高CO_2负荷的离子液体复合吸收剂的开发与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳作为一种主要的“温室气体”过量排放,给全球气候环境造成了严重的负面影响。但同时二氧化碳也是一种潜在的资源,二氧化碳是与氢气合成甲醇的重要原料。超临界二氧化碳也得到愈来愈广泛的应用,如作为石油开采的助采剂,能够有效的提高的石油的开采率。
     因此,脱碳技术的研究显得尤为重要和迫切。目前工业上使用较多的有机胺吸收法存在诸多的缺点,如MEA虽然吸收CO2速率快,但腐蚀性强且再生能耗高,MDEA有较高的CO2吸收负荷,但吸收速率较慢。离子液体的特殊优良性能使其可作为一种环境友好的脱碳吸收剂,其中氨基酸离子液体对CO2有较高的吸收速率。因此将离子液体和有机胺复配使用成为新型的脱碳吸收剂研究热点。
     本课题组张等人合成了四种季铵类的离子液体:[N1111][Gly],[N2222][Gly][N1111][Lys]和[N2222][Lys],并将其与MDEA以总胺量为30w%复配进行吸收CO2实验,发现复合吸收剂能够有效地克服MDEA吸收度率慢的缺陷,并且15w%IL+15w%MDEA具有比其他比例复合吸收剂更大的吸收容量和更快的吸收速率。
     在实际生产过程中,高吸收容量的吸收剂有利于减少吸收剂的用量及吸收设备的投入,从而降低成本。对于复配溶液提高其吸收容量通常有两种方法:第一种方法是提高主体吸收剂的吸收容量;第二种方法是提高离子液体的吸收容量。本文主要就从这两个方面来开展研究工作。首先通过提高MDEA的浓度来研究其对于吸收容量的影响,另一方面通过合成一种新的高吸收容量的离子液体并将其与MDEA复配成复合吸收剂来研究其吸收性能。
     本文根据文献合成了四甲基铵甘氨酸离子液体[N1111][Gly]),并以不同比例与较高浓度的MDEA(30w%、40w%、50w%)和水复配成混合吸收剂,测定了混合吸收剂的密度、黏度和表面张力等物性参数。为新型吸收剂在设计模型时提供了物性参数。
     本文对各种不同比例的复合吸收剂进行了吸收实验,发现复合吸收剂的吸收速率主要受离子液体浓度和溶液粘度这两个互相矛盾的因素影晌.离子液体浓度的增大对吸收速率有促进作用,但浓度的提高也导致了溶液黏度的增大,而黏度对于传质速率有负面的影响。从而离子液体浓度在0-15w%范围内的复合吸收剂的吸收速率存在两个极值点,极小值点在离子液体浓度为5w%时达到,而10w%的离子液体浓度为复合吸收剂吸收速率的极大值点。同时,发现对于高浓度的复合吸收剂的吸收容量而言,MDEA的浓度是吸收容量的主导因素,IL浓度对吸收容量的影响较小。综合吸收容量和吸收速率这两方面考虑,我们可以确定在一定浓度范围内最佳吸收剂的比例。
     为提高吸收剂的吸收容量,本文的还设计合成了一批新型的双季铵型的氨基酸离子液体,并对产物进行了1HNMR表征。选择产物四甲基二乙基乙二铵二甘氨酸(C2(N112)2Gly2)和产物四甲基二丁基乙二铵二甘氨酸(C2(N114)2Gly2)配制成不同浓度的水溶液,用于CO2吸收实验中。实验结果显示,对于不同浓度的双季铵型的氨基酸离子液体溶液,浓度和吸收剂粘度均对吸收速率有影响,增大吸收剂中离子液体的浓度可以提高吸收速率,但离子液体浓度过大会使吸收剂粘度增大,反而降低吸收速率。
Excessive emission of carbon dioxide has caused serious negative effect to global climate environment. However, CO2is not just a major "greenhouse gas" but also an important potential resource. For example, Carbon dioxide can be transformed into environmental-friendly extraction solvent for green chemical industries. Moreover, as a Cl resource, CO2can be some basic chemical materials, such as CO, syngas and methanol[3,8].
     Thus the research about decarbonization technology is particularly important and urgent. At present,aqueous alkanolamines have been widely used as chemical absorbents for removal carbon dioxide. For example, MEA has been widely used as industrially important absorbent because of its rapid reaction rate while the MEA has a disadvantage due to its degradation through oxidation of the amine,high enthalpy of reaction and it causes operational problem; MDEA has high loading capacity,less regeneration energy, but the absorption rate is low. Ionic liquids (ILs) as good environmentally friendly decarburization absorbent have some special properties such as low vapor, high stability and easy assembly. However, the cost and viscosity of ILs was too high to be used as industrially important absorbent. Therefore, the hybrid of MDEA and IL become a hot research topic in the area of CO2removal.
     Zhang et al.[6] prepared four amino acid based ILs:tetramethylammonium glycinate([N1111][Gly]), tetraethylammonium glycinate([N2222][Gly]),tetramethylammoniumlysinate([N1111][Lys]) and tetraethylammonium lysinate([N2222][Lys]) and blended them and MDEA to create a new absorbent with the total amine concentration at30w%. They found that adding a certain amount of ILs in MDEA aqueous solution could greatly improve the absorption rate of CO2,and the aqueous solutions of15wt%IL and15wt%MDEA had higher absorption rate and larger uptake capacity than the other IL+MDEA solutions.
     In practice, large absorption capacity of the absorbent leads to smaller amount of absorbent and size of device, resulting in lower cost in CO2removal.There usually have two kinds of methods to improve the absorption capacity for mixture absorbents, either improve the absorption capacity of main absorption agent or enhance the IL's.In this work,we have tried to improve the concentration of MDEA in the blended aqueous liquids,and also we synthesized a new kind of IL, dual-cations amino acid ILs, blended with MDEA to explore the effect of carbon structure and two positive charge centers on CO2uptake.
     In the present work, different amounts of [N1111][Gly] were added in MDEA aqueous solutions of higher concentration (above30wt%) to obtain a series of CO2absorbents. The absorbents prepared were suggested to have large absorption capacity and high absorption rate. By evaluating the absorption performance of CO2in these absorbents, the influence factors of absorption rate and absorption load were determined. The solution formulation with higher absorption rate and larger capacity could also be presented according to the conflicting impact of concentration and viscosity.The absorption mechanism of the amino acid based IL+MDEA aqueous solution would be verified by analyzing the experimental results. Besides, the physical properties necessary to industrial design, such as the density, viscosity and surface tension of the solution, were measured for all the tested solutions.
     For the first time, dual-cations amino acid ILs were synthesized, in which the cation was equipped with two charges and the anions were functionalized with two appended amine groups. In our work, DILs and their solutions were first applied in the absorption of CO2gas. Then, absorption of CO2in the DIL aqueous solutions and the DIL+MDEA aqueous solutions was investigated respectively to explore the effect of carbon structure and two positive charge centers on CO2uptake.
引文
1. Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today 2006,115 (1),2-32.
    2. Aresta, M.; Dibenedetto, A., Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans.2007, (28),2975-2992.
    3. Sakakura, T.; Choi, J. C.; Yasuda, H., Transformation of carbon dioxide. Chem. Rev.2007,107 (6),2365-2387.
    4. Portugal, A.; Sousa, J.; Magalh es, F.; Mendes, A., Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chemical engineering science 2009,64 (9), 1993-2002.
    5. Navaza, J. M.; Gomez-Diaz, D.; La Rubia, M. D., Removal process of CO2 using MDEA aqueous solutions in a bubble column reactor. Chem. Eng. J.2009,146 (2), 184-188.
    6. (a) Zhang, F.; Fang, C. G.; Wu, Y. T.; Wang, Y. T.; Li, A. M.; Zhang, Z. B., Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem. Eng. J.2010,160 (2),691-697; (b)氨基酸离子液体-MDEA混合水溶液的CO2吸收性能.化工学报2009,60(11),6.
    7. (a) Yu, H.; Wu, Y. T.; Jiang, Y. Y.; Zhou, Z.; Zhang, Z. B., Low viscosity amino acid ionic liquids with asymmetric tetraalkylammonium cations for fast absorption of CO2. New J. Chem.2009,33 (12),2385-2390; (b) Jiang, Y. Y.; Wang, G. N.; Zhou, Z.; Wu, Y T.; Geng, J.; Zhang, Z. B., Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chem. Commun.2008, (4),505-507.
    8.高健,二氧化碳资源化利用的研究进展.石油化工2010,39(5).
    9.童媛媛,低碳石化技术领航.石油石化物资采购2010,(5).
    10. Lin, C. C.; Liu, W. T.; Tan, C. S., Removal of carbon dioxide by absorption in a rotating packed bed. Industrial & Engineering Chemistry Research 2003,42 (11), 2381-2386.
    11. Barten, H., International Energy Agency.2005.
    12.秦大河,中国气候与环境演变.文明2011,(12).
    13.黄汉生,温室效应气体二氧化碳的回收与利用.现代化工2001,21(9),53-57.
    14.(a)赵不慈,五个全球大气海洋环流模式模拟二氧化碳增加对气候变化的影响.1990;(b)苏志侠;吕世华,美国NCEP/NCAR全球再分析资料及其初步分析.高原气象1999,18(002),209-218.
    15. Jones, A., Indoor air quality and health. Atmospheric Environment 1999,33 (28), 4535-4564.
    16.张春山;邵曼君,活性炭材料改性及其在环境治理中的应用.过程工程学报 2005,5(2),223-227.
    17. Carroll, J. J.; Slupsky, J. D.; Mather, A. E., THE SOLUBILITY OF CARBON-DIOXIDE IN WATER AT LOW-PRESSURE. J. Phys. Chem. Ref. Data 1991,20(6),1201-1209.
    18. Schumpe, A., The estimation of gas solubilities in salt solutions. Chemical engineering science 1993,48 (1),153-158.
    19.王昀,低碳农业经济略论.云南农村经济 2008,(5),102-106.
    20.杨学明;张晓平,农业土壤固碳对缓解全球变暖的意义.地理科学2003,23(001),101-106.
    21.李春兰,超临界流体抽提技术及应用.油气地质与采收率 2002,9(4),31-32.
    22.吴彩娥;许克勇;李元瑞;李婷婷;李卫星,猕猴桃籽油在超临界二氧化碳中的溶解度研究.中国农业科学 2007,40(6),1242-1247.
    23. Qi, M.; Armstrong, D. W., Dicationic ionic liquid stationary phase for GC-MS analysis of volatile compounds in herbal plants. Analytical and bioanalytical chemistry 2007,388 (4),889-899.
    24.费维扬;艾宁;陈健,温室气体C02的捕集和分离——分离技术面临的挑战与机遇.化工进展 2005,24(1),1-4.
    25. Chou, C.; Wu, C. L.; Chiang, A. S. T., A complementary pressure swing adsorption process configuration for air separation. Separations Technology 1994,4 (2),93-103.
    26. Scholes, C. A.; Kentish, S. E.; Stevens, G. W., Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering 2008,1(1),52-66.
    27. Ward Ⅲ, W. J.; Robb, W. L., Carbon dioxide-oxygen separation:facilitated transport of carbon dioxide across a liquid film. Science 1967,156 (3781),1481-1484.
    28. LeBlanc Jr, O. H.; Ward, W. J.; Matson, S. L.; Kimura, S. G., Facilitated transport in ion-exchange membranes. Journal of Membrane Science 1980,6,339-343.
    29. Jiang, Y. Y.; Zhou, Z.; Jiao, Z.; Li, L.; Wu, Y. T.; Zhang, Z. B., SO2 gas separation using supported ionic liquid membranes. The Journal of Physical Chemistry B 2007, 111(19),5058-5061.
    30.李桂明,MDEA水溶液脱碳平衡溶解度和动力学研究.西南石油大学学报2007,29(4),5.
    31. Astaria, G.; Savage, D. W.; Bisio, A., Gas treating with chemical solvents.1983.
    32. Park, S. H.; Lee, K. B.; Hyun, J. C.; Kim, S. H., Correlation and prediction of the solubility of carbon dioxide in aqueous alkanolamine and mixed alkanolamine solutions. Ind. Eng. Chem. Res.2002,41 (6),1658-1665.
    33. Bishnoi, S.; Rochelle, G. T., Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. Aiche J.2002,48 (12),2788-2799.
    34. Vaidya, P. D.; Kenig, E. Y., A Study on CO2 Absorption Kinetics by Aqueous Solutions of N,N-Diethylethanolamine and N-Ethylethanolamine. Chemical Engineering & Technology 2009,32 (4),556-563.
    35. Zhang, X.; Zhang, C. F.; Xu, G. W.; Gao, W. H.; Wu, Y Q., An experimental apparatus to mimic CO2 removal and optimum concentration of MDEA aqueous solution. Ind. Eng. Chem. Res.2001,40 (3),898-901.
    36. Vahidi, M.; Matin, N. S.; Goharrokhi, M.; Jenab, M. H.; Abdi, M. A.; Najibi, S. H., Correlation of CO2 solubility in N-methyldiethanolamine plus piperazine aqueous solutions using extended Debye-Huckel model. Journal of Chemical Thermodynamics 2009,41(11),1272-1278.
    37. Demberelnyamba, D.; Yoon, S. J.; Lee, H., New epoxide molten salts:Key intermediates for designing novel ionic liquids. Chem. Lett.2004,33 (5),560-561.
    38. Blasig, A.; Tang, J.; Hu, X.; Tan, S. P.; Shen, Y.; Radosz, M., Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance:P [VBTMA][BF4] and P [VBMI][BF4]. Industrial & Engineering Chemistry Research 2007,46 (17),5542-5547.
    39.王冠楠;肖峰;吕学铭;方诚刚;张志炳,离子液体吸收CO2的研究进展.化工时刊2010,24(003),61-69.
    40. Brennecke, J. F.; Maginn, E. J., Purification of gas with liquid ionic compounds. Google Patents:2003.
    41. Scovazzo, P.; Kieft, J.; Finan, D. A.; Koval, C.; DuBois, D.; Noble, R., Gas separations using non-hexafluorophosphate [PF 6]- anion supported ionic liquid membranes. Journal of Membrane Science 2004,238 (1), 57-63.
    42. Camper, D.; Bara, J. E.; Gin, D. L.; Noble, R. D., Room-temperature ionic liquid- amine solutions:Tunable solvents for efficient and reversible capture of CO2. Industrial & Engineering Chemistry Research 2008,47 (21),8496-8498.
    43. Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D., Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Industrial & Engineering Chemistry Research 2009,48 (6),2739-2751.
    44. Gordon, C. M., New developments in catalysis using ionic liquids. Applied Catalysis A:General 2001,222 (1-2),101-117.
    45. Branco, L. C.; Crespo, J. G.; Afonso, C. A. M., Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angewandte Chemie 2002,114 (15),2895-2897.
    46. (a) Chen, H.; Obuskovic, G.; Majumdar, S.; Sirkar, K., Immobilized glycerol-based liquid membranes in hollow fibers for selectiveCO 2 separation fromCO 2-N 2mixtures. Journal of Membrane Science 2001,183 (1),75-88; (b) Chen, H.; Kovvali, A.; Majumdar, S.; Sirkar, K., Selective CO2 separation from CO2-N2 mixtures by immobilized carbonate-glycerol membranes. Ind. Eng. Chem. Res.1999,38 (9),3489-3498.
    47. Holst, J.; Kersten, S. R. A.; Hogendoorn, K. J. A., Physiochemical properties of several aqueous potassium amino acid salts. Journal of Chemical & Engineering Data 2008,53(6),1286-1291.
    48. Kumar, P.; Hogendoorn, J.; Versteeg, G.; Feron, P., Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. Aiche J.2003,49 (1), 203-213.
    49. Song, H. J.; Lee, S.; Maken, S.; Park, J. J.; Park, J. W., Solubilities of carbon dioxide in aqueous solutions of sodium glycinate. Fluid Phase Equilibria 2006,246 (1),1-5.
    50. Harris, R; Kurnia, K. A.; Mutalib, M. I. A.; Thanapalan, M., Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption. Journal of Chemical& Engineering Data 2008,54 (1),144-147.
    51. (a) Lee, S.; Song, H. J.; Maken, S.; Shin, H. C; Song, H. C; Park, J. W., Physical solubility and diffusivity of N2O and CO2 in aqueous sodium glycinate solutions. Journal of Chemical& Engineering Data 2006,57 (2),504-509; (b) Lee, S.; Song, H. J.; Maken, S.; Park, J. W., Kinetics of CO2 absorption in aqueous sodium glycinate solutions. Ind. Eng. Chem. Res.2007,46(5),1578-1583.
    52. Park, S. W.; Son, Y. S.; Park, D. W.; Oh, K. J., Absorption of carbon dioxide into aqueous solution of sodium glycinate. Separation Science and Technology 2008,43 (11-12),3003-3019.
    53.李汝雄;王建基,绿色溶剂一离子液体的制备与应用.化工进展2002,21(1),43-47.
    54. Wilkes, J. S.; Zaworotko, M. J. Air and water stable l-ethyl-3-methylimidazolium based ionic liquids; DTIC Document:1992.
    55. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B., Thermal properties of imidazolium ionic liquids. Thermochim. Acta 2000,357,97-102.
    56. Wasserscheid, P.; Keim, W., Ionic liquids-new" solutions" for transition metal catalysis. Angewandte Chemie 2000,39 (21),3772-3789.
    57. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev.1999,99,2071-2084.
    58. Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F., Green processing using ionic liquids and CO2. Nature 1999,399 (6731),28-29.
    59. Anthony, J. L.; Maginn, E. J.; Brennecke, J. F., Solubilities and thermodynamic properties of gases in the ionic liquid l-n-butyl-3-methylimidazolium hexafluorophosphate. The Journal of Physical Chemistry B 2002,106 (29), 7315-7320.
    60. Finotello, A.; Bara, J. E.; Camper, D.; Noble, R. D., Room-temperature ionic liquids:Temperature dependence of gas solubility selectivity. Industrial & Engineering Chemistry Research 2008,47 (10),3453-3459.
    61. Husson-Borg, P.; Majer, V.; Gomes, M. F. C, Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure. Journal of Chemical & Engineering Data 2003,48 (3),480-485.
    62. Shariati, A.; Peters, C. J., High-pressure phase equilibria of systems with ionic liquids. The Journal of supercritical fluids 2005,34 (2),171-176.
    63. Schilderman, A. M.; Raeissi, S.; Peters, C. J., Solubility of carbon dioxide in the ionic liquid l-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. Fluid Phase Equilibria 2007,260 (1),19-22.
    64. Bara, J. E.; Gabriel, C. J.; Lessmann, S.; Carlisle, T. K.; Finotello, A.; Gin, D. L.; Noble, R. D., Enhanced CO2 separation selectivity in oligo (ethylene glycol) functionalized room-temperature ionic liquids. Ind. Eng. Chem. Res.2007,46 (16), 5380-5386.
    65. Tang, J. B.; Tang, H. D.; Sun, W. L.; Radosz, M.; Shen, Y. Q., Poly(ionic liquid)s as new materials forCO(2) absorption. Journal of Polymer Science Part a-Polymer Chemistry 2005,43 (22),5477-5489.
    66. Tang, J. B.; Sun, W. L.; Tang, H. D.; Radosz, M; Shen, Y. Q., Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 2005,55 (6),2037-2039.
    67. Zhang, J. M.; Zhang, S. J.; Dong, K.; Zhang, Y. Q.; Shen, Y. Q.; Lv, X. M., Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem.-Eur. J.2006,12 (15),4021-4026.
    68. Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc.2002,124 (6),926-927.
    69. Anderson, J. L.; Ding, R. R; Ellern, A.; Armstrong, D. W., Structure and properties of high stability geminal dicationic ionic liquids. J. Am. Chem. Soc.2005, 127(2),593-604.
    70. Payagala, T.; Huang, J.; Breitbach, Z. S.; Sharma, P. S.; Armstrong, D. W., Unsymmetrical dicationic ionic liquids:manipulation of physicochemical properties using specific structural architectures. Chemistry of Materials 2007,19 (24), 5848-5850.
    71. Yu, G. Q.; Yan, S. Q.; Zhou, F,; Liu, X. Q.; Liu, W. M; Liang, Y. M., Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribol. Lett.2007,25 (3),197-205.
    72. Zhang, Z.; Yang, L.; Luo, S.; Tian, M.; Tachibana, K.; Kamijima, K., Ionic liquids based on aliphatic tetraalkylammonium dications and TFSI anion as potential electrolytes. J. Power Sources 2007,167 (1),217-222.
    73. Li, X.; Bruce, D. W.; Jean'ne, M. S., Dicationic imidazolium-based ionic liquids and ionic liquid crystals with variously positioned fluoro substituents. J. Mater. Chem. 2009,79(43),8232-8238.
    74. Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. N. K.; Brennecke, J. R, Improving carbon dioxide solubility in ionic liquids. The Journal of Physical Chemistry B 2007,111 (30).9001-9009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700