家蚕第二隐性赤蚁基因(ch-2)的图位克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
着色是动物最具多样化的特征之一,体色艳丽,形状奇特的蝴蝶和部分蛾类,具有很高的观赏价值。体色的研究对探讨昆虫遗传多态性、适应机制及生物进化等具有重要的意义。家蚕的色彩突变涉及家蚕的各个生长时期,胚胎期,幼虫期、蛹期、成虫期,包括蚕茧也具有丰富的颜色变化。不同的基因变异导致控制家蚕体内的各种黑色素、蝶啶、眼黄素等在表皮细胞和真皮细胞中的积累和相互作用,可以形成不同体色突变。目前已发现100多种突变都与着色模式异常相关,因此,研究家蚕体色形成机制,有助于为色素模式的遗传学基础研究提供丰富资源,使人们深层次认识色素功能,同时为家蚕品种资源的多样性分析提供了依据。
     第二隐性赤蚁基因(ch-2)是少数只在蚁蚕时期显现出可辨别表型的体色突变型之一,作为标志性基因,本研究利用SSR、STS和CAPs分子标记技术和siRNA干扰技术,对其进行图位克隆和功能补偿验证,其主要内容及结果如下: 1.对ch-2基因的初步定位和连锁分析
     供试家蚕品种正常黑蚁P50和突变体赤蚁ch-2品种k04均由中国农业科学院蚕业研究所提供。用k04和P50作为亲本组建F1代及BC1回交群体(k04×p50)×k04和k04×(k04×P50),分别记作BC1F和BC1M。基于雌性家蚕的W与Z染色体不发生交换的特点,采用此两种回交群体通过已经构建的家蚕SSR分子标记连锁图谱用BC1F群体进行连锁分析,用BC1M群体构建遗传连锁图,寻找与ch-2基因连锁的标记,结果显示在第18连锁群上发现7个多态SSR标记(S1804、S1807、S1808、S1809、S1812、S1814 and S1819),重新设计微卫星位点的引物,结果在S1804和S1807附近找到2个新的多态SSR标记ZR1807和ZR1817,这9个标记在BC1F群中的电泳谱中所有黑色个体均表现出与F1相同的杂合带型;而所有赤蚁带型与k04一致,为纯合型;用BC1M群体采用作图软件Mapmaker 3.0,根据整个数据阵计算重组值(LOD取5.0),绘制出ch-2基因的分子连锁图。绘制的遗传连锁图的遗传距离为70.7cM,ch-2基因位于中间69.6cM处,S1814和S1819与ch-2基因距离最近,与ch-2基因的距离分别是7.9cM和1.1cM。
     2对第二隐性赤蚁基因ch-2的精细定位及ch-2基因全长的获得
     经与家蚕基因组数据库进行比对,S1814位于家蚕基因组精细图的nscaf2902的1.526Mb处,而S1819不能在基因组精细图中比对到序列,说明S1819的序列位于已知的家蚕基因组精细图中的scaffold外部,这与其位于遗传连锁图的尾端是符合的,说明S1819所在区域的序列还没有能够被测通或者没有能够被正确拼装。于是我们在nscaf2902和nscaf2901上用Primer.primer5.0设计更多的STS和CAPS引物的标记,通过测序酶切PCR产物将ch-2锁定在300kb以内的区域,通过Blast程序搜索,经同源序列比对,发现预测基因BGIBMGA008245-TA表皮蛋白(CPG6 )基因和BGIBMGA008268-TA基因,可能与着色相关。查询数据库,并了解该基因的功能,将目标锁定为BGIBMGA008245-TA表皮蛋白(CPG6)基因。通过对P50表皮进行5’和3’RACE-cDNA扩增,利用DNAMAN拼接得到了ch-2基因的全长。
     3.候选基因功能验证用家蚕品种正常黑蚁P50和突变体赤蚁ch-2品种k04的不同催青天数的蚕卵,液氮速冻后提取RNA,反转录为cDNA后进行普通PCR扩增,凝胶回收PCR产物,克隆测序,比较亲本间的序列差异。结果发现表皮蛋白(CPG6)的表达在催青第一天和第四天均无差异,而第九天在突变体中存在156bp左右的缺失表达,根据表皮蛋白(CPG6)在突变体中的表达差异性,对差异序列进行SiRNA设计,注射到经过不同时间催青处理的蚕卵中进行催青,并对孵化的卵数进行统计,对未孵化的卵进行解剖,发现了赤色的蚁蚕。
Coloration is one of the variegated characteristics for insects.It is quite a value to view and admire for radiantly beautifμL and odd butterflies and some moth. it is interesting and impotant to explore the genetic polymorphisms, adaptive mechanism and biological evolution for insects. Colour mutation are involved in various growth period, including embryonic phase, larval phase, pupa stage, adult stage and cocoon. Different mutants caused the accumulation and interaction of various kinds of melanin, pteridine, xanthommatin in epidermal cells and corium cells, which are resulted in forming different body color. It has been more than 100 mutants which have been found to correlate with coloring model. Based on the study and research on the mechanism of the body color, it can provide knowledge for insect pigmentation and understand the modle of genetic basis, at the same time it can provide the evidence for the analysis of genetic diversity of silkworm.
     The second recessive chocolate gene (ch-2) is one of the few appeared red color only in newly hatached larvae period, which can distinguish to normal black ones. We used SSR, STS to make map-based cloning this gene and use and siRNA methods to analyze the functional compensation verification, the contents are as follows:
     1. Initial Linkage Analysis of Gene ch-2 and MolecμLar Mapping
     We used silkworm strain P50 as wild type and k04 (ch-2/ch-2) variety as parents, both of which are preserved in SericμLture Research Institute, Chinese Academy of AgricμLtural Sciences. Owing to a lack of crossing over in females, reciprocal Backcrossed BC1F progeny were used for Linkage analysis and mapping of the ch-2 gene in chr18 using silkworm stains P50 and k04, which are classified as being black and red larvae. We found seven SSR markers including S1804、S1807、S1808、S1809、S1812、S1814 and S1819, which were identified to be linked to the ch-2 gene. Redesigned microsatellite loci primers, we found 2 makers near S1804 and S1807, all the 9 primers have the same homozygous profile as the parental ch-2 in the chocolate individuals of BC1F, and heterozygous in the wild type individuals as in F1.The recombination fractions were then calculated from the whole dataset using MAPMAKER 3.0 at a LOD score of 5.0 for further confirmation using BC1M, we constructed a linkage map of 70.7cM, with ch-2 mapped at 69.6cM and the genetic distance between ch-2 gene and the nearest marker S1814 and S1819 is 7.9cM and 1.1cM.The order of the SSR markers was ch-2 and S1819. 2. Fine mapping of ch-2 gene and the full sequence of ch-2
     S1814 located at the site of 1.526Mb in nscaf2902 after blasting the Bombyx mori genome database, but the sequence of S1819 can’t be blast in the genome database, which meant that the sequence of S1819 is located outside the scaffolds of genome, and this is coincident to the result that the ch-2 gene is located in the end of the established linkage map. We screening nscaf2901 and nscaf2902, design new STS makers and CAPs makers using Primer.primer5.0, to map ch-2 gene precisely, at last we had narrowed the ch-2 gene in a region of 300kb. We blasted all of the candidate genes in NCBI and silk worm genome database, and found that the predicted genes BGIBMGA008245-TA (skin protein gene CPG6) and gene BGIBMGA008268-TA might be related to body color. We blast the Bombyx mori genome database to get the function and at last we consider BGIBMGA008245-TA(CPG6)as the important candidate gene. We get the full sequence of ch-2 using DNAMAN after we had a 5’and 3’RACE-cDNA amplification of P50epidermis.
     3. The candidate gene and function analysis
     RT-PCR primers were designed based on the EST of these genes, and we found there were 156bp deletions in BGIBMGA008245 -TA in k04’s embryo after 9 days incubation, but there was no distinguish between ch-2 and P50 in the embryo after 1day and 4days’incubation. We designed siRNA according to the CPG6, and microinjected into the Nistari eggs which were dealed with different days’incubation. In the end, we had a statistics about the eggs incubation and dissected the eggs which didn’t hatch, and ch-2 phenotype newly-hatched larvae had been observed after RNA knock down of CPG6 gene.
引文
[1] Doira H, Fujii H, Kawaguchi Y. et al.Genetic stocks and mutations of Bombyx mori: important genetic resources [J]. Institute of Genetic Resources, FacμLty of AgricμLture. Kyushu University, Fukuoka, Japan.1992:1-73.
    [2] Goldsmith M R. Genetics of the silkworm: revisiting an ancient model system. In: MolecμLar Model Systems in the Lepidoptera [J]. (eds.: M. R. Goldsmith, and A. S.Wilkins),.Cambridge Univ. Press, New York. 1995: 21-76.
    [3] Morgan, T. H. 1910. Sex-limited inheritance in Drosophila, Science, 32: 120-122.
    [4] Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are usefμL as genetic markers [J]. Nucleic Acids Res, 1990, 18(22): 6531-5.
    [5] Reiter R S, J G K Williams, K A Feldmann, et al. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs[J].Proc.Natl.Acad.Sci.USA, 1992, 89: 1477-1481.
    [6] M Hemmat, N F Weeden, A G Manganaris, et al. MolecμLar marker linkage for apple[J]. The Journal of Heredity, 1994, 85(1):4-11.
    [7] Rowland LJ, Levi A. RAPD-based genetic linkage map of blueberry derived from a cross between diploid species [J]. Theor, Appl, Genet, 1994, 87: 863-868.
    [8] JX Chaparro, DJ Werner, D O'Malley, et al. Targeted map-ping and linkage analysis of morphological isozyme, and RAPD markers in peach[J].Theor.Appl.Gene, 1994, 87: 805-815.
    [9]陈洪,朱立煌,徐吉臣. RAPD标记构建水稻分子连锁图[J].植物学报,1995,37 (9):677-684.
    [10]李斌,鲁成,周泽扬等.RAPD标记构建家蚕分子连锁图[J].遗传学报,2000,227(2):127-132
    [11] Zabeau M., Vos P., Selective restriction fragment amplification: A general method for DNA fingerprinting, European Patent Application (Publication No.0534858 Al).European Patent Office, 1992 Paris.
    [12] Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989, 44(3):397-401.
    [13] Beckmann JS, Soller M. Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites [J]. Biotechnology (N Y). 1990, 8(10):930-932.
    [14] Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates [J]. Nucleic Acids Res. 1993, 21:1111-1115.
    [15]朱玉芳,谭远德.家蚕AFLP连锁框架图谱的构建[J].昆虫学报, 2001, 44(4):483-494
    [16] M Dharma Prasad, M MuthμLakshmi, M Madhu, et al. Surver and analysis of microsatellites in the silkworm, Bombyxmori: Frequency, Distribution, Mutations, Marker potential and their Conservation in heterologous species [J]. Genetics, 2004, 9:151.
    [17] Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome [J]. Science, 1989, 245:1434-1435.
    [18]王俊美,柴春月,刘红彦等.小麦抗白粉病基因Pm4三个STS标记的实用性分析[J].河南农业科学, 2005, 4:84-87.
    [19] A Konieczny, F. M. Ausubel. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers [J]. The Plant Journal, 1993, 4(2):403-410.
    [20] Mata K, Kasahara M, Sasaki S, et al. The genome sequence of silkworm, Bombyx mori[J]. Res.2004, 11:27-35.
    [21]黄健华,苗雪霞,李木旺等.家蚕基因特异性CAPs标记获得及其分子系统学应用[J].遗传2005, 27(4): 584-588.
    [22]汤桂丽,赵映兰.单核苷酸多态性检测方法的研究进展[J].中国药业, 2010, 19(7).1-3
    [23] Baralle M, Baralle FE. Genetics and molecμLar biology: single nucleotide polymorphism associations and their functional significance. Curr Opin Lipidol, 2006, 17(3): 360-362.
    [24] Bostein D, White R L, Skolnick M, et al. Construction of genetic linkage map in man using restrition fragnent length polymmophisms Am.J.Hum [J]. Genet, 1993, 31: 314-318.
    [25]杜玮南,方福德.单核苷酸多态性的研究进展[J].中国医学科学院学报, 2000, 22(4):392-394.
    [26]徐汉福,段军. The International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori [J]. Insect Biochem Mol Biol, 2008, 38(12): 1036-1045.
    [27]李木旺.微卫星遗传标记在家蚕中的应用研究—遗传多样性分析、QTL分析、基因定位与分子标记辅助育种[D].上海:中国科学院上海生命科学研究院植物生理生态研究所, 2006: 1-18.
    [28] Goldsmith M R, et al.Genetics of the silkworm: revisiting an ancient model system molecμLar model systems. New York: Combridge University Press, 1994, 21-38.
    [29] Promboon A, Shimada T, Fujiwara H, et al. Linkage map of RAPDs in the silkworm, Bombyx mori [J]. Genet.Res, 1995, 66:1-7.
    [30] Yasukochi Y. A dense genetic map of the silkworm,Bombyx mori,coveri chromosomes based on 1018 molecμLar markers[J]. Genetics.1998, 150(4):1513.
    [31]何宁佳,鲁成,李斌等.结合SADF与RAPD标记构建家蚕连锁图[J].昆虫学, 2001, 44(4): 476-482.
    [32] Tan Y D, Wan C, Zhu Y, et al. An amplified fragment length polymorphism map of the silkworm.Genetics. 2001, 157(3): 1277-84.
    [33]万春玲,谭远德.利用AFLP标记构建家蚕分子连锁图谱[J].中国农业科学, 2001, (3): 338-341.
    [34]赵爱春,鲁成,李斌等.家蚕AFLP分子连锁图谱的构建及绿因定位[J].遗传学报, 2004, 31(8):787-794.
    [35] Miao X X, Xub S J, Li M H, et al. Simple sequence repeat-based consensus linkage map of Bombyx mori [J]. Proc Natl Acad Sci U S A. 2005, 102(45): 16303-16308.
    [36] Yamamoto K, Narukawa J, Kadono-Okuda K, et al. Construction of a Single Nucleotide Polymorphism Linkage Map for the Silkworm, Bombyx mori, Based on BAC End-Sequences [J]. Genetics. 2006, 173:151-161.
    [37] Yasukochi Y, Banno Y, Yamamoto K, et al. Integrat molecμLar and classical linkage groups of the silkworm, Bombyx mori (28) [J].Genome, 2005, 48(4):626-629.
    [38]鲁成,代方银,向仲怀.家蚕基因库突变系统的研究[J].中国农业科学, 2003, 36(8):968-975.
    [39]徐安英,李木旺,张月华等.家蚕种质资源研究进展[J].中国蚕业, 2003, 11(4):83-86.
    [40]侯成香,李木旺,张月华等.利用SSR标记进行家蚕部分品种资源的指纹图谱分析[J].中国农业科学, 2006, 39(10): 2124-2131.
    [41]李竞,房守敏,刘文明等. SSR标记在中国野桑蚕和家蚕的遗传多态性分析中的应用[J].蚕业科学, 2005, 31(3) :251-256.
    [42]沈利,李木旺,李明辉等.家蚕微卫星标记的筛选及其在遗传多样性分析中的应用[J].蚕业科学, 2004, 30 (3):230-235.
    [43] Li M W, Li M H, Miao X X, et al. Studies on the hereditary properties of SSR marker in silkworm (Bombyx mori.)[J]. Inter J Indust Entomol, 2005, 11(1):49-55.
    [44]徐云碧,朱立煌.分子数量遗传学(第一版)[M].中国农业出版社. 1994.
    [45]白会钗.家蚕耐氟基因(Def)的连锁及定位分析[D].上海:中国科学院上海生命科学研究院植物生理生态研究所, 2008:14-18.
    [46]樊永胜,朱道弘.昆虫体色多型及其调控机理[J].中国林业科技大学学报, 2009, 29(1): 84-88.
    [47] Chun liu, Kimiko Yamamoto, Ting-Cai Cheng, et al. Repression of tyrosine hydroxylase is responsible forthe sex-linked chocolate mutation of the silkworm, Bombyxmori [J]. PNAS, 2010, 107:12980-129.
    [48]土井良宏.家蚕突变基因与连锁群[J].蚕学通讯[续], 1997, 17(l): 33-40.
    [49] Kato T, Sawada H, Yamamoto T, et al. Pigment pattern formation in the quail mutant of the silkworm, Bombyx mori: parallel increase of pteridine biosynthesis and pigmentation of melanin and ommochromes [J]. Pigment Cell Res 2006.19, 337-345.
    [50]冯家新.蚕种学[M].北京:农业出版社, 1990.
    [51]鲁成,向中怀.家蚕突变型淡赤蚁的遗传学研究[J].蚕业科学, 1990, 16(1):21 -24.
    [52]代方银,谭端,童晓玲等.含有母性影响遗传基因的连锁定位系的构建[J].遗传, 2007, 11:1393-1398
    [53]秦俭.家蚕第二隐性赤蚁的遗传学研究初报[J].蚕业科学, 1985, 11(2):103-115.
    [54]秦俭.家蚕第二隐性赤蚁的遗传学研究Ⅱch -2基因的连锁分析[J].蚕业科学, 1987, 13(2): 113-115.
    [55]秦俭.家蚕第二隐性赤蚁的遗传学研究Ⅱch-2基因位点及家蚕第l8连锁群[J].蚕业科学, 1988, 14 (4): 205-207.
    [56]黄永燕.蚕赤蚁突变的分子定位及淡赤蚁chp的分子基础初探[D].西南大学, 2010:2-14.
    [57]罗尤海.蚕茧生产中小蚕发生原因分析[J].蚕学通讯, 2006, 26(4): 47-48.
    [58]向仲怀.蚕丝生物学[M].中国林业出版社, 2005.
    [59]伊藤智夫.关于蚕蛾斑纹的浓淡[J]旧本蚕丝学杂志.1949, 18:237-24.
    [60]桥本春雄.家蚕暗化型的遗传[J].日本蚕丝学杂志.1961, 30(5):389-391.
    [61]神户礼二郎.关于家蚕黑翅蛾wb的遗传[J].日本蚕丝学杂志, 1959, 28(1):37-39.
    [62]代方银,鲁成,向仲怀.家蚕蛾体色突变型四川野蚕翅斑的遗传学研究简报[J].蚕业科学, 2001, 27(l):66-67.
    [63] XiaA H, ZhouQ X, YμL L, et al. Identification and analysis of YELLOW Protein family Genes in the silkworm,Bombyxmori[J]. BMC, Genomics, 2006, 7:195-199.
    [64] Ryo Futahashi, Jotaro Sato,Yan Meng, et al. Yellow and ebony are the responsible genes for the larva color mutants of the Silkworm Bornbyxmori [J].Genetics.2008, 180(4):1995-2005.
    [65] Ito K,Katsuma.S, Yamamoto K, et al. Yellow-E determines the color Pattem of larval head and tail spots of the silkworm, Bombyxmori [J]. JBC.2010, 285(8):5624-5629.
    [66] Makino K, Takahashi H, Satoh K, et al. Abnormal accumμLation of 3-hydroxykynurenine in the mutant“Aka-Aka”of silkworm [J]. Nature, 1954, 173: 586-587.
    [67] Yan Meng, Susumu Katsuma, Kazuei Mita, et al. Abnormal red body coloration of the silkworm, Bombyx mori, is caused by a mutation in a novel kynureninase [J].Genes to Cells, 2009, 14: 129–140.
    [68] Bertazzo, A., Ragazzi, E., Biasiolo, et al. Enzyme activities involved in tryptophan metabolism along the kynurenine pathway in rabbits. Biochim. Biophys. Acta, 2001, 1527:167-175.
    [69] Momany, C., Levdikov, V., Blagova, L., et al. Three-dimensional structure of kynureninase from Pseudomonas fluorescens. Biochemistry, 2004, 43: 1193-1203.
    [70]刘劲,代方银,朱勇等.家蚕突变体的嘌呤代谢[J].蚕学通讯, 25(3):6-11.
    [71] Zhang, X., He, X., Fu, X.Y., et al.Varp is a Rab21 guanine nucleotide exchange factor and regμLates endosome dynamics [J]. Cell Sci. 2006,119, 1053-1062.
    [72] Ito Katsuhiko, Katsuma Susumu, Yamamoto Kimiko, et al. A 25 bp-long insertional mutation in the BmVarp gene causes the waxy translucent skin of the silkworm, Bombyx mori [J]. Insect Biochemistry and Molecular Biology, 2009, 39(4): 287-293.
    [73] Natuo Komoto. A deleted portion of one of the two xanthine dehydrogenase gene causes translucent larval skin in the oq mutant of the silkworm (Bombyx mori) [J]. Insect Biochemistry andMolecμLar Biology, 2002, 32: 591–597.
    [74] Tsuguru Fuji. A bombyx mandarina mutant exhibiting translucent larval skin is controlled by the molybdenum cofactor sμLferuase gene [J]. Gene’s genet.Syst. 2009, 84:147-152.
    [75] Fang-yin Dai, Liang Qiao, Xiao-ling Tong, et al. Mutations of an Arylalkylamine-N-acetyltransferase, Bm-iAANAT, Are Responsible for Silkworm Melanism Mutant [J]. Biol. Chem. 2010, 285: 19553-19560.
    [76] Itoh M T, Hattori A, Nomura T, et al. MolecμLar and CellμLar Endocrinology [M]. 1995, 115:59-64.
    [77] Banno Y, H Fujii, Y Kawaguchi, et al.A guide to the silkworm mutants: gene name and gene symbol [M]. Kyusyu University, Fukuoka, Japan. 2005.
    [78]鲁成,岳树谷,陈萍等.赤蚁蚕催青期温敏性研究[J].蚕业科学, 1998, 24 (1):46-48.
    [79]林健荣,黄自然,黄君霆.家蚕胚胎伴性赤蚁温敏性的遗传研究[J].蚕业科学, 1998, 24(2): 100 -103.
    [80]梁应霞,鲁成,李关荣等. sch蚕胚胎期温敏性的mRNA差异显示研究[J].蚕业科学, 2001, 27 (4) : 267-271.
    [81]卢忠燕,夏庆友等.温度和湿度对伴性赤蚁sch系统致死性的影响[J].蚕业科学, 2003, 29 (2) :125-130.
    [82] Lin J-R, Chen J-x, Deng X-J, et a1. The disscution to the influence on the physiological andbiochemical characteristics of the temperature-sensitivity silkworm embryo during incubation under high tempe rapture and low humidity[J]. Acta Sericolog sin, 2001, 27: 16-19.
    [83] Banno Y, Y Kawaguchi, I Shokyu, and H Doira. Linkage studies of Bombyx mori: Discovery of the twenty-sixth linkage group, sooty and non-molting of Ishiko [J].Seric. Sci. Jpn. 1989, 58: 234-239.
    [84] Tanaka, Y., new research on the heredity of cocoon color in silkworms [J]. Sangyo-shinpo 1924, 367: 92-96.
    [85] Li M W, Guo QH, Hou C X, et al. Linkage and mapping analyses of the densonucleosis non-susceptible gene nsd-Z in the silkworm Bombyx mori using SSR markers [J]. Genome, 2006, 49: 397-402.
    [86] Zhao Y P, Li M W, Xu A Y, et al. SSR based linkage and mapping analysis of C, a yellow cocoon gene in the silkworm, Bombyx mori [J]. Insect Science, 2008, 15:399-404.
    [87]李霞,李木旺等.家蚕黄血抑制基因的SSR定位[J]. HEREDITAS (Beijing), 2008, 30: 1039-1042.
    [88]杨晓博,李木旺,汪生鹏等.家蚕裸蛹基因(Nd)的SSR定位[J].蚕业科学, 2009, 35(4): 732-736.
    [89]王修业,李木旺,赵云坡等.结合SSR标记和STS标记对家蚕无鳞毛基因的定位[J].遗传,2010,31(1):54-58.
    [90]陈萍,鲁成,朱勇等.控制sch单养雄蚕品种雌雄蚕孵出比例的催青处理因素研究[J].蚕业科学, 2002, 28(1): 31-34.
    [91]陈萍等.家蚕胚胎期伴性温敏性与伴性赤蚁sch基因及亲本的关系研究[J].蚕业科学, 2007, 33 (2): 284-287.
    [92]陈萍,朱勇,鲁成等.胚胎期高温处理对家蚕生长发育和部分经济性状的影响[J].蚕业科学, 2000, 26(2): 75-80.
    [93]陈萍,朱勇,鲁成等.家蚕sch基因对健康性及茧重的影响研究[J].蚕业科学, 2001, 27(1) :11-15.
    [94]王根洪,刘春,杨远萍等. siRNA介导的家蚕ABC转运蛋白相关基因的干涉研究[J].蚕业科学, 2005, 31(2): 117-120.
    [95]卢忠燕,侯勇,赵萍等.家蚕伴性赤蚁sch胚胎期致死特异蛋白差异的研究[J].蚕业科学, 2005, 31 (1): 42-46.
    [96]夏庆友,帅小蓉,刘春等.RNA干涉及其在蚕功能基因组研究中的应用[J].蚕业科学,2003,29(3):213-216.
    [97] Fire A, Montgomery M K, et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].Nature, 1998, 391:806-811.
    [98]韩慧明,毛建平. siRNA作用效果的靶点依赖性[J].中国生物工程杂志, 2004, (12):001-004.
    [99] Tavernarakis N, Wang SL, Dorovkov M, et al.Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes [J] .Nature Genetics, 2000, 24 (2):180-183.
    [100] Novina CD, Murray MF, Dykxhoorn DM, et al. SiRNA-directed inhibition of HIV-1 infection [J].Nature Medicine, 2002, 8 (7):681-686.
    [101]马元春,张得钧. RNA干扰(RNAi)的研究进展[J].青海医学院学报, 2009 , l30(4):279-282.
    [102] Giordano E, Rendina R, Peluso I, et al. RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster [J].Genetics, 2002, 160:637-648.
    [103] Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing [M]. Nat. Rev. Mol. Cell Biol. 2005.
    [104]汤富酬,薛友纺. RNA干涉与基因沉默[J].遗传, 2001, 23(2): 167-172.
    [105] Quan GX, Kanda T, Tamura T. Induction of the white egg3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene [J]. Insect MolecμLar Biology, 2002, 11(3):217-222.
    [106] Victor J V, Alicia S, Jorge S, et al. Double-stranded RNA to prevent in vitro and in vivo viral infections by recombinant bacμLovirus[J]. J Biol Chem, 2003, 278 (21):19317-19324.
    [107] GUO-XING QUAN.Rescue of white egg 1 mutant by introduction of the wildtype Bombyxkynurenine 3-monooxygenase gene [J]. Insect Science, 2007, 14:85-92.
    [108]刘春,帅小蓉,程廷才等.家蚕胚胎发育时期的RNA干涉研究[J].生物化学与生物物理进展, 2004, 4:322-327.
    [109] UhlirovaM, FoyBD, BeatyBJ, et al.Use of Sindbisvirus-mediated RNA interference to demonstrate aeon served role of Broad-ComPlex in insect metamorphosis [J]. Proceedings of the National Academy of Seiences of the Unite States of America. 2003, 23:100(26):15607-15612.
    [110] Tabunoki H, Higurashi S, Ninagi O, et al. A carotenoid2binding Protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyxmori) larvae [J]. FEBS Letters, 2004, 567(223):175-178.
    [111]徐颖,朱成钢,金勇丰等. dsRNA对家蚕核多角体病毒(BmNPV)复制的抑制作用[J].科学通报, 2004,(11).
    [112]夏定国,张国政,王文兵等. dsRNA对家蚕核型多角体病毒复制增殖的抑制效果[J].蚕业科学,2006, 2:206-210.
    [113]张鹏杰,薛仁宇,曹广力等.表达短ie-1dsRNA的转化细胞对家蚕核型多角体病毒的抑制作用[J].蚕业科学, 2008, 34(3):459-465.
    [114]薛仁宇,曹广力,王崇龙等. ie-1和lef-1基因dsRNA表达元件转染及转化细胞对家蚕核型多角体病毒增殖的抑制[J].蚕业科学, 2008, 34(02): 250-256.
    [115]薛仁宇,曹广力,王崇龙,等.基于DNA载体的RNAi抑制家蚕核型多角体病毒复制[J].蚕业科学, 2006, 32(3):362-367.
    [116] Y.Tomoyasu, S.C.Miller, S.Tomita, et al. ExPloring systemic RNA interference in wide survey for RNAi genes in Tribolium. Genome Bio, 2008, l9 (10):R10.
    [117] T.Tatsuke, K.Sakashita, Y.Masaki, et al. The telomere-sPecific non-LTR retrotransPosons SART1 and TRAS1 are suppressed by Piwi subfamily proteins in the silkworm, Bombyxmori.Cell Mol Biol Lett, 2010, 15(1):18-33.
    [118] H.Tsukioka, M.Takahashi, H.Mon, et al. Role of the silkworm argonaute2 homolog gene in double-strand break repair of extra chromosomal DNA. Nucleic Acids Res, 2006, 34(1):092-101.
    [119]鲁成,向中怀,陈家莲.家蚕长形卵(elp)卵壳的特异构造[J].蚕学通讯, 1991, (1): 17-19.
    [120]郭秋红,詹帅,相辉等.家蚕scaffold中新微卫星标记的获得与DⅡ基因的遗传连锁分析[ J ].蚕业科学, 2007, 33 ( 2 ) :187– 194.
    [121]冯家新.《家蚕遗传育种学》[M].浙江,浙江大学出版社, 2002.
    [122] Jiggins C D,Naisbit R E,L inaresM, et al.Sex-linked hydrid sterility in a butterfly (J ).Evolution, 2001, 55: 1631 -1638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700