondergaardH, A. HJensen LouiseH. Arctic Vegetation Damage by Winter-generated Coal Mining Pollution Released upon Thawing. Environmental Science and Technology. 2007, 41(7):2407~2413 45 C.L. HHoH, C. HValeoH. Observations of Urban Snow Properties in Calgary, Canada. Hydrological Processes. 2005,19(2):459~473 46 A. HForieroH, N. HSt-LaurentH, B. HLadanyi.H Laterally Loaded Pile Study in Permafrost of Northern Quebec, Canada. Journal of Cold Regions Engineering. 2005,19(3): 61~84 47 J. Sangseom, L. Jinhyung, J.L. Cheol. Slip Erect at the Pile-soil Interface on Dragload. Computers and Geotechnics. 2004,31:115~126 48 K.S. Wong, C.I. Teh. Negative Skin Friction on Piles in Layered Soil Deposits.Journal of Geotechnical Engineering, ASCE. 1995,121(6):457~465 49 C.S. Tsui, H.G. Brandes, D.D. Nakayama. Creep Behavior and Modeling of the Slow-moving Alani-Party Landslide, Oahu, Hawaii. Proc.10th Int. Conf. on Computer Method and Advances in Geomechanics. Tucson, USA. 2001:1629~1633 50 B.L. Aboustit, S.H. Advani, J.K. Lee. Finite Element Evaluation of Thermo-elastic Consolidation. In:Proc US Symp Rock Mech,1998.23PPrdPP:587~595 51 W.B. Kevin, K. Vivien. An Analysis of Long-term Pile Load Tests in Permafrost from the Short Range Radar Site Foundations. Canadian Geotechnical Journal. 2001: 441~460 52 D.C. Sego, K.W. Biggar, G. Wong. Enlarged Base (belled) Piles for Use in Ice or Ice-rich Permafrost. Journal of Cold Regions Engineering, ASCE. 2003,17(2):68~88 53 K.W. Biggar, D.C. Sego, R.P. Stahl. Long-Term Pile Load Testing System Performance in Saline and Ice-Rich Permafrost. Journal of Cold Regions Engineering, ASCE. 1996,10(3):149~162
    54 B. Ladanyi, T. Lunne, P. Vergobbi. Predicting Creep Settlements of Foundations in Permafrost from the Results of Cone Penetration Tests. Canadian Geotechnical Journal. 1995,32(5):835~847
    55 L.N. Khrustalev, G.P Pustovoit, A.N. Kozlov. Prediction of New Formation of Frozen Soils and Stability Assessment of Pile Foundations in Gas Fields of Western Siberia. Soil Mechanics and Foundation Engineering. 1996, 33(3):115~118
    56 Lackner Roman, Pichler Christian, Kloiber Andreas. Artificial Ground Freezing of Fully Saturated Soil: Viscoelastic Behavior. Journal of Engineering Mechanics. 2008,134(1): 1-11
    57 R. Zornoza, C. Guerrero, J. Mataix-Solera. Assessing Air-drying and Rewetting Pre-treatment Effect on Some Soil Enzyme Activities under Mediterranean Conditions. Soil Biology and Biochemistry. 2006, 38(8):2125~2134
    58 K. Watanabe, M. Ito. In situ Observation of the Distribution and Activity of Microorganisms in Frozen Soil. Cold Regions Science and Technology. 2008, 54(1):1~6
    59 T. Kiyota, T. Sato, J. Koseki. Comparison of Liquefaction Properties of In-situ Frozen and Reconstituted Sandy Soils. Proceedings of the International Symposium on Geomechanics and Geotechnics of Particulate Media. 2006:113-119
    60 Cassagne Nathalie, Spiegelberger Thomas, Cecillon Laurie. The Impact of Soil Temperature Increase on Organic Matter and Faunal Properties in a Frozen Calcareous Scree in the French Alps. Geoderma. 2008, 146(1):239~247
    61 Kahimba Frederick C, Sri Ranjan Ramanathan, Froese Jane. Cover Crop Effects on Infiltration, Soil Temperature, and Soil Moisture Distribution in the Canadian Prairies. Applied Engineering in Agriculture. 2008, 24(3):321~333
    62 H.A. Gronsten, H. Lundekvam. Prediction of Surface Runoff and Soil Loss in Southeastern Norway Using the WEPP Hillslope Model. Soil and Tillage Research. 2006,85(1): 186-199
    63 PJ. Cleall, H.R. Thomas, M.C. Glendinning. Modelling the Behaviour of Freezing and Thawing Soil Slopes.5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics. 2006:1603-1610
    
    64 Hass Helmet, Jagow-Klaff Regine, Wernecke. Rudolf Influence of Salinity on the Strength of Various Frozen Soils. Proceedings of the International Conference on Cold Regions Engineering.2006: 40
    65 Gori Fabio, Corasaniti Sandra. Detection of a Dry-Frozen Boundary inside Martian Regolith. Planetary and Space Science. 2008,56(8):1093~1102
    66 Hawlader Bipul C, Morgan Vincent, Clark Jack I.. Modelling of Pipeline under Differential Frost Heave Considering Post-peak Reduction of Uplift Resistance inFrozen Soil. Canadian Geotechnical Journal. 2006, 43(3): 282-293
    67 Dyakov Ivan, Ivkin Valeriy, Popovich Alexey. A Soil Loosening Machine for Winter Earth-moving in Transport Construction. Transport. 2007, 22(4):316~319
    68 Siciliano Steven D., Schafer Alexis N., Forgeron Michelle A. M.. Hydrocarbon Contamination Increases the Liquid Water Content of Frozen Antarctic Soils. Environmental Science and Technology. 2008, 42(22):8324-8329
    69 Arenson Lukas U., Sego Dave C. The Effect of Salinity on the Freezing of Coarse-grained Sands. Canadian Geotechnical Journal. 2006,43(3): 325-337
    70 Sutinen Raimo, Hanninen Pekka, Venalainen. Ari Effect of Mild Winter Events on Soil Water Content beneath Snowpack. Cold Regions Science and Technology. 2008, 51(1):56~67
    71 Cote Jean, Konrad Jean-Marie. Estimating Thermal Conductivity of Pavement Granular Materials and Subgrade Soils. Geology and Properties of Earth Materials. 2006:10-19
    72 Watanabe Toshiaki, Otsuka Masahiko, Maehara Hironori. Basic Study on the Crushing of Frozen Soil by Shock Loading. American Society of Mechanical Engineers, PVP. 2007,4:93-98
    73 Darrow Margaret M., Huang Scott L.. Improvements in Frost Heave Laboratory Testing of Fine-grained Soils. Journal of Cold Regions Engineering. 2008, 22(3): 65-78
    74 L. Domaschuk, R. Kwok, D.H. Shields. Creep Effects on a Laterally Loaded Pile. Permafrost Sixth International Conference Proceedings.Beijing, 1993, Vol. 1:149-154
    75 B. Hallet, L.A. Rasmussen. Calculation of the Thermal Conductivity of Unsaturated Frozen Soil near the Melting Point. Permafrost Sixth InternationalConference Proceedings (Vol.1). 1993:226-231
    76 Lunrdini Virgil J.. Permafrost Formation Time. Permafrost Sixth International Conference Proceedings. Beijing, 1993, Vol.1:420~425
    77 Molmann Truls, Senneset Kaare. Cast in Place Concrete Piles in Permafrost. Permafrost Sixth International Conference Proceedings. Beijing, 1993,Vol.1: 477~481
    78 S.S. Vyalo, Yu.S. Mirenburg. Improved Methods of Testing Piles in Frozen Soil. Soil Mechanics and Foundation Engineering. 1991,27(4):155~161
    79 S.S. Vyalov, M.E. Slepak, M.V. Lunev. Single Pile and Pile Group in Permafrost. Clod Regions Engineering.1991:44~53
    80 L. Domaschuk, D.H. Shields, L. Fransson. Reactive Soil Pressures along Pile in Frozen Sand. Journal of Cold Regions Engineering. 1991,5(4):174~194
    81 P. Morin, D.H. Shield, R. Kenyon. Predicting Creep Displacements of Laterally Loaded Piles in Ice and Ice-rich Materials. Proceedings of the First International Offshore and Polar Engineering Conference. 1991:535~542
    82 L. Domaschuk, Ji zhanliang, D.H. Shields. Creep Analysis of a Laterally Loaded Pile in Frozen Sand. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium. 1992:389~394
    83 W. Nelson, A. Christopherson, D. Nottingham. Secondary Creep Rate of Steel, Piles in Frozen Saline Silt. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium. 1992:383~387
    84 K.W. Biggar, D.C. Sego. Field Pile Load Tests in Saline Permafrost. Canadian Geotechnical Journal. 1993,30(1):46~59
    85 W. Nelson, A. Christopherson, D. Nottingham. Resistance to Long Term Creep of Steel Piles in Frozen Silty Soils with High Salt Contents. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. 1993:167~171
    86 K.W. Biggar, D.C. Sego. Strength and Deformation Behavior of Model Adfeeze and Grouted Piles in Saline Frozen Soils. Canadian Geotechnical Journal. 1993,30(2):319~337
    87 K.W. Biggar, D.C. Sego. Field Load Testing of Various Pile Configuration in Saline Permafrost and Seasonally Frozen Frozen rock. Canadian Geotechnical Conference, Materials: From Theory to Practice. 1999:304~312
    88 D.J. Hutchinson, D.C.Sego. Piles in Frozen Saline Silty Sand. Canadian Geotechnical Conference, Materials: From Theory to Practice. 1999:336~345
    89Э.Д.叶尔绍夫,著.工程冻土学.张长庆,译.莫斯科国立大学出版社, 2002:23
    90Д.И.费奥多罗维奇,等.西伯利亚北部多年冻土上建筑物桩结构的改进.童伯良,译.多年冻土区交通建设和环保工程冻土译文集第7辑, 2002:58~63
    91 Liu Hongxu. Discussion on the Distribution of the Tangential Frost-heaving Forces along the Lateral Surfaces of Pile. Permafrost Sixth International Conference Proceedings. Beijing , 1993:403~406
    92 Lu Xingliang, Yu Shengqing, Xu Bomeng. Research on Tangential Heaving Force and Frictional Resistance against Pulling up of Pile. Permafrost Sixth International Conference Proceedings. Beijing, 1993:416~419
    93 Huijun Jin, Shuxun Li, Guodong Cheng. Permafrost and Climatic Change in China. Global and Planetary Change. 2000:387~404
    94马天明.青藏铁路多年冻土区桥梁桩基础施工技术.桥梁建设. 2003,(2):32~35
    95牛永红,刘永智.桩基施工对冻土区地温影响的试验研究.铁道工程学报. 2004, (1):111~115
    96张建明,朱元林,张家懿.动荷载下桩与冻土间冻结强度试验研究.第五届全国冰川冻土大会论文集(上).甘肃文化出版社, 1996:789~793
    97徐学燕,张培柱,安莹. T锥形桩改良土体冻胀性和融沉性研究TT.冰川冻土. 1997,19(4):354~358.
    98邱明国,李海山,徐学燕. TT冻土中桩破坏模式的试验研究TT.哈尔滨建筑大学学报. 1999,32(5):39~42
    99邱明国,徐学燕,等.冻结粉质粘土中锥形桩弹性阶段挤扩效应的研究.冰川冻土. 2002,24(5):668~671
    100李洪升,刘增利,朱元林.冻土断裂力学在桩基冻拔稳定计算中的应用.冰川冻土. 1998,20(2):16~19
    101陈卓怀,励国良,赵西生,王化卿.多年冻土地区桩基实验研究.铁道学报. 1980,2(1):45~51
    102吴紫汪,王雅卿,张忠言,张家懿.基础与冻土间冻结强度的实验研究.中国科学院兰州冰川冻土研究所集刊(第2号).科学出版社, 1981:129~141
    103童长江.青藏高原风火山地区季节融化层的冻胀性.冰川冻土. 1983,(1):50TT~TT57
    104张建明,朱元林,张家懿.动荷载下冻土中模型桩的沉降试验研究.中国科学(D辑). 1999,29(s1):27~33.
    105李海山.冻结条件下锥形桩工作性能的研究.哈尔滨建筑大学硕士论文. 2000
    106李洪升,朱元林,著.冻土断裂力学及其应用.海洋出版社, 2002:46~47
    107程国栋,马巍.国际冻土工程研究进展—第五届冻土工程国际学术讨论会综述.冰川冻土. 2003,25(3):303~308
    108米隆,赖远明,等.高原冻土铁路路基温度特性的有限元分析.铁道学报. 2003,(2):211~217
    109 Xuefu Zhang , Yuanming Lai , Wenbing Yu. Forecast Analysis for the Re-frozen of Feng Huoshan Permafrost Tunnel on Qing-Zang Railway. Tunnelling and Underground Space Technology.2004:45~56
    110 Wu Qingbai, Liu Yongzhi. Ground Temperature Monitoring and its Recent Change in Qinghai–Tibet Plateau. Cold Regions Science and Technology. 2004:85~92
    111孔祥谦.有限单元法在传热学中的应用.第三版.科学出版社,1998:199~205
    112石剑,等.黑龙江省多年冻土分布特征.黑龙江气象. 2003,3:32~34
    113徐学祖,王家澄,张立新.冻土物理学.科学出版社, 2001:75
    114武湛君,王文玲.水泥水化放热规律数学模型的研究.低温建筑技术. 2003,6:18~20
    115崔托维奇,著.冻土力学.张长庆,朱元林,译.科学出版社, 1985:108~204
    116孔德志,朱骏高.邓肯-张模型几种改进方法的比较.岩土力学. 2004,25(6):971~974
    117宋和平,张克绪,胡庆立.考虑桩-土接触面及桩底非线性的单桩Q—S曲线分析.哈尔滨建筑大学学报. 2000,33(2):41~45
    118唐丽云,奚家米,杨更社.引入三维接触单元模拟冻土与桩共同工作.西安科技大学学报. 2007,27(3):337~340
    119中华人民共和国行业标准编写组.冻土地区建筑地基基础设计规范(JGJ118-98).中国建筑工业出版社,1998:115
    120王丽霞,凌贤长,徐学燕,等.青藏铁路冻结粉质粘土动静三轴试验对比.岩土工程学报. 2005,27(2):202~205
    121周国庆,杨维好.中砂融沉位移与单桩负摩阻力关系的实验研究.中国矿业大学学报. 1999,28(6):535~538
    122陈福全,龚晓南,马时冬.桩的负摩阻力现场实验及三维有限元分析.建筑结构学报. 2000,21(3):77~80
    123李广信,黄峰,帅志杰.不同加载方式下桩的负摩阻力的实验研究.工业建筑. 1999,29(12):19~21
    124赵明华,刘思思.多层地基单桩负摩阻力的数值模拟计算.岩土工程学报. 2008,30(3):33~37
    125张晓健,刘汉龙,费康,等. PCC桩负摩阻力作用机理初探.岩士力学. 2005,26(S):91~94
    126汪鹏程,杨俊杰,朱向荣.用有限元法探讨冻结井井壁上融沉负摩擦力性状.矿冶工程. 2003,23(5):l~4
    127付厚利.饱和土中单桩融沉附加力的试验研究.岩土力学. 2004,25(9):1447~1450
    128夏力农,王量华.带负摩阻力桩基的设计与检测.岩土力学. 2003,23(s2):495~498
    129 R.B. Mindlin. Force at a Point in the Interior of a Semi-infinite Solid. J.Physics.1936,7(5):195~202
    130吴紫汪,马巍.冻土的强度及蠕变.兰州大学出版社, 1994:1~35
    131 Chen xiaoping, Bai shiwei, Yang chunhe. Viscous Elastic Plastic Consolidation Model and Finite Element Analysis for Soft Foundation. Proc.1Oth Int. Computer Method and Advances in Geomechanics. Tucson, USA. 2001: 1823~1825
    132马小杰.TT高温-高含冰量冻土强度及蠕变特性研究.TT中国科学院寒区旱区环境与工程研究所TT硕士学位论文TT.2006:25~42
    133张向东,张树光,李永靖.冻土三轴流变特性试验研究与冻结壁厚度的确定.岩石力学与工程学报. 2004, 23(3):395~400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700