家蚕黑卵与第二白卵差异表达基因的筛选与克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Bombyx mori)自古以来就是一种重要的经济昆虫,最近以来,家蚕又成了鳞翅目昆虫重要的模式生物。家蚕转基因技术在培育新品种、生物反应器的开发以及功能基因组学研究等方面具有重要应用价值,家蚕转基因育种技术的研究开发和利用已经成为蚕业科技界关注的焦点,而转基因阳性个体的高效检测技术是建立家蚕高效转基因技术的核心之一。
     本课题研究的家蚕第二白卵(w-2:10-16.1)突变体的卵色和眼色与正常型十分容易区分,第二白卵对孵化、生命力、经济性状等方面的影响都很小,适合用作转基因个体筛选的标志基因。但之前对家蚕第二白卵形成的分子机制尚无了解,因此,我们利用野生型黑卵及其第二白卵近等基因系,联合运用全基因组芯片技术和实时荧光定量PCR技术,探索家蚕第二白卵性状相关的基因信息,以期为进一步阐明第二白卵性状形成的分子机制、开发新型转基因标记技术提供参考。主要研究结论如下:
     一、家蚕全基因组芯片高通量检测家蚕第二白卵(w-2)性状相关的差异表达基因
     采用由西南大学和博奥生物有限公司共同构建、含有23000个基因的家蚕全基因组寡聚核苷酸芯片进行检测。以表达差异≥2.0或≤0.5倍为标准,获得24h卵龄的第二白卵与野生型黑卵差异表达基因163个,获得48h卵龄的第二白卵与野生型黑卵差异表达基因186个。其中在24h和48h黑卵和白卵间表达差异最大的基因均为芯片探针sw04840对应的基因,差异倍数分别为32.4675和22.8311倍。二、差异表达基因的实时荧光定量PCR分析根据全基因组芯片检测分析获得的结果,挑选部分差异较大的基因以及w-2基因所在的第10连锁群上的差异表达基因,对芯片检测获得的差异表达候选基因在家蚕第
     二白卵与野生型黑卵品系转色期(24h和48h)蚕卵的表达水平进行实时荧光定量
     RT-PCR验证分析,结果表明大部分基因定量结果与芯片结果倾向一致,极少部分与芯片结果相反。其中基因芯片结果中表达差异最大的sw04840基因在real-time RT-PCR实验结果中也是差异最大的基因,在24h和48h的表达差异达到424.61和797.86倍,为正常型黑卵上调表达基因。通过进一步分析得知,该基因在是一个在黑卵中大量表达的基因,在24h和48h的黑卵中的表达量分别为内参基因Bmactin A3的1.92倍和0.73倍。另外,基因sw00132和基因sw04534在蚕卵发育的第48小时在黑白卵中的差异倍数也达到了数百倍,其中,基因sw00132为黑卵上调表达基因,sw04534则为白卵上调表达基因。在蚕卵发育的第24小时的白卵上调表达基因中,sw13775是差异最大的基因。
     三、候选基因的电子克隆和RACE延伸
     对于上述的4个基因,我们用它们各自探针序列,通过家蚕EST数据库对这四个基因进行电子延伸,并通过克隆测序验证拼接的正确性,结合3’RACE的测序结果拼接后得到了这四个基因的更多的序列信息。它们都包含了一个较长的开放阅读框的序列,sw13775,sw00132和sw04840这3个探针对应的基因获得了完整的3’端序列。
     四、候选基因的序列分析和其编码蛋白分析
     将这4个基因电子克隆和RACE延伸后的基因序列进行基因结构分析,发现sw13775和sw00132对应的基因是含有多个外显子的基因,但sw04840和sw04534对应的基因目前仅获得1个外显子。并且sw04840在家蚕基因组精细图数据库中也没有找到与之高度同源的序列,为家蚕中新发现的一个在黑白卵中表达差异很大的一个基因。
     在NCBI等数据库中对4个候选基因进行BLASTX分析,发现sw13775对应的是家蚕乙醛还原酶(alcohol dehydrogenase)基因,sw00132与多种昆虫中的醛脱氢酶基因家族7中的一个基因高度同源,而sw04840和sw04534则没有找到与之高度同源的基因。通过所编码氨基酸序列的生物信息学分析,sw04534可能编码一种胞内酶,而sw04840则很可能不是一个编码酶蛋白的基因。
Silkworm, Bombyx mori is an important economic insect in China since the ancient times, Recently, it becomes an important organism model of lepidopteran insects. Its transgenic technology shows significant value in the fields of breeding new varieties, bioreactor and basic scientific development. So far breeding new variety by transgenic method will become the key point in the field of sericulture research, thus the development of detection method of positive transformation will be the core technology in this research field.
     The color of wild type silkworm egg is yellow-white at the beginning, about 20h later, gradually become darker and darker,and dark brown finally. The color of the white egg 2 (w-2) mutant of silkworm is yellow-white with a little light red, and eyes of moth are white. So it’s easy to distinguish w-2 silkworm from wild type by egg color and ommateum,also the white egg 2 trait is regular hereditary. w-2 has no negative influences on its hatching, vitality and economic characters,thus it is suitable for marker gene for transgenic silkworm research. Now the understanding of molecular mechanism of the w-2 of silkworm eggs is still not clear.
     In this study, we use the established near-isogenic line of w-2 of silkworm,whole genomic gene chip and Real-time Quantitative RT-PCR to explore the functional genes for characteristics of w-2 of silkworm. The result of the experiment will be helpful to elucidate the molecular mechanism of w-2, and be useful for developing new marker for the transgenic silkworm.
    
     The main conclusions we made in this study are as follows: 1. The differentially expressed genes high-throughput explored by silkworm whole genomic gene chip
     The silkworm whole genomic gene chip which contains 23000 genes is constructed by CapitalBio corporation and southwest university jointly, is used to find the differrentially expressed genes between white egg 2 and normal eggs of silkworm.Using an criterion of ratio≥2.0 or ratio≤0.5, We obtained 163 genes, in expression of multiple between normal eggs and white eggs that develop to the 24th h, and when silkworm eggs develop to the and 48th h, we obtained 186. The biggest difference expression level gene is sw04840.When silkworm eggs develop to the 24th h and 48th h, the expression level of sw04840 gene in wild type silkworm is 32.4675 and 22.8311 folds respectively comparing to that in white egg 2 mutant.
     2. Analysis of differentially expressed genes by Real-time fluorescence quantitative RT-PCR.
     According to the results obtained by the whole genomic gene chip, we use Real-time fluorescence quantitative RT-PCR to identify some larger differrentially expressed genes and some differrentially expressed genes located on the 10th linkage group. The results show that the degree of concordance between data generated by the two methods is high. According to the results obtained by Real-time fluorescence quantitative RT-PCR, gene sw04840 is also the biggest difference expression level gene. When silkworm eggs develop to the 24th h and 48th h, the expression level of sw04840 gene in wild type silkworm is 424.61 and 797.86 folds respectively comparing to that in white egg 2 mutant.Further analysis showed that this gene is an abundantly expressed gene in wild type strain eggs, when wild type strain eggs develop to the 24h and 48h, the expression level of sw04840 gene relative to Bmactin A3 is about 1.92times and 0.73 times respectively. In addition, when silkworm eggs develop to the 48th h, the expression level of sw00132 and sw04534 between white egg 2 and normal eggs of silkworm is also reached several hundred times, and when silkworm eggs develop to the 24th h, the biggest difference expression level gene is sw13775 in up-regulate genes in white egg 2.We select this four gene as candidate genes.
     3. In silico cloning and RACE elongation of the candidate genes.
     For the above four candidate genes, we use in silico extention technology with their probe sequence as seed sequence to extend their sequence, and with assembly with the sequencing results of 3’RACE elongation,we obtained more sequence information of them.. Sequence analysis revealed that all of them contains a long open reading frame(ORF), and gene sw13775, sw00132 and sw04840 contains full 3’end sequence.
     4. Analysis the sequence of the candidate genes and the protein that encoded by them
     We analysis the gene structure of the four candidate genes,the results show that the gene sw13775 and gene sw00132 contain more than one exons,but the gene sw04840 and the gene sw04534 contains only one.and in database of silkworm genome assembly we did not find any sequence highly homologous with sw04840, indicate that sw04840 is a new gene which is significant difference expressed between white egg 2 and normal eggs.
     The analysis of deduced amino acid of the above four candidate genes with blastx shows that gene sw13775 corresponds to the alcohol dehydrogenase of silkworm; sw00132 highly homology with the aldehyde dehydrogenase 7 family, member A1. But we can’t find protein homology with protein encoded by sw04534 and sw04840. Bioinformatics analysis show that sw04534 is likely to be an endocellular enzyme and protein encoded by sw04840 probably not a enzyme.
引文
[1] Qingyou Xia, Zeyang Zhou, Cheng Lu, et al.A draft sequence for the genome of the domesticated silkworm (Bombyx mori) [J].Science,2004,306:1937-1940.
    [2] Xia Q.The genome of a lepidopteran model insect, the silkworm Bombyx mori [J]. Insect Biochem Mol Biol. 2008, 38(12):10 36-45.
    [3] Xue-Xia Miaob, Shi-Jie Xu, Ming-Hui Li, Mu-Wang Li et al.Simple sequence repeat-based consensus linkage map of Bombyx mori [J].PNAS, 2005, 102(45): 16303-16308.
    [4] Yamamoto K, Nohata J, Kadono-Okuda K, et al. A BAC-based integrated linkage map of the silkworm Bombyx mori Genome Biol.2008,28; 9(1): R21.
    [5] Tamura Toshiki, Thibert Chantal, Royer Corinne Germline transformation of the silkworm Bombyx mori L [J].using a piggyBac transposon-derived vector.Nature biotechnology, 2000, 18(1): 81-84.
    [6]向仲怀主编蚕丝生物学[M].2005,中国林业出版社,pp120-123.
    [7]向仲怀.家蚕遗传育种学[M].北京:农业出版社,1994.
    [8] Quan GX, Kim I, K?moto N, Sezutsu H, et al . Characterization of the kynurenine 3-monooxygenase gene corresponding to the white egg 1 mutant in the silkworm Bombyx mori [J].Mol Genet Genomics.2002, 267(1):1-9.
    [9]童晓玲,范晓东,代方银,等.家蚕新母性白卵的遗传分析[J].蚕学通讯,24(2).
    [10] Abraham EG, Sezutsu H, Kanda T, Sugasaki T, et al.. Identification and characterisation of a silkworm ABC transporter gene homologous to Drosophila white[J]. Mol. Gen. Genet. 2000 , 264(1-2):11-19.
    [11] G.X. Quan, T. Kanda , T. Tamura. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene[J]. Insect Molecular Biology , 2002, 11(3): 217–222.
    [12]田村俊樹行弘研司長谷川毅,等.蚕Bmwhite遺伝子[J].公開特許公報(A)2000,特開2000-94(P2000-94A).
    [13] Diatchenko L, Lau YF, Campbell AP, et al.Suppression subtractive hybridization:a method for generating differentially regulated or tissue specific cDNA probes and libraries.Proc Natl Acad Sci U S A, 1996, 93(12):6025-6030.
    [14]何天霖,吴志勇.应用抑制性消减杂交筛选大鼠不同程度肝纤维化的上调基因[J].上海交通大学学报(医学版),2006,(26):0828-0831.
    [15]王廷华,冯忠堂,Jean Philippe Merlio.分子杂交理论与技术[M].北京,科学出版社,2005,366-87.
    [16]马家宝等.SSH技术及其在肿瘤研究中的应用[ J ].中国肺癌杂志,2005,12(6):563-566.
    [17] BAINS W,SMITH GC. A novel method for nucleic acidsequence determination [J]. J Theor Biol,1988,135:303-307.
    [18] FODOR SPA,RAVA RP,HUANG XC,et al. Multiplexedbiochemical assays with biological chips [J]. Nature,1993,364(6437):555-556.
    [19] FODOR SPA,READ JL,PIRRUNG MC,et al.Light -directed,spatially addressable parallel chemical synthesis[J].Science,1991,251(4995):767-773.
    [20] SCHENA M,SHALON D,DAVIS R,et al. Quantitativemonitoring of gene expression patterns with a complementary DNA microarray [J]. Science,1995,270(5235):467-470.
    [21]康俊梅,孙彦,杨青川.SSH与cDNA芯片技术的联合及其在植物基因差异表达研究中的应用[J].中国草地学报,29(5) .
    [22] Rho J.Ahmann CR, Socci ND,et al.Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH ) and cDNA microarray analysis [J].DNA Cell Biol.2002.21(8)l 541-549.
    [23] Zhang B, Nie X, Xiao B, et al.1dentification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray[J].Genes Chromosomes Cancer.2003,38(1)l 80-90.
    [24] Bangur CS, Switzer A.Fan L.et al.Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis [J].Oncogene,2002.21(23):3814-3825.
    [25] Tyagi S and Kramer F R.Molecular beacons:probes that fluoresce upon hybridization [J].Nat Biotechnol,1996,14(2):303 - 308.
    [26] Bustin S A.Absolute quantification of mRNA using real - time reverse transcription polymerase chain reaction assays[J].Journal of Molecular Endocrinology,2000,25(2):169 - 193.
    [27] Deborab S G.Quantitative real - time polymerase chain reaction for the core facility using TaqMan and the Perkin - Elmer/Applied biosystems division 7700 sequence detecto[J]. Jouranl of Biomolecular Techniques,1999,1(01):11 -16.
    [28] Yyagi S,Bratu DP ,Kramer FR.Multicolor molecular beacons for allele discrimination[J].Nature Biotechnology,1998,16(1):49 - 53.
    [29] Yajima T,Yagihashi A,Kameshima H,et al .Quantitative reverse transcription- PCR assay of the RNA component of human telomerase using the TaqMan fluorogenic detection system[J].Clinical Chemistry,1998,44(12):2441 - 2445.
    [30] Miao X X, Xu S J. et al. Simple sequence repeat-based consensus linkage map of Bombyx mori[J]. PNAS,2005, 102(45): 16303-16308.
    [31] Xia Q Y,Zhou ZY, Lu C,et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J].Science,2004,306:1937-1940.
    [32] Mita K, Kasahara M, Sasaki S, et al. The genome sequence of silkworm, Bombyx mori[J].DNA Res. 2004 , 29; 11(1): 27-35.
    [33]张沽,陆海峰,李有志.电子PCR分子植物育种.2004,2(1):139—145.
    [34]邵筱,吴忠道,刘翰腾,等.应用EST和电子克隆策略研究血吸虫表达基因谱[J].基础医学与临床,2006,25(7):602-606.
    [35] Rex T Nelson, Randy Shoemaker.Identification and analysis of gene families from the duplicated genome of soybean Using EST sequences[J].BMC Genomics,2006,7:204.
    [36]张成岗,贺福初.生物信息学方法与实践.北京:科学出版社,2002,249.
    [37]许杨,阮琼芳,李燕萍.表达基因分析方法[J].食品与生物技术学报.2008,27(1).
    [38]张进,卢柏松.RACE-cDNA末端快速扩增[A].黄留玉.PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005.50-57.
    [39] De M ,Linda E,W hiteman P H ,et a1.Isolation and characterisation of a cDNA clone encoding cinnamyl alcohol dehydrogenase in Eucalyptus globulus Labill[J].Plant Science,1999,143(2):173-182.
    [40] Reddy M K ,Nair S,Singh B N ,et a1.Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene(33RNP)from pea that is light stimulated[J].Gene,2001,263(1):179-187.
    [41] Marras S A,Kramer F R & Tyagi S.Multiplex detection of single– nucleotide variations using molecular beacons[J].Genetic Analysis,1999,37(2):327 -332.
    [42]张华,徐叔祥.定量聚合酶链式反应的研究进展与临床应用[J].中华医学检验杂志,2000,23(2):120– 121.
    [43]韩海勃,曹建平.RACE技术及其在寄生虫全长cDNA克隆中的应用[ J ].国外医学寄生虫病分册,2005,32(1):14-17.
    [44] Ohara O,Dorit R L,Gilbert W.One-sided Polymerase chain reaction:The Amplification of cDNA[ J ].Proc Natl Acad Sci USA,1989,86(15):5673-5677.
    [45] Loh EY,Ellitl J F,Cwila S,et al.Polymerase chain reaction with single-sided specificity:analysis of T cell receptor delta chain[ J ].Science,1989,243(4888):217-220.
    [46]钟涛.cDNA末端快速扩增技术新进展.国外医学分子生物学分册,2002,24(l):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700