家蚕三磷酸腺苷结合盒转运子的鉴定及部分成员的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三磷酸腺苷结合盒转运蛋白(ATP-binding cassette, ABC)广泛分布于从细菌到人类等各种生物体中,是最大的膜蛋白家族之一,它主要利用ATP水解释放能量实现多种底物的跨膜转运。ABC转运子在生物体内以全分子或半分子转运子的形式存在,全分子转运子由2个核苷酸结合域(nucleotide binding domain,NBD)和2个跨膜结构域(transmembrane domain,TMD)构成,每个半分子转运子包括1个NBD和1个TMD,每个TMD一般由6个α螺旋构成,半分子转运子依赖形成同源或异源二聚体发挥作用,它们通过形成一个跨膜通道以实现底物分子的跨膜运输。利用生物信息学知识,本文初步鉴别了家蚕基因组数据库中潜在的47个ABC转运蛋白,这些蛋白成员涵盖了ABC转运蛋白的8个亚族(ABCA-ABCH)。家蚕ABCC亚族是含有成员最多的亚族,有15个成员,其中有5个同源于果蝇的的多药耐药糖蛋白(multidrug resistance,MDR); ABCB亚族有9个成员,有4个与果蝇的多药耐药相关蛋白(multidrug resistance-associated proteins,MRPs)同源。目前,家蚕ABC转运蛋白研究相对较少,通过对家蚕ABC转运蛋白的初步鉴定,为进一步研究家蚕ABC转运蛋白的功能提供了条件。
     三磷酸腺苷结合盒转运子B亚族成员ABCB6 (ATP-binding cassette transporter isoform B6, ABCB6)是一个非常重要的半分子转运子,在哺乳动物中主要参与细胞内卟啉类化合物的转运和铁离子平衡的调节。利用人的ABCB6基因编码氨基酸序列在家蚕EST数据库中进行tblastn检索,把检索到的EST序列进行电子拼接,根据拼接结果设计引物进行RT-PCR扩增、克隆测序验证。通过反转录聚合酶链式反应(RT-PCR)成功克隆了家蚕Abcb亚族基因第1个成员BmAbcb6的完整开放阅读框。生物信息学方法分析发现,BmAbcb6有16个外显子和15个内含子,编码850个氨基酸残基,分子质量为96.35 kD,等电点8.23;BmAbcb6含有1个NBD和有10个α螺旋构成的TMD,是家蚕Abcb亚族成员。半定量RT-PCR方法分析BmAbcb6在家蚕5龄第3天幼虫不同组织中均有表达,其中以精巢中的表达量相对最高。研究结果为进一步研究该基因的功能奠定了基础。
     通过反转录聚合酶链式反应(RT-PCR)扩增、克隆测序了家蚕ABC转运子Bmwh2完整的开放阅读框。生物信息学方法分析发现,Bmwh2有14个外显子和13个内含子,编码689个氨基酸残基,分子质量为77.38 kD,等电点8.42。Bmwh2含有1个NBD和6个α螺旋构成的TMD,为半转运子,属于家蚕ABC转运子超家族G亚族成员。半定量RT-PCR方法分析Bmwh2在家蚕5龄第3天幼虫不同组织的表达水平,以精巢中的表达量相对最高。通过显微注射仪,用合成的siRNA注射胚胎发育时期的蚕卵,对Bmwh2进行干涉研究,获得了白卵和嵌合体的干涉表型。根据实验结果,推测Bmwh2参与家蚕浆液膜色素前体的转运。
ATP-binding cassette (ABC) transporter proteins constitute one of the largest protein superfamilies and are present in all organisms from bacteria to human. These proteins utilize the energy derived from ATP binding hydrolysis to drive substrate translocation across the membrane. ABC transporters have been subdivided into either full or half transporters in all organisms. Full transporters contain two nucleotide binding domains (NBD, also called ATP-binding cassettes) and two six-transmembrane helices, referred to as the“transmembrane domain”(TMD), on a single polypeptide. As their name suggests, half transporters contain one ABC domain and one TMD on a single polypeptide. Half transporters are dependent upon the formation of hetero- or homo-dimers. The silkworm genome sequence has been analyzed to find ATP-binding cassette transport protein genes based on the knowledge of bioinformatics. We identified 47 ABC transport proteins in the silkworm genome sequences, which possesses members of all current ABC subfamilies A to H. The largest silkworm is the ABCC genes which have 15 members, and the second largest silkworm group is the ABCB subgroup with 9 members. Silkworm showed 5 proteins homologous to MDR (multidrug resistance) P-glycoproteins (ABCB subfamily) and 4 proteins homologous to MRPs (multidrug resistance-associated proteins) (ABCCsubfamily). At present, ABC transport proteins were studied very limited in silkworm. The present study provides a useful foundation for studying the function of ABC transport proteins in silkworm.
     ATP-binding cassette transporter isoform B6 (ABCB6) has been considered to be a very important half-transporter. In mammals, ABCB6 was shown to be functionally active in cellular e?ux of certain porphyrins from cells and to be involved in regulation of iron homeostasis. The nucleic acid sequence of reported human ABCB6 was used to TBLASTN search against the silkworm EST database. The ESTs with high score were clustered and assembled into a consensus sequence. Based on the consensus sequence, the open reading frame (ORF) encoding BmAbcb6 was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced, which is the first member of Abcb subfamily in silkworm, termed as BmAbcb6. Further bioinformatic analysis shows that the BmAbcb6 cDNA has 16 exons and 15 introns, encoding 850 amino acid residues with pI 8.23 and a predicted molecular mass of 96.35 kD, respectively. The BmAbcb6 protein contains a cytosolic nucleotide binding domain and one transmembrance domain that consists of 10α-helices, it belongs to the Abcb subfamily. By Semi-quantitative RT-PCR analysis, BmAbcb6 gene expression was analyzed in different tissues on the third day of the fifth instar larvae, and the result shows that BmAbcb6 is expressed in every tissue and is detected the highest expression level in testis. This result provides a foundation for studying the function of BmAbcb6 gene in silkworm.
     The open reading frame (ORF) encoding Bmwh2 gene of Bombyx mori was amplified by reverse transcription-polymerase chain reaction and sequenced. Further bioinformation analysis showed that the Bmwh2 cDNA has 14 exons and 13 introns, which codes for 689 amino acid residues with pI 8.42 and a predicted molecular mass of 77.38 kD. Bmwh2 protein is a half-transporter with one cytosolic nucleotide binding domain and one transmembrance domain that consists of 6α-helices. It belongs to subfamily G of the Bombyx mori ABC transporter superfamily. Semi-quantitative RT-PCR analysis to the expression of Bmwh2 gene in different tissues of the 3rd day larvae of the 5th instar indicated that the highest expression level was in testis. A number of white eggs and chimeric RNAi (RNA interference) phenotypes were obtained by microinjecting synthesized siRNA corresponding to the Bmwh2 gene into Bombyx mori eggs at embryonic development stage. Base on the above results, it is suggested that Bmwh2 may be involved in transportation of the precursors of the serosal pigments in silkworm egg.
引文
[1]王华丙,张振义,包锐,等. ABC转运蛋白的结构与转运机制[J].生命的化学,2007,27(3):208-210.
    [2]吴转斌,吴金美.ABC转运子G亚族与人类疾病[J].江苏大学学报:医学版,2008,18(3):861-866.
    [3] C. F. Higgins. ABC transporters: from microorganisms to man [J]. Annu Rev Cell Biol,1992,8: 67-113.
    [4] M. Dean, Y. Hamon, G. Chimini. The human ATP-binding cassette (ABC) transporter superfamily [J]. J Lipid Res,2001,42(7): 1007-1017.
    [5] M. Dean, T. Annilo.Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates [J]. Annu Rev Genomics Hum Genet,2005,6:123-142.
    [6] H. Chen, C. Rossier, M. D. Lalioti, et a1. Cloning of the cDNA for a human homologue of the Drosophila white gene an d mapping to chromome 21q22.3[J].Am J Hum Genet,1996,59(1):66-75.
    [7] P. M. Jones, A. M. George. The ABC transporter structure and mechanism: perspectives on recent research [J].Cell mol Life Sci, 2004,61(6):682-699.
    [8] K. Nakamura, M. A. Kennedy, A. Baldan, et al. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein [J]. Biol Chem,2004,279: 45980- 45989.
    [9] J. M. Croop, G. E.Tiller, J. A. Fletcher, et al. Isolation and characterization of a mammalian homolog of the Drosophila white gene [J]. Gene,1997,185: 77-85.
    [10] S. Lorkowski, S. Rust, T. Engel, et al. Genomic sequence and structure of the human ABCG1(ABC8) gene [J]. Biochem Biophys Res Commun,2001,280(1): 121-131.
    [11] M. A. Kennedy, A. Venkateswaran, P. T. Tarr, et al. Characterization of the human ABCG1 gene: liver X recep tor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein [J]. J Biol Chem,2001,276: 39438-39447.
    [12] G. Schmitz, T. Langmann, S. Heimerl. Role of ABCG1 and other ABCG family members in lipid metabolism [J]. J Lipid Res,2001,42: 1513-1520.
    [13]刘协红,唐朝克.三磷酸腺苷结合盒转运体G1的研究进展[J].生理科学进展,2009,40(3):229-233.
    [14] P. T. Tarr, P. A. Edwards. ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2 [J]. J Lipid Res,2008,49(1): 169-182.
    [15] J. Klucken, C. Buchler, E. Orso, et a1. ABCG1 (ABC8),the human homolog of the Drosophila white gene,is a regulator of maerophage cholesterol and phospholipid transport [J]. Proc Natl Acad Sci USA, 2000,97(2):817-822.
    [16] N. Wang, D. Lan, W. Chen, et a1. ATP-binding cassette transporters G1 and G4 mediate cellularcholesterol efflux to high density lipo-proteins [J]. Proc Natl Acad Sci USA,2004,101(26): 9774-9779.
    [17] J.D. Smith, W. LeGof, M. Settle, et al. ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I[J].J Lipid Res,2004,45(4):635-644.
    [18] M. Fujiyoshi, S. Ohtsuki, S. Hori, et al. 24S-hydroxycholesterol induces cholesterol release from choroids plexus epithelial cells in an apical-and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 exp ression [J]. Neurochem,2007,100(4): 968-978.
    [19] M. A. Kennedy, G. C. Barrera, K. Nakamura, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation [J]. Cell Metab,2005,1(2): 121-131.
    [20] B. Karten, R. B. Campenot, D. E. Vance, et al. Expression of ABCG1, but not ABCA1, correlates with cholesterol release by cerebellar astroglia [J]. Biol Chem,2006,281(7) :4049-4057.
    [21] I. C. Gelissen, M. Harris, K. A. Rye, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I [J]. Arterioscler Thromb Vasc Biol,2006,26(3):534-540.
    [22] A. M. Vaughan, J. F. Oram. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol–rich HDL [J]. L ipid Res,2006,47(11): 2433-2443.
    [23] M. Bodzioch, E. Orso, J. Klueken, et a1. The gene coding ATP-binding cassette transporter 1 is mutated in Tangier disease [J]. Nat Genet,1999,22(4):347-351.
    [24] S. Lorkowski, M. Kratz, C. Wenner, et a1. Expression of the ATP-Binding Cassette Transporter Gene ABCG1(ABC8) in Tangier Disease [J]. Biochem Biophys Res Commun,2001,283(4):821-830.
    [25] R. Out, M. Hoekstra, R. B. Hildebrand, et al. Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor–deficient mice [J]. Arterioscler Thromb Vasc Biol,2006,26: 2295-2300.
    [26] M. Ranalletta, N. Wang, S. Han, et al. Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1–/–bone marrow [J]. Arterioscler Thromb Vasc Biol,2006,26: 2308-2315.
    [27] A. Baldan, L. Pei, R. Lee, et al. Impaired development of atherosclerosis in hyperlip idemic Ldlr–/– and ApoE–/– mice transplanted with Abcg1–/– bone marrow [J]. Arterioscler Thromb Vasc Biol,2006,26: 2301–2307.
    [28] G. H. Tansley, L. BurgessB, M. T. Bryan, et al. The cholesterol transporterABCG1 modulates the subcellular distribution and p roteolytic processing of beta-amyloid precursor protein [J]. J Lipid Res,2007,48:1022-1034.
    [29]陈生弟,杨红旗.胆固醇:阿尔茨海默病治疗的新方向[J].内科理论与实践,2007,2(2):87-89.
    [30] W. S. Kim, A. S. Rahmanto, A. Kamili, et al. Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein-E discs and suppression of amyloid-beta peptide generation [J]. Biol Chem,2007,282(5): 2851-2861.
    [31] G. H. Tansley, B. L. Burgess, M. T. Bryan, et al. The cholesterol transporter ABCG1 modulates the subcellular distribution and proteolytic processing of beta–amyloid precursor protein [J]. J Lipid Res,2007,48(5):1022–1034.
    [32] T. Ito. Physiological function of ABCG1 [J]. Drug News Perspect,2003,16: 490-492.
    [33] A. Baldan, A. V. Gomes, P. P ing, et al. Loss of ABCG1 Results in Chronic Pulmonary Inflammation [J]. Immunol,2008,180: 3560-3568.
    [34] R. Allikmets, L. M. Schriml, A. Hutchinson, et a1. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involed in multidrug resistance [J]. Cancer Res,1998, 58(23): 5337-5339.
    [35] S. Zhou, J. D. Schuetz, K. D. Bunting, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype [J].Nat Med, 2001,7(9): 1028- l034.
    [36] A. Apati, T. I. Orban, N. Varga, et al. High level functional expression of the ABCG2 multidrug transrporter in undilyerentiated human embryonic stem cells [J]. Biochimica Et Biophysica Acta-Biomembranes,2008,1778(12): 2700-2709.
    [37] M. Yoshikawa, Y. Ikegami, S. Hayasaka, et al. Novel camptothecin analogues that circumvent ABCG2-associated drug resistance in human tumor cells [J]. J Int Cancer,2004,110(6): 92l-927.
    [38]王英泽,段相林,李永福,等.半分子转运蛋白ABCG2的肿瘤多药耐药性研究及其应用[J].生物化学与生物物理进展,2009,36(12):1523-1529.
    [39] A. M. Vaughan, J. F. Oram. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipop roteins [J]. J Biol Chem,2005,280(34): 30150-30157.
    [40] J. Cserepes, Z. Szentpétery, L. Seres, et al. Functional expression and characterization of the human ABCG1 and ABCG4 proteins: indications for heterodimerization [J]. Biochem Biophys Res Commun,2004,320(3): 860-867.
    [41]王勇,韩天权,张圣道. ABC转运体与脂质代谢关系的研究进展[J].2006,9(2):65-68.
    [42] K. R. Wilund, L. Yu, F. Xu, et al. High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr-/-mice [J]. J Lipid Res,2004,45(8): 1429-1436.
    [43] L. Yu, K.von Bergmann, D. Lutjohann, et al. Selective sterol accumulation in ABCG5/ABCG8 deficient mice [J]. J Lipid Res,2004, 45(2): 301-307.
    [44] L. Yu, S. Gupta, F. Xu, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion [J]. J Biol Chem,2005,280(10): 8742-8747.
    [45] J. A. Hubacek, K. E. Berge, J. Stefkova, et a1. Polymorphisms in ABCG5 and ABCG8 transporters andplasma cholesterol levels [J]. Physiol Res,2004,53(4): 395-401.
    [46] L. Yu, J. Li-Hawkins, R. E. Hammer, et a1. Overexpression of ABCG5 and ABCG8 promotes biliary eholestero1 secretion and reduces fractional absorption of dietary cholesterol [J]. J Clin Invest,2002, 110(5): 671-680.
    [47] L. Yu, R. E Hammer, J. Li-Hawkins, et a1. Disruption of Abcg5 and Abcg8 in mice reveals their crucia1 role in biliary eholestero1 secretion [J]. Proc Natl Acad Sci USA,2002,99(25): 16237-16242.
    [48] H. Wittenburg, M. C. Carey. Biliary cholesterol secretion by the twinned sterol ha1f transporters ABCG5 and ABCG8 [J]. J Clin Invest,2002,110(5): 605-609.
    [49] H. Wittenburg, M. Lyons, R. Li, et a1. FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitaftve trait locus mapping in mice [J].Gastroenterology,2003, 125(3): 868-881.
    [50] N. J. Besansky, J. A. Bedell, M. Q. Benedict, et al. Cloning and characterization of the white gene from Anopheles gambiae [J]. Insect Mol Biol,1995,4: 217-231.
    [51] Z. Ke, M. Q. Benedict, A. J. Cornel, et al. The Anopheles albimanus white gene: molecular characterization of the gene and a spontaneous white gene mutation [J]. Genetica,1997,101:87-96.
    [52] L. J. Zwiebel, G. Saccone, A. Zacharopoulou, et al. The white gene of Ceratitis capitata: a phenotypic marker for germline transformation [J]. Science,1995,270: 2005-2008.
    [53] R. L. Garcia, H. D. Perkins, A. J. Howells. The structure, sequence and developmental pattern of expression of the white gene in the blow?y Lucilia cuprina [J]. Insect Mol Biol,1996,5: 251-260.
    [54] T. G. Loukeris, I. Livadaras, B. Arca, et al. Gene transfer into the Medfly, Ceratitis capitata, using a Drosophila hydei transposable element. Science,1995,270: 2002-2005.
    [55] O'Hare K, Murphy C, Levis R., et al. DNA sequence of the white locus of Drosophila melanogaster [J]. J Mol Biol, 1984, 180:437-455.
    [56] R. G. Tearle, J. M. Belote, M. McKeown, et al. Cloning and characterization of the scarlet gene of Drosophila melanogaster [J]. Genetics,1989,122: 595-606.
    [57] T. D. Dreesen, D. H. Johnson, S. Henikoff. The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol Cell Biol,1988 8(12): 5206-5215.
    [58] S. M. Mackenzie, M. R. Brooker, T. R. Gill, et al. Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochim Biophys [J]. Acta 1999,1419: 173-185.
    [59] G. D. Ewart, A. J. Howells. ABC transporters involved in transport of eye pigment precursors in Drosophila melanogaster [J]. Meth Enzymol,1998,292: 213-224.
    [60] D. T. Sullivan, L. A. Bell, D. R. Paton, et al. Purine transport by malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster [J].Biochem Genet,1979,17: 565-573.
    [61] D. T. Sullivan, L. A. Bell, D. R. Paton, et al. Genetic and functional analysis of tryptophan transport in Malpighian tubules of Drosophila [J]. Biochem Genet,1980,18:1109-1130.
    [62] V. K. Lloyd, D. A. Sinclair, M. Alperyn, et al. Enhancer of garnet/deltaAP–3 is a cryptic allele of the White gene and identifies the intracellular transport system for the White protein [J]. Genome,2002,5: 296-312.
    [63] P. T. Tarra, E. J. Tarling, D. D. Bojanic, et al. Emerging new paradigms for ABCG transporters [J]. Biochimica et Biophysica Acta,2009,1791: 584-593.
    [64] E.G. Abraham, H. Sezutsu, T. Tamura, et al. Identification and characterization of a silkworm ABC transporter gene homologous to Drosophila White [J]. Mol Gen Genet,2000,264(1/2): 11-19.
    [65] G. X. Quan, T. Kanda, T. Tamura, et al. Induction of the white egg3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene [J]. Insect Mol Biol,2002,11(3): 217-222.
    [66]刘春,帅小蓉,程廷才,等.家蚕胚胎发育时期的RNA干涉研究[J].生物化学与物物理进展,2004,3l(4):322-327.
    [67]王根洪,刘春,夏庆友,等. siRNA介导的家蚕ABC转运蛋白相关基因的干涉研究[J].蚕业科学,2005,31(2):117-120.
    [68] Natuo Ko?moto, G. X. Quan, T. Tamura, et al. A single-base deletion in an ABC transporter gene causes White eyes, White eggs, and translucent larval skin in the silkworm w–3oe mutant [J]. Insect BiochemMol Biol,2009,39(2): 152-156.
    [69] K. Tatematsu, K. Yamamoto, K. Uchino, et al. Positional cloning of silkworm white egg 2 (w-2) locus shows functional conservation and diversification of ABC transporters for pigmentation in insects [J]. Genes to Cells,2011,16(4): 331-342.
    [70] ABCISSE database (ABC systems: Information on Sequence, Structure and Evolution). [http://www1.pasteur.fr/recherche/unites/pmtg/abc/database.iphtml].
    [71] F. Jeanmougin, J. D. Thompson, M. Gouy, et al. Multiple sequence alignment with ClustalX [J]. Trends Biochem Sci,1998,23(10): 403-405.
    [72] T. G. Burland. DNASTAR's Lasergene sequence analysis software [J]. Methods Mol Biol,2000,132: 71-91.
    [73] I. D. Kerr: Structure and association of ATP-binding cassette transporter nucleotide-binding domains [J]. Biochim Biophys Acta,2002,1561: 47-64.
    [74] W. R. Charles, H. Inge, G. Marine, et al. Identification of the Anopheles gambiae ATP-binding Cassette Transporter Superfamily Genes [J]. Mol. Cells,2003,15(2): 150-158.
    [75] C. T. Wu, M. Budding, M. S. Griffin, et al. Isolation and characterization of Drosophila multidrug resistance gene homologs [J]. Mol Cell Biol,1991,11: 3940-3948.
    [76] B. Gerrard, C. Stewart, M. Dean. Analysis of Mdr50: a Drosophila P-glycoprotein/multidrug resistance gene homolog [J]. Genomics,1993,17: 83-88.
    [77] A. Sturm, P. Cunningham, M. Dean. The ABC transporter gene family of Daphnia pulex [J]. BMC Genomics,2009,10(170): 1-18.
    [78] M. Dean, A. Rzhetsky, R. Allikmets. The human ATP-binding cassette (ABC) transporter superfamily [J]. Genome Res,2001,11(7): 1156-1166.
    [79] N. Mitsuhashi, T. Miki, H. Senbongi, et al. MTABC3, a novel mitochondrial ATP-binding cassette protein involved in iron homeostasis [J]. Biol Chem,2000,275(23): 17536-17540.
    [80] T. Masashi, E. Yoshikazu, K. Yuichiro, et al. Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus [J]. Biochem Biophy Res Commun,2008,369(2): 369-375.
    [81] P. C. Krishnamurthy, G. Du, Y. Fukuda, et al. Identification of a mammalian mitochondrial porphyrin transporter [J]. Nature,2006,443(7111): 586-589.
    [82] J. K. Paterson, S. Shukla, C. M. Black, et al. Human ABCB6 localizes toboth the outer mitochondrial membrane and the plasma membrane [J]. Biochemistry,2007,46 (33):9443-9452.
    [83] P. Krishnamurthy, J. D. Schuetz. The Role of ABCG2 and ABCB6 in Porphyrin Metabolism and Cell Survival [J]. Curr Pharm Biotechnol,2010,11,30. [Epub ahead of print]
    [84] T. Efferth, A. Benakis, M. R. Romero, et al. Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron [J]. Free Radiol Biol Med,2004,37(7): 998-1009.
    [85] G. H. Wang, Q. Y. Xia, D. J. Cheng, et al. Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR [J]. Insect Science,2008,15(5): 405-413.
    [86] J. Lynch, Y. Fukuda, P. Krishnamurthy, et al. Cell survival under stress is enhanced by a mitochondrial ATP-binding cassette transporter that regulates hemoproteins [J]. Cancer Res,2009,69(13): 5560-5567.
    [87] H. Chavan, M. Oruganti, P. Krishnamurthy. The ATP binding cassette transporter ABCB6 is induced by arsenic and protects against arsenic cytotoxicity [J]. Toxicol Sci,2011,Jan 25. [Epub ahead of print]
    [88] N. Mitsuhashi, T. Miki, H. Senbongi, et al. MTABC3, a Novel Mitochondrial ATP-binding Cassette Protein Involved in Iron Homeostasis [J]. Biol Chem,2000,275(23): 17536-17540.
    [89]向仲怀.蚕丝生物学[M].中国林业出版社,2005,120-123.
    [90] G. X. Quan, I. Kim, N. K?moto, H. Sezutsu, et al. Characterization of the kynurenine 3-monooxygenase gene corresponding to the white egg1 mutant in the silkworm Bombyx mori [J]. Mol Genet Genomics,2002,267(1): 1-9.
    [91]童晓玲,范晓东,代方银,等.家蚕新母性白卵的遗传分析[J].蚕学通讯,2004,24(2):5-8.
    [92]任晓俊.家蚕第二白卵近等基因系差异表达基因的筛选与克隆[D].江苏科技大学硕士学位论文. 2010.1-67
    [93]王逢会,霍满鹏.小干涉RNA介导的RNA干涉机制及其应用的研究进展[J].延安大学学报:社会科学版, 2007, 26 (2):75-77.
    [94] H. Hohjoh. Enhancement of RNAi activity by improved siRNA duplexes [J]. FEBS Lett,2004, 557(1-3): 193-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700