PMMA基极化聚合物薄膜的制备改性及其光波导研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化聚合物材料具有非线性系数高、电容率低、易加工处理、与现有集成工艺相兼容等特点,因而在集成光学特别是光通信器件领域有着广阔的应用前景。而最近新兴的无机/有机杂化材料,由于兼备聚合物的柔韧性、高透光性和无机物的热稳定性等特点,而备受材料界关注。
     本文的主要工作就是制备两种体系极化聚合物薄膜,包括主客体掺杂型体系和有机/无机杂化型体系,并运用光漂白工艺制备出以杂化型薄膜为芯层的Y型光波导。实验中首先以分散红1(DR1)为生色团,制备基体为PMMA的主客体掺杂型极化聚合物体系。DR1含量为10wt%的聚合物PR-10的T_g只有94℃,而PMMA的T_g为105℃;并以PR-10为例,对主客体掺杂型极化聚合物薄膜的电晕极化工艺进行优化得出较佳的极化条件为:极化电压为4.5kV,极化时间为30min,极化温度为95℃,极化薄膜的取向序参数为0.182,常温下薄膜表现出较快的弛豫速度,60d后取向度仅为初始值的21%;二次谐波产生(SHG)实验结果表明聚合物薄膜的二阶非线性系数d_(33)为1.90×10~(-8)esu。
     然后通过溶胶-凝胶(sol-gel)工艺合成以MMA为有机物骨架,以MSMA为偶联剂,以TEOS为无机前体的有机/无机杂化材料PMMA/SiO_2,并且以此为主体,制备出以DR1为客体的杂化体系;n(TEOS)/[n(MMA)+n(MSMA)]=0.6的样品PCR-0.6不仅其玻璃化温度T_g高达165℃,远高于PMMA/DR1材料,而且杂化薄膜显示出明显改进的热稳定性和优异的抗弛豫性能,电晕极化后在常温下保存20d后取向度依旧保持为初始值的91%,并且趋于稳定不再下降。
     在此基础上,以PMMA/SiO_2为包层、有机/无机杂化型薄膜为芯层,应用光漂白法制备出Y型光波导,对其制备工艺进行探讨和优化,尤其是铝掩模层的制作和光漂白对波导薄膜的影响。运用光纤与波导直接耦合装置对Y形光波导进行性能测试,由功率计测得Y分支的光强比为44:56,光损耗值约为9dB。
There were advantages, for nonlinear optical (NLO) poled polymer materials, of large nonlinear optical coefficient, low permittivity, easy processing and monolithic integration. It was thus expected that they played an important role in the field of integrated optics, especially high performance photonic devices, such as high-speed optical switches, tunable filters and broadband optical modulators. In recent years, organic-inorganic hybrid materials have drawn much attention, as involve the advantages of both organic and inorganic phases such as high transmitance, great flexibility and better stability and toughness.
     In this thesis, two kinds of NLO polymer thin films including ploymer/chromophore guest-host, organic-inorganic hybrid/chromophore were successfully prepared by dip-coating technique, and a Y-type optical waveguide was obtained using hybrid film as core layer with photo-bleaching technique.
     Azo-dye polymer films of the guest-host system were prepared with disperse red-1 (DR1) as NLO active chromphore and poly (methylm ethacrylate) (PMMA) as polymer matrix. The T_g of poled polymer with 10wt% DR1 (PR-10) was 94℃, while that of PMMA was 105℃. The poling condition was optimized and the optimal orientation order parameter (Φ) of PR-10 was estimated to be 0.182. After 30d at room temperature, theΦvalue of the poled films decreased into about 70%, showing bad relaxation-resistance. NLO coefficient (d_(33)) of 1.90×10~(-8)esu was reached for the film after corona poling by the SHG measurement.
     Using the MMA as organic component, TEOS as inorganic component, MSMA as coupling agent, the organic-inorganic hybrid PMMA/SiO_2 was also synthesized successfully via sol-gel route. Hydrid films of PMMA/SiO_2/DR1 were developed. The T_g of hybrid sample PCR-0.6 with n(TEOS)/[n(MMA)+n(MSMA)]=0.6 was 165℃, much higher than that of PR-10. The hybrid films showed excellent stability of chromophore molecules ordered as theΦwas able to be maintained about 91% of its initial value at room temperature for 60d.
     Meanwhile, a Y-type optical waveguide was obtained using PMMA/SiO_2/DR1 as the core layer and PMMA/SiO_2 as the substrate with photo-bleaching technique, and the preparation parameter was optimized in details, especially the fabricaiton of Al-mask and its effect on properties of films with photo-bleaching. The optical properties of the Y-type optical waveguide were testd with the coupling optical fiber, in which the optical power ratio was 44:56 for two branches and the optical loss was around 9dB with a powermeter.
引文
[1]R.Service.Nonlinear Competition Heats Up[J].Science,1995,267:1918-1921
    [2]P.A.Franken,A.E.Hill,C.W.Peters,G.Weinreich.Generation of Optical Harmonics[J].Phys.Rev.Lett.,1961,7:188-194
    [3]N.Bloembergen.Nonlinear Optics[M].New York:Benjamin Inc,1965
    [4]D.Eaton.Nonlinear Optical Materials[J].Science,1991,253:281-287
    [5]叶成,J.Zyss.分子非线性光学的理论与实践[M].北京:化学工业出版社,1996
    [6]丁孟贤,何天白等.聚酞亚胺新型材料[M].北京:科学出版社,1998
    [7]O.R.Prasad,D.J.Willams.Introduction to Nonlinear Optical Effects in Molecules and Polymers[M].New York:John Wiley and Sons,1991
    [8]B.K.Mandal,Y.M.Chen,J.Lee,et al.Cross-linked stable second order nonlinear optical polymers by photochemical reaction[J].Appl.Phys.Lett,1991,58:2459-2460
    [9]叶成.分子非线性光学材料研究的新进展[J].光电子激光,1996.2:69-76
    [10]S.R.Marder,D.N.Beratan,L.T.Cheng.Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules[J].Science,1991,252:103-106
    [11]秦志辉.电光聚合物光波导薄膜的制备及其物性研究[D].山东大学硕士论文,2003
    [12]K.V.Rajendran,D.Jayaraman,R.Jayavel,P.Ramasamy.Synthesis,growth and characterization of S-benzyl isothiouronium chloride single crystals[J].J.Cryst.Growth,2003,254:461-468
    [13]W.L.Wang,M.Wang,W.D.Huang.A novel growth method for organic nonlinear optical crystals[J].Opt.Mater.,2004,27:609-612
    [14]N.Vijayan,N.Balamurugan,R.Ramesh Babu,et al.Growth and characterization studies of organic NLO crystals of benzimidazole by melt technique[J].J.Cryst.Growth,2004,275:1895-1900
    [15]Y.Wang,X.J.Wang,Y.Guo,et al.Electric-Field-Induced Layer-by-Layer Fabrication of Second-Order Nonlinear Optical Films with High Thermal Stability[J].Langrnuir,2004,20(21):8952-8954
    [16] G. Meredith, J. Vandusen, D. Williams, et al. Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers [J]. Macromolecules, 1982, 15: 1385-1389
    [17] H.E. Katz, M.L. Schilling, G.E. Washington. Solution-phase dielectric characterization of the 4-amino-4'-dicyanovinylazobenzene nonlinear-optical chromophore [J]. J. Opt. Soc. Am. B, 1989,7 (3): 309-312.
    [18] C. Zhang, C.G. Wang, L.D. Dalton. Progress toward Device-Quality Second-Order Nonlinear Optical Materials. 4. A Trilink High μβ NLO Chromophore in Thermoset Polyurethane: A "Guest-Host" Approach to Larger Electrooptic Coefficients [J]. Macromolecules, 2001, 34: 253-261
    [19] M. Stahelin, C.A. Walsh, D.M.Burland, et al. Orientational decay in poled second-order nonlinear optical guest-host polymers: Temperature dependence and effects of poling geometry [J]. J. Appl. Phys., 1993, 73: 8471-8478
    [20] D.M. Burland, R.D. Miller, C.A. Walsh. 2nd-order nonlinearity in poled-polymer systems[J] . Chem Rev, 1994(1): 31-75
    [21] S. Liu, M.A. Haller, H. Ma, L.R. Dalton, et al. Focused Microwave-Assisted Synthesis of 2,5-Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores [J]. Adv. Mater., 2003, 15: 603-607
    [22] M. Barzoukas, M. Blanchred-Desce, D. Josse, J.M. Lehn, J. Zyss. Very large quadratic nonlinearities in solution of two push-pull polyene series: Effect of the conjugation length and of the end groups [J]. Chem. Phys., 1989, 133: 323-329
    
    [23] G. Boyd, C. Francis, J. Trend, D. Ender. Second-harmonic generation as a probe of rotational mobility in poled polymers [J]. J. Opt. Soc. Am. B, 1991, 8(4): 887-894
    
    [24] J. Wu, J. Valley, S. Ermer, E.Binkley, J. Denney. Thermal stability of electro-optic response in poled polyimide systems [J]. Appl. Phys. Lett.,1991, 58(3): 255-267
    [25] M.C. Oh, H. Zhang, A. Szep, et al. Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate [J]. Appl. Phys. Lett., 2000, 76(24): 3525-3532
    [26] S. Ermer, J. Vally, R. Lytel, et al., DCM-polyimide system for triple-stack poled polymer electro-optic devices [J]. Appl. Phys. Lett., 1992, 61: 2272-2279
    [27] S. Ermer, S.M. Lovejoy, P.V. Bedworth, et al. Low-voltage electro-optic modulation using amorphous polycarbonate host material [J]. Adv. Funct. Mater., 2002, 12: 605-610
    [28] T. Verbiest, D.M. Burland, M.C. Jurich, et al. Exceptionally Thermally Stable Polyimides for Second-Order Nonlinear Optical Applications [J]. Science, 1995, 268: 1604-1606
    [29] S.R. Marder, B.Kippelen, A.K.Y. Jen et al, Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications [J]. Nature, 1997,388: 345-458
    [30] M.Eich, A. Sen, H. Looser, et al. Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer [J]. J. Appl. Phys., 1989, 66(6): 2559-2567
    
    [31] M. Amano, T. Kaino. Second-order nonlinearity of a novel diazo-dye-attached polymer [J]. J. Appl. Phys., 1990, 68(12): 6024-6028
    [32] Y. Shi, W. Steier, L.R. Dalton, et al. Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups [J]. Appl. Phys. Lett., 1991, 58(11): 1131-1133
    [33] G. Rikken, C. Seppen, S. Nijhuis, et al. Poled polymers for frequency doubling of diode lasers [J]. Appl. Phys. Lett., 1991, 58(5): 435-435
    [34] R. Hagen, O. Zobel, O. Sahr, et al. Poling and orientational relaxation: Comparison of nonlinear optical main-chain and side-chain polymers [J]. J. Appl. Phys., 1996, 80(6): 3162-3166
    [35] W. Kohler, D.R. Robello, P.T. Dao, et al. Second harmonic generation and thermally stimulated current measurements: A study of some novel polymers for nonlinear optics [J]. J. Chem. Phys., 1990, 93(12): 9157-9166
    [36] M.A. Mitchell, J.E. Mulvaney, H.K. Hall Jr., et al. New main chain nonlinear optical polymers with high glass transition temperatures [J]. Polym. Bull., 1992, 28(4): 381-388
    [37] I. Teraoka, D. Jungbauer, B. Reck, et al. Stability of nonlinear optical characteristics and dielectric relaxations of poled amorphous polymers with main-chain chromophores [J]. J. Appl. Phys., 1991, 69(12): 2568-2576
    
    [38] D. Jungbauer, B. Reck, D.Y. Yoon, et al. Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores [J]. J. Appl. Phys., 1991, 69(12): 8011-8017
    [39]M.Eich,B.Reck,D.Y.Yoon,et al.Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field[J].J.Appl.Phys.,1989,66(7):3241-3247
    [40]M.Chen,L.Yu,L.R.Dalton,et al.New Polymers with Large and Stable Second-Order Nonlinear Optical Effects[J].Macromolecules,1991,24,5421-5428
    [41]黄智华,王化滨,杨春才等.含非线性光学单元侧链液晶共聚物的合成及极化膜的紫外研究[J].高等学校化学学报,1994,15(1):136-139
    [42]黄旭东,谢洪泉.带发色侧基的非线性光学聚合物的合成,极化和稳定性的研究[J].高分子材料科学与工程,1995,11(5):36-41
    [43]K.H.Park,K.M.Yeon,M.Y.Lee,et al.Synthesis and nonlinear optical properties of PMMA copolymers having novel benzoxazole chromophores attached with various electron-withdrawing groups[J].Polymer,1998,39(26):7061-7066
    [44]李建科,韩孝族,王德利.一种新型二阶非线性光学聚合物材料[J].高分子材料科学与工程,1999,15(1):136-138
    [45]K.Y.Sandhya,K.S.Chennakattu,T.Naoto.Stable polymeric materials for nonlinear optics:a review based on azobenzene systems[J].Porg.Polym.Sci.,2004,29,45-74
    [46]D.Yu,A.Gharavi,L.Yu.Novel Aromatic Polyimides for Nonlinear Optics[J].J.Am.Chem.Soc.,1995,117:11680-11686
    [47]H.Ma,A.K.Y.Jen,et al.A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices[J].Chem,Mater.,1999,11(8):2218-2225
    [48]A.W.Harper,S.Sun,L.R.Daton,et al.Translating microscopic optical nonlinearity into macroscopic optical nonlinearity:the role of chromophore chromophore electrostatic interactions[J].J.Opt,Soc,Am.B,1998,15(1):329-337
    [49]L.Yu,W.Chen,Z.Bao.Synthesis and characterization of a thermally curable second-order nonlinear optical polymer[J].Macromolecnles,1992,25(21):5609-5612
    [50]J.D.S.Stenger-Smith,P.Zarras,R.A.Holins,et al.,Main-Chain Syndioregic Nonlinear Optical Polymers.Ⅱ.Extended Pi Conjugation and Improved Thermal Properties[J].J.Polym.Sci.Pol.Chem.,2000,38,2824-2839
    [51]K.Y.Sandhya,K.S.Chennakattu,T.Naoto.Stable polymeric materials for nonlinear optics:a review based on azobenzene systems[J].Prog.Polym.Sci.,2004,29:45-74
    [52]M.Chen,L.R.Dalton,L.P.Yu,Y.Q.Shi,W.H.Steier.Thermosetting polyurethanes with stable and large second-order optical nonlinearity[J].Macromoleeules,1992,25(21):4032-4035
    [53]B.H.Robinson,L.R.Dalton,A.W.Harper,et al.The molecular and supramolecular engineering of polymeric electro-optic materials[J].Chem.Phys.,1999,245(1):35-50
    [54]A.W.Harper,S.S.H.Mao,Y.Ra,L.R.Dalton,et al.Progress toward Device-Quality Second-Order Nonlinear Optical Materials:2.Enhancement of Electric Field Poling Efficiency and Temporal Stability by Modification of Isoxazolone-Based High μβChromophores[J].Chem.Mater.,1999,11(10):2886-2891
    [55]C.Zhang,L.R.Dalton,H.Zhang,et al.Low V_π Eleetrooptie Modulators from CLD-1:Chromophore Design and Synthesis,MaterialProcessing,and Characterization[J].Chem.Mater.,2001,13(9):3043-3050
    [56]L.R.Dalton,A.W.Harper,R.Ghosn,et al.Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Applications in Photonics[J].Chem.Mater.,1995,7:1060-1081
    [57]C.Yu,B.Wu,L.R.Dalton,et al.Stabilization of the Dipole Alignment of Poled Nonlinear Optical Polymers by Ultrastructure Synthesis[J].Macromolecules,1993,26:5303-5309
    [58]G.H.Hsiue,J.K.Kuo,R.J.Jeng,et al.Stable Second-Order Nonlinear Optical Polymer Network Based on an Organosoluble Polyimide[J].Chem.Mater.1994,6:884-887
    [59]王耀,傅娜,揣晓红等.可交联的PMMA型和PS型高热稳定性二阶非线性光学材料的合成与表征[J].高等学校化学学报,2004,25(3):565-569
    [60]G.H.Hsiue,R.H.Lee,R.J.Jeng,et al.All sol-gel organic/inorganic NLO materials based on melamines and an alkoxysilane dye[J].Polymers,1999,40(23):6417-6428
    [61]D.Imaizumi,T.Hayakawa,T.Kasuga,et al.Optical second harmonic generation and relaxation dynamics of aligned azo-dyes in sol-gel derived organic-inorganic film[J].J.Sol-Gel Sci.Techn,2000,19:383-386
    [62]R.J.Jeng,C.C.Chang,C.P.Chen,et al.Thermally stable crosslinked NLO materials based on maleimides[J].Polymer,2003,44:143-155
    [63]W.Steier,S.Kalluri,A.Chen,et al.Applications of electro-optic polymers in photonics[J].Mat.Res.Soc.Syrup.Proc.,1996,413:147-152
    [64]J.Kenney,J.Nurse,J.Chon,et al.NLO polymer material systems for electro-optic devices [J].Mat.Res.Soc.Syrup.Proc.,1996,413:147-159-165
    [65]侯占佳,刘丽英,徐雷等.DR1掺杂复合凝胶玻璃光学二阶非线性效应的研究[J].物理学报,1999,48(12):2377-2381
    [66]谭静,李爱东,刘文超等.主客体掺杂的偶氮类聚合物薄膜的制备和全光极化特性[J].电子器件,2004,27(3):377-380
    [67]范希智.分散橙25掺杂的聚合物PMMA薄膜全光极化的研究[J].光子学报,2005,34(8):1190-1194
    [68]侯占佳,刘丽英,徐雷等.PMMA/凝胶玻璃复合材料作为非线性有机分子掺杂基质的研究[J].光学学报,2001,21(9):111-113
    [69]韩晓星,朱大庆,宁娜等.用于光波导的高性能聚合物薄膜制备工艺研究[J].激光技术,2004,28(3):315-318
    [70]V.Kozhukharov,C.Trapalis,B.Samuneva.Sol-gel processing of titanium-containing thin coatings part Ⅲ properties[J].J.Mater.Sci.,1993,28:1283-1289
    [71]陆荣国,刘永智,廖进昆等.聚合物Y分支脊形波导的单模条件[J].发光学报,2007,28(4):617-621
    [72]J.P.Hill,P.Pentelis,G.J.Davis.Organic polymer films for second order nonlinear applications[C].SPIE,1989,1177:165-176
    [73]M.A.Mortazavi,A.Knoesen,S.T.Kowel,et al.Second-harmonic generation and absorption of polymer-dye films oriented by corona-onset poling at elevated temperature[J].J.Opt.Soc.Am.B,1989,6:733-739
    [74]D.Riehl,F.Chaput,Y.Lévy,et al.Second-order optical nonlinearities of azo chromophores covalently attached to a Sol-Gel matrix[J].Chem.Phys.Lett.,1995,245(1):36-40.
    [75]N.Tsutsumi,M.Morishima,W.Sakai.Nonlinear optical(NLO) polymers.3.NLO polyimide with dipole moments aligned transverse to the imide linkage[J].Macromolecules,1998,31(22):7764-7769.
    [76]D.S.Chemla,J.Zyss.Nonlinear Optical Properties of Organic Molecules and Crystal[M].New York:Academic Press,1987
    [77]奚红霞,杨华,梁兆熙.Sol-Gel技术制备二阶有机/无机复合非线性光学材料的研究进展[J].功能高分子学报,1998,11(3):449-459
    [78]王坚,张灵志,陈用烈等.新型有机/无机聚合物网络的合成与二阶非线性光学[J].感光科学与光化学,2002,20(4):276-282
    [79]钟爱民,周钰明,邱凤仙.新型PU-DR19-SiO_2纳米复合材料的制备和表征[J].功能材料,2006,37(6):929-932
    [80]Y.Cui,G.Qian,J.Oao,et al.Preparation and Nonlinear Optical Properties of Inorganic-Organic Hybrid Films with Various Substituents on Chromophores[J].J.Phys.Chem.B,2005,109:23295-23299
    [81]Z.Huang,K.Qiu.The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol-gel process[J].Polymer,1997,38(3):521-526
    [82]张启卫,章永化,陈守明等.聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能[J].应用化学,2002,16(9):874-877.
    [83]陶华锋,张林,王金凤等.溶胶凝胶法制备PMMA/SiO_2杂化材料[J].激光与粒子束,2006,18(2):223-226
    [84]赵禹.聚合物光波导和阵列波导光栅的基础研究[D].吉林大学博士论文,2004
    [85]P.Sigmund.Theory of sputtering.I.Sputtering yield of amorphous and polycrystalline targets [J].Phys.Rev.,1969,184(2):383-416
    [86]M.Stiller,B.P.Piwczyk.Excimer laser materials processing and beam delivery systems[C].Proc.Soc.Photo-Opt.Instrum.Eng.,1991,1377:73-79
    [87]刘昊.有机聚合物光波导的研究[D].东南大学硕士学位论文,2004
    [88]凌云,张彤,崔一平.有机聚合物光波导的研制[J].电子器件,2005,28(2):265-267
    [89]陈宝清.离子镀及溅射技术[M].北京:国防工业出版社,1990
    [90]刘际伟,陆雯,胡贵生.磁控溅射镀膜附着力的测试研究[J].分析与测试,1999,20(3):28-30
    [91]S.Lin,W.Feng,B.R.Hooker,et al.UV bleaching of polymers and polymeric directional couplers for optical interconnects[J].SPIE Conf,1994,2285:415-423
    [92]J.W.Wu,E.S.Binldey,J.T.Kenney,et al.Highly thermally stable electro-optic response in poled guest-host polyimide system cured at 360℃[J].J.Appl.Phys.,1991,69:7366-7368
    [93]M.Nakanishi,O.Sugihara,N.Okamaoto,et al.Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides[J].Appl.Opt.,1998,37(6):1068-1073
    [94]Z.J.Hou,L.Y.Lin,Z.L.Xu,et al.Improved Second Harmonic Generation from Organic-Dye-Doped Polymer/Silica Hybrid Materials[J].Chem.Mater.,1999,11(11):3177-3180
    [95]G.Brusatin,A.Abbotto,L.Beverina,et al.Poled Sol-Gel Materials With Heterocycle Push-Pull Chromophores that Confer Enhanced Second-Order Optical Nonlinearity[J].Adv.Funct.Mater.,2004,14(12):1160-1166
    [96]H.Goudket,M.Canva,Y.Levy,et al.Temperature dependence of second-order nonlinear relaxation of a poled chromophore-doped sol-gel material[J].J.Appl.Phys.,2001,90(12):6044-6047
    [97]F.Charra,E Kajzar,J.M.Nunzi,et al.Light-induced second harmonic generation in Azo-gye polymers[J].Opt.Let.,1993,18(12):941-943
    [98]W.Chalupczak,C.Fiorini,E Charra,et al.Efficient all-optical poling of an azo-Dye copolymer rusing a low power laser[J].Opt.Commun.,1996,126:103-107
    [99]F.Kajzar,K.Lee,A.Jen.Polymeric Materials and their Orientation Techniques for Second-Order Nonlinear Optics[J].Adv.Polym.Sci.,2003,(161):1-76
    [100]翟向华,王炳奎等.电晕极化聚合物膜非线性光学特性[J].中国激光,1996,23(3):234-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700