多糖基可食用膜成膜机理及水分子对膜的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以普鲁兰多糖、海藻酸钠及其混合物为研究对象,探究了多糖基可食用膜成膜机理及其与水分子的相互作用,为多糖基可食用膜的工业化生产提供了一定的理论基础。
     首先研究了普鲁兰多糖、海藻酸钠以及混合多糖溶液在20°C条件下的流变性能。结果表明:海藻酸钠的特性粘度为7.340 dl/g,远高于普鲁兰多糖的特性粘度值。4%的普鲁兰多糖成膜溶液呈现牛顿流体的性质,然而相同浓度的海藻酸钠成膜溶液则为剪切变稀流体。温度对普鲁兰多糖、海藻酸钠以及混合多糖成膜溶液粘度的影响可以通过Arrhenius方程很好的进行拟合。从动态流变试验中看出4%的海藻酸钠以及混合多糖成膜溶液为液态粘弹性溶液,并且将获得的动态粘弹数据使用广义的Maxwell模型进行拟合,得到了离散弛豫谱,从而分析了它们的机械性能。通过Cox-Marz方程对所有样品动态以及稳定剪切粘度的相关性进行了描述,发现该方程可以很好的描述普鲁兰多糖成膜溶液行为。
     使用流变仪研究普鲁兰多糖、海藻酸钠以及混合样品在干燥成膜过程中多糖分子的构象、链段运动状态变化,发现溶液样品在干燥成膜临界浓度时,普鲁兰多糖分子链段随着体系中水分的蒸发形成了三维穿插缠绕的网络结构,然而海藻酸钠样品则发生了弱凝胶化,形成了三维物理交联网络。同时使用傅里叶红外光谱结合二维相关性分析法研究干燥成膜过程中多糖与水分子之间的氢键作用,得到了普鲁兰多糖膜、海藻酸钠膜以及混合可食用膜体系中水分子的脱除模式。
     通过制备不同RH条件下的普鲁兰多糖膜、海藻酸钠膜以及混合可食用膜,研究相对湿度对多糖基可食用膜性能的影响。结果发现:在低a_w条件下,增加膜体系中海藻酸钠的含量可以提高膜样品的抗拉强度以及弹性模量,并降低了断裂延伸率;然而随着a_w值的提高相反的变化趋势被观察到。在a_w为0.23-0.43的范围里,水分子对海藻酸钠膜以及混合多糖膜具有反增塑作用。所有样品的水蒸气透过率值随着体系中海藻酸钠含量的增加以及a_w的提高而增大。使用DSC研究了样品的玻璃化转变温度,发现所有样品的玻璃化转变温度随着a_w值的增加而降低,且都只观察到了一个转变温度。使用ATR-FTIR研究了普鲁兰多糖膜、海藻酸钠膜以及混合可食用膜与水分子之间的相互作用。
     通过使用去卷积、分峰拟合的方法,分析了所有样品在a_w为0.23到0.84范围里红外图谱中O-H的伸缩振动。结果表明:在a_w值为0.84条件下,水分子和普鲁兰多糖膜、海藻酸钠膜以及混合可食用膜之间的氢键作用可以分为四类:分别为非常弱、弱、中等以及强氢键作用;而在a_w值低于0.84条件下,水分子和普鲁兰多糖膜、海藻酸钠膜以及混合可食用膜之间只存在三种不同类型的氢键作用。
     通过研究不同温度条件下(25、35和45°C)普鲁兰多糖膜、海藻酸钠膜以及混合可食用膜的水分吸附等温线,并结合Clausius-Clapeyron方程计算获得了所有膜样品水分吸附的各种热力学参数。结果表明:当所有膜样品中的水分含量增加到0.1 g/H_2O g dry basis时,净等量吸附热呈降低的趋势;然而随着水分含量的继续增加,所有膜样品的净等量吸附热值都接近于一个常数。通过对微分吸附熵值和焓值作图,得到了所有样品的等动力学温度;结果说明所有膜样品在不同温度条件下对水分的吸附是一个焓驱动的过程。普鲁兰多糖膜、海藻酸钠膜以及混合膜的净积分吸附焓值随着样品中水分含量的增加,先降低到一个最小值,然后快速增加至一个平衡值。
In this study, pullulan and sodium alginate were used as film-forming materials. The film-forming mechanism of polysaccharide-based edible films and interaction between water and polysaccharide were investigated.
     Rheological properties of pullulan, sodium alginate and blend solutions were studied at 20°C, using steady shear and dynamic oscillatory measurements. The intrinsic viscosity of pure sodium alginate solution was 7.340 dl/g, which was much higher than that of pure pullulan. Pure pullulan solution showed Newtonian behavior between 0.1 to 100 s~(-1) shear rate range. However, increasing sodium alginate concentration in pullulan-alginate blend solution led to a shear-thinning behavior. The effect of temperature on viscosities of all solutions was well-described by Arrhenius equation. Results from dynamical frequency sweep showed that pure sodium alginate and blend solutions at 4% (w/w) polymer concentration were viscoelastic liquid, whereas the pure pullulan exhibited Newtonian behavior. The mechanical properties of pure sodium alginate and pullulan-alginate mixture were analyzed using the generalized Maxwell model and their relaxation spectra were determined. Correlation between dynamic and steady-shear viscosity was analyzed with the empirical Cox-Merz rule.
     The change of conformation and chains mobility for pullulan, sodium alginate and blend film forming solutions during drying process were determined by rheometer. With the water content continuously decreasing, the entanglement network was formed by pullulan chains. However, the sodium alginate chains interacted to form physical crosslinking network structure. Moreover, the film-forming mechanism of pullulan, sodium alginate and blend films was studied by ATR-FTIR and 2D correlation spectroscopy.
     Pullulan-sodium alginate blend films were prepared and characterized as a function of water activity. At low a_w, the incorporation of sodium alginate into pullulan film increased the tensile strength and elastic modulus, but decreased the elongation at break of the composite films; the opposite trends were observed at elevated a_w. Above 0.43 a_w, water exerted a typical plasticization effect upon the biopolymer blends. As a_w increased from 0.23 to 0.43, an anti-plasticization effect was observed as tensile strength and elastic modulus increased. Water vapor permeability (WVP) of all samples increased with the increase of a_w from 0.23 to 0.84,the lowest WVP was detected in pure pullulan films. Moreover, the glass transition temperature (T_g) of all samples decreased substantially with the increase of a_w from 0.23 to 0.84. Within this a_w range, one transition temperature for all the specimens was observed.
     The stretching vibration band of O-H was investigated using attenuated total reflection Fourier transform infrared spectroscopy, and different water-polysaccharide interactions were identified from 0.23 to 0.84 a_w. At high a_w (0.84), the hydrogen bonding strength for all samples could be qualitatively assigned as very weak, weak, medium, and strong, respectively. However, three type of hydrogen bonding strength were observed below 0.84 a_w.
     The moisture sorption isotherms of pullulan, sodium alginate and blend films were determined using a standard gravimetric method at 25, 35 and 45°C. The thermodynamic properties were calculated through direct use of moisture isotherm by applying the Clausisus-Clapeyron equation. Net isosteric heat value for all films decreased with the increase of moisture content to approximately 0.1g/ g H_2O dry basis and then was plateau on axis of moisture content. The plots of differential enthalpy in contrast to entropy provided the isokinetic temperatures for all samples, indicating an enthalpy-controlled sorption process. Net integral entropy for all samples decreased with moisture content to a minimum value but increased thereafter.
引文
1. Gennadios A. Protein-based films and coating. Boca Raton: CRC Press LLC, 2002. 13-100
    2. Bourtoom T. Edible films and coatings: characteristics and properties. International Food ResearchJournal, 2008,15(3): 237-248
    3. Park D. Edible coating for fruits. In: Protein-based films and coatings. Boca Raton: CRC Press LLC, 1999.
    4. Embuscado M E, & Huber K C. Edible films and coatings for food applications. Springer Science business media. LLC. 2009. 1
    5. Krochta J M. Protein as raw materials for films and coatings: definitions, current status, and opportunities. CRC Press LLC, 2002.
    6. Embuscado M E, Huber K C. Edible films and coatings for food applications. Springer Science business media. LLC. 2009. 2-5
    7. Tsujisaka Y, Mitsuhashi M. Pullulan. San Diego: Whistler RL, BeMiller JN. 1993. 447-460
    8. Bouveng H O, Kiessling H, Lindberg B, et al. Polysaccharides elaborated by Pullularia pullulans. I. The neutral glucan synthesized from sucrose solutions. Acta Chem Scand, 1962, 16: 615-622
    9. Bouveng H O, Kiessling H, Lindberg B, et al. Polysaccharides elaborated by Pullularia pullulans. II. The partial acid hydrolysis of the neutral glucan synthesised from sucrose solutions. Acta Chem Scand, 1963, 17: 797-800
    10. Leathers T D. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol, 2003, 62: 468-473
    11. Yuen S. Pullulan and its applications. Process Biochem, 1974, 9: 7-9
    12. Kawahara M, Mizutani K, Suzuki S, et al. Dependence of the Mechanical Properties of a Pullulan Film on the Preparation Temperature. Bioscience, Biotechnology, and Biochemistry. 2003, 67(4): 893-895
    13. Shih F F. Edible Films from Rice Protein Concentrate and Pullulan. Cereal Chem. 1996, 73(3): 406-409
    14. Gniewosz M, Synowiec A. Antibacterial activity of pullulan films containing thymol. Flavour and Fragrance Journal, 2011, 26(6): 389-395
    15. Kristo E, Biliaderis C G, Zampraka A. Water vapour barrier and tensile properties of composite caseinate-pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry, 2007, 101(2): 753-764
    16. Lazaridou A, Biliaderis C G. Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydrate Polymers, 2002, 48(2): 179-190
    17. Diab T, Biliaderis C G, Gerasopoulos D, et al. Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 2001, 81(10): 988-1000
    18.殷小梅,许时婴.可食茁霉多糖膜的结构与性质研究[J].食品科学, 1998, 19(2):3-7
    19.李世杰,彭华松.短梗霉多糖及其薄膜性能研究[J].高分子材料科学与工程, 2001, 3: 118-121
    20. Trabelsi S, Albouy P A, Imperor-Clerc M, Guillot S, et al. X-ray diffraction study of the structure of carboxymethylcellulose-cation surfactant complexes. ChemPhysChem, 2007, 8: 2379-2385
    21. Fu S, Thacker A, Sperger D, Boni R, et al. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech, 2011, 12(2): 1-8
    22. Hay I D, Rehman Z U, Ghafoor A, et al. Bacterial biosynthesis of alginates. Journal of Chemical Technology & Biotechnology, 2010, 85(6): 752-759
    23. Zhong D, Huang X, Yang H, et al. New insights into viscosity abnormality of sodium alginate aqueous solution. Carbohydrate Polymers, 2011, 81(4): 948-952
    24. Ravi Prakash S D, Ramakrishna H V, Rai S K, et al. Miscibility studies of sodium alginate/poly(vinyl alcohol) blend in water by viscosity, ultrasonic, and refractive index methods. Journal of Applied Polymer Science, 2003, 90(1): 33-39
    25. Mate J I, Saltweil M E, Krochta J M. Peanut and walnut rancidity: effects of oxygen concentration and relative humidity. Jounery of Food Science, 1996, (61): 465-472
    26. Mollah M Z I, Khan M A. Mechanical properties development of sodium alginate films with additives by UV-radiation processing. Journal of applied polymer science, 2012, 124(1): 275-281
    27. Dinesh R, Mohammed M, Joshus B. Development and characterisation of sodium alginate and HPMC films for mucosal drug delivery. International journal of biotechnology, 2010, 11 (3-4): 169-181
    28. Khanedan N, Motalebi A A, Khanipour A A, et al. Effects of different concentrations of Sodium alginate as an edible film on chemical changes of dressed Kilka during frozen storage. Iranian Journal of Fisheries Sciences. 2011, 10(4): 654-662
    29. Bajdik J, Makai Z, Berkesi O, et al. Study of the effect of lactose on the structure of sodium alginate films. Carbohydrate Polymers, 2009, 77(3): 530-535
    30. Tuncer C, Aykara A, Demirci S. Preparation and characterization of blend films of poly(vinyl alcohol) and sodium alginate. Journal of Macromolecular Sciencew, Part A: Pure and Applied Chemistry, 2006, (43):1113-1121
    31. Rhim J-W. Physical and mechanical properties of water resistant sodium alginate films. LWT-Food Science and technolog, 2004, 37(3): 323-330
    32. Pavlath A E, Gossett C, Camirand W, et al. Ionomeric films of alginic acid. Journal of Food Science, 1999, 64: 61-63
    33. Olivas G I, Barbosa-Cánovas G V. Alginate–calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Science and Technology, 2008, 41(2): 359-366
    34. Gombotz W R, Wee S F. Protein release from alginate matrices. Advanced Drug Delivery Reviews, 1998, (31): 267-285
    35. Craig, J D. Engineer Manual 1110-2-3400 [S]. Washington DC: department of the army U.S. army corps of engineers.
    36. Embuscado M E, Huber K C. Edible films and coatings for food applications. Springer Science business media. LLC. 2009. 13-15
    37. Dutkiewicz J, Tuora M. New forms of chitosans polyelectrolyte complexes. London: Elsevier. 1992. 496-505
    38. Gilhotra R M, Mishra D N. Alginate-chitosan film for ocular drug delivery: effect of surface cross-linking on film properties and characterization , 2008, 63(8):576-9
    39. Arzate-Vázquez I, Chanona-Pérez J J, Calderón-Domínguez G, et al. Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers, 2012, 87(1): 289-299
    40. Shiku Y, Hamaguchi P Y, Tanaka M. Effect of pH on the preparation of edible films based on fish myofibrillar proteins. Fisheries Science, 2003, 69(5): 1026-1032
    41. Da Silva M A, Bierhalz A C K, Kieckbusch T G. Alginate and pectin composite films cross-linked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 2009, (77): 736-742
    42. Hernandez-Munoz P, Villalobos R, Chiralt A. Effect ofcross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocolloids, 2004, 18: 403-411
    43. Orliac O, Roully A, Silvestre F, et al. Effects of additives on the mechanical properties, hydrophobicity and water uptake of thermo-moulded films produced from sunflower protein isolate. Polymer, 2002, (43): 5417-5425
    44. Gennadios A, Rhim J W, Handa A, et al. Ultraviolet Radiation Affects Physical and Molecular Properties of Soy Protein Films. Journal of Food Science, 1998, 63(2): 225-228
    45. Lacroix M, Le T C, Ouattara B, et al. Use of gamma irradiation to produce films from whey, casein and soy proteins: Structure and functional characteristics. Radiat. Phys. Chem, 2002, (63): 827–832
    46. Ouattara B, Canh LT, Vachon C, et al. Use of -irradiation cross-linking to improve the water vapor permeability and the chemical stability of milk protein film. Radiat. Phys. Chem. 2002, (63): 821-825
    47. Lee M, Lee S, Song K B. Effect of -irradiation on the physicochemical properties of soy protein isolates films. Rad. Phys. Che, 2004, (72): 35-40
    48. Porta R, Mariniello L, Di Pierro P, et al. Transglutaminase Crosslinked Pectin- and Chitosan-based Edible Films: A Review. Critical Reviews in Food Science and Nutrition, 2011, 51(3): 223-238
    49. Chambi H, Grosso C. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research International, 2006, 39(4): 458-466
    50. Chen T, Embree H D, Wu L-Q, et al. In vitro proteinpolysaccharide conjugation: Tyrosinase catalyzed conjugation of gelatin and chitosan. Biopolymers, 2002, (64): 292-302
    51. Yakimets I, Wellner N, Smith A C, et al. Mechanical properties with respect to water content of gelatin films in glassy state. Polymer, 2005, 46(26): 12577-12585
    52. Bourtoom T, Chinnan M S. Preparation and properties of rice starchechitosan blend biodegradable film. LWT - Food Science and Technology, 2008, 41, 1633-1641
    53. Erdohan Z, Turhan K N. Barrier and Mechanical Properties of methylcellulose-whey Protein Films. Package. Technol. Sci, 2005, (18): 295-302
    54. Bertan L C, Tanada-Palmua P S, Sianib A C, et al. Effect of fatty acids and Brazilian elemi on composite films based on gelatin. Food Hydrocolloids, 2005, (19): 73-82
    55. Pranoto Y, Salokhe V M, Rakshit S K. Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 2005, (38): 267-272
    56. Fairley P, Monahan F J, Bruce German J, et al. Mechanical Properties and Water Vapor Permeability of Edible Films from Whey Protein Isolate and Sodium Dodecyl Sulfate. J. Agric. Food Chem, 1996, (44): 438-443
    57. Veiga-Santos P, Oliveira L M, Cereda M P, et al. Effect on cassava starch–gelatin film mechanical properties, hydrophilicity and water activity. Food Chemistry, 2007, (103): 255-262
    58. Chang Y P, Karim A, Seow C C. Interactive plasticizing–antiplasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocolloids, 2006, (20): 1-8
    59. Sothornvit R, Olsen C W, McHugh T H, et al. Tensile properties of compression-molded whey protein sheets: Determination of molding condition and glycerol-content effects and comparison with solution-cast films. Journal of Food Engineering, 2007, 78(3): 855-860
    60. Agraria F D. Hydrocolloid-based edible films: composition-structure-properties relationsip. University Degli Studi di Napoli: Dipartimento di Scienza Degli Alimenti, 2006
    61. Robertson G L. Food Packaging: Principles and Practice. New York: Marcel Dekker, Inc., 1993, 94-120
    62. Rooney M L. Overview of active packaging. New York: Blackie Academic and Professional, 1995, 203-221
    63. Fennema O R. Water and ice. New York: Marcel Dekker, Inc., 1985, 119-207
    64. Lim, L-T. Permeation of allyl isothiocyanate, oxygen and water vapor in synthetic and biopolymer films, University of Guelph: Food Science, 1999
    65. Rizvi S S H, Benado A L. Thermodynamic properties of dehydrated foods, Food Technol, 1984, (38): 83-92
    66. Heldman D R, Lund D B. Handbook of Food Engineerin. New York: Marcel Dekker, 1992, 437-563
    67. Ernst J A, Chubb R T, Zhou H X, et al. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science, 1995, 267(5205): 1813-1817
    68. Crupi V, Jannelli M P, Magazu S, et al. Hydrogen bonding and the ultrafast time response in carboxylic acids. Journal of Molecular Strucuret, 1996, 381(1-3): 219-226
    69. Tao N J. Water and Biological Macromolecules. Londo: MacMillan Press Ltd, 1993, 266-292
    70. Settles M, Doster W. Anomalous diffusion of adsorbed water: A neutron scattering study of hydrated myoglobin. Faraday Discussions, 1996, (103): 269-279
    71. Marechal Y, Chamel A. Water in a Biomembrance by infrared spectrometry. J. Phys. Chem., 1996, 100(20): 8551-8555
    72. Aguilera J, Stanley D W. Microstructural Principles of Food Processing and Engineering New York: Chapman and Hall, 1999, 385-391
    73. Van den Berg C. Food-water relations: progress and integration, comments and thoughts. New York: Plenum Press, 1991, 21-28
    74. Iglesias H A, Chirife J, Lombardi J L. An equation for correlating equilibrium moisture content in foods. Food Technol, 1975, (10): 289-294
    75. Iglesias H A, Chirife J. A model for describing the water sorption behaviour of foods. J Food Sci, 1976, (41): 984-992
    76. Boquet R, Chirife J, Iglesias H A. Equations for fitting water sorption isotherms of foods: II. Evaluation of various two parameter models. J Food Technol, 1978, (13): 319-327
    77. Chirife J, Timmermann O, Iglesias H A, et al. Some features of the parameter K of the GAB equation as applied to sorption isotherms of selected food materials. J Food Engng, 1992, (15): 75-82
    78. Lasagabaster A, Abad M J, Barral L, et al. FTIR study on the nature of water sorbed in polypropylene (PP)/ethylene alcohol vinyl (EVOH) films. European Polymer Journal, 2006, (42): 3121-3132
    79. Sammon C, Mura C, Yarwood J, et al. FTIR-ATR studies of the structure and dynamics of water molecules in polymeric matrixes. A comparison of PET and PVC. J. Phys. Chem, 1998, (102): 3402-3411
    80. Herrera-Gómez1 A, Velázquez-Cruz G, Martín-Polo M O. Analysis of the water bound to a polymer matrix by infrared spectroscopy. J. Appl. Phys. 2001, 89(10): 5431-5438
    81. Velazquez G, Herrera-Gómez1 A, Martín-Polo M O. Identification of bound water through infrared spectroscopy in methylcellulose. Journal of Food Engineering, 2003, (59): 79-84
    82. Sutandar P, Ahn D J, Franses E I. FTIR ATR analysis for microstructure and water uptake in poly (methy1 methacrylate) spin cast and langmuir-blodgett thin films. Macromolecules, 1994, (27): 7316-7328
    83. Kitano H, Ichikawa K, Ide M, et al. Fourier transform infrared study on the state of water sorbed to poly (ethylene glycol) films. Langmuir, 2001, (17): 1889-1895
    84. Guo Y, Wu P. Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydrate Polymers, 2008, 74(3): 509-513
    85. Watanabe A, Morita S, Kokot S, et al. Drying process of microcrystalline cellulose studied by attenuated total reflection IR spectroscopy with two-dimensional correlation spectroscopy and principal component analysis. Journal of Molecular Structure, 2006, 799(1-3): 102-110
    86. King C J. Rate of moisture sorption and desorption in porous, dried foodstuffs. Food Technol, 1968, (22): 509-514
    87. Duckworth R B. The properties of water around the surfaces of food colloids. Proc Inst Food Sci Technol, 1972, (5): 60-67
    88. Van den Berg C. Food-water relations: progress and integration, comments and thoughts, New York:Plenum Press, 1991, 21-28
    89. Tsami E, Maroulis Z B, Morunos-Kouris D, et al. Heat of sorption of water in dried fruits. Int J Food Sci Technol, 1990, (25): 350-359
    90. Rao M A, Rizvi S S H. Engineering Properties of Food. New York: Marcel Dekker Inc, 1995, 112-114
    91. Wang N, Brennan J G. Moisture sorption isotherm characteristics of potatoes at four temperatures. J Food Engng, 1991, (14): 269-282
    92. Iglesias H A, Chirife C. Isosteric heat of water vapour sorption on dehydrated foods. Part I. Analysis of the differential heat curves. Lebensm-Wiss-Technol, 1976, (9): 119-122
    93. Rizvi S S H. Thermodynamic properties of foods in dehydration. New York: Marcel Dekker Inc, 1986, 223-309
    94. Tsami E, Maroulis Z B, Morunos-Kouris D, et al. Heat of sorption of water in dried fruits. Int J Food Sci Technol, 1990, (25): 350-359
    95. Apostolopoulos D, Gilbert S. Water sorption of coffee solubles by frontal inverse gas chromatography: Thermodynamic considerations. Journal of Food Science, 1990, (55): 475-477
    96. Liu L, Guo Q X. Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chemical Reviews, 2001, (101): 673-695
    97. Aguerre R J, Suarez C, Viollaz P E. Enthalpy-entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms. Journal of Food Science, 1986, (51): 1547-1549
    98. Heyrovsky J. Determination of isokinetic temperature. Nature, 1970, (227): 66-67
    99. Labuza T P, Kaanane A, Chen J Y. Effect of temperature on the moisture sorption isotherm and water activity shift of two dehydrated foods. Journal of Food Science, 1985, (50), 385-391
    100. Madamba P S, Driscoll R H, Buckle K A. Enthalpy- entropy compensation models for sorption and browning of garlic. Journal of Food Engineering, 1996, (28): 109-119
    101. Eristain C I, Garcia H S, Azuara E. Enthalpy-entropy compensation in food vapor adsorption. Journal of Food Engineering, 1996, (30): 405-415
    102. Gabas A L, Menegalli F C, Telis-Romero J. Water sorption enthalpy-entropy compensation based on isotherms of plum skin and pulp. Journal of Food Science, 2000, (65): 680-684
    103. Moyano P C, Zuniga R N. Enthalpy–entropy compensation for browning of potato strips during deep-fat frying. Journal of Food Engineering, 2004, (63): 57-62
    104. Berlin E, Kliman P G, Pallansch M J. Changes in state of water in proteinaceous systems. J. Colloid Interface Sci. 1970, (34): 488-494
    105. Mazza G. Thermodynamic considerations of water vapour sorption by horseradish roots. Lebensmittel-Wissenschaft und Technologie, 1980, (13): 13-17
    106. Fasina O, Ajibola O, Tyler R. Thermodynamics of moisture sorption in winged bean seed and Gari. J. Food Process Engineering, 1999, (22): 405-418
    107. Tolaba M P, Suarez C, Viollaz P. Heat and entropies of sorption of cereal grains: A comparison between integral and differential quantities. Drying Technol, 1997, 15(1): 137-150
    108. McMinn W A M, Al-Muhtaseb A H, Magee T R A. Moisture sorption characteristics of starch gels. Part 2: Thermodynamic properties. Journal of Food Process Engineering, 2004, 27(3): 213-227
    109. Debeaufort F, Quezada Gallo J A, Voilley A. Edible films and coatings: tomorrow s packagings: a review. Critical Review in food Science, 1998, 38 (4): 299-313
    110. Gennadios A, Weller L. Edible films and coatings from wheat and corn proteins. Food Technology, 1990, (10): 63-69
    1. Yuen S. Pullulan and its applications. Process Biochemistry, 1974, (9), 7-9
    2. Singh R S, Saini G K, Kennedy J F. Pullulan: Microbial sources, production and applications. Carbohydrate Polymers, 2008, (73): 515-531
    3. Izydorczyk M, Cui S W, Wang Q. Polysaccharide gums: structures, functional properties, and applications. Toronto:Taylor & Francis Group, LLC, 2005, 293-299
    4. Rees D A. Polysaccharide shapes. London: Chapman & Hall, 1977
    5. Leathers T D. Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology, 2003, 62(5): 468-473
    6. Fu S, Thacker A, Sperger D, Boni R, et al. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech, 2011, 12(2): 1-8
    7. Hay I D, Rehman Z U, Ghafoor A, et al. Bacterial biosynthesis of alginates. Journal of Chemical Technology & Biotechnology, 2010, 85(6): 752-759
    8. Zhong D, Huang X, Yang H, et al. New insights into viscosity abnormality of sodium alginate aqueous solution. Carbohydrate Polymers, 2011, 81(4): 948-952
    9. ?aykara T, Demirci S, Eroglu M S, et al. Poly(ethylene oxide) and its blends with sodium alginate. Polymer, 2005, 46(24): 10750-10757
    10. Skjak-Br?k G, Moe S, Smidsr?d O, et al. Alginates. Now York: CRC Press, 2006.
    11. Mancini M, Moresi M, Sappino F. Rheological behaviour of aqueous dispersions of algal sodium alginates. Journal of Food Engineering, 1996, 28(3-4): 283-295
    12. Duggirala S, Deluca P P. Rheological characterization of cellulosic and alginate polymers. PDA Journal of Pharmaceutical Science and Technology, 1996, 50(5): 290-305
    13. Peressini D, Bravin B, Lapasin R, et al. Starch-methylcellulose based edible films: rheological properties of film-forming dispersions. Journal of Food Engineering, 2003, 59(1): 25-32
    14. Kheshgi H S, Kheshgi S F. The fate of thin liquid films after coating. London: Chapman & Hall, 1997, 183-205
    15. Huggins M, Sun K H, Davis D O. The Dispersion of Silicate Glasses as a Function of Composition. Journal of the Optical Society of America, 1942, 3(11): 514-518
    16. Fuoss R M, Strauss U P. Polyelectrolytes. II. Poly-4-vinylpyridinium chloride and poly-4-vinyl-N-n-butyl-pyridinium bromide. Journal of Polymer Science, 1948, 63(3): 246-249
    17. Ferry J D. Viscoelastic properties of polymers. (3rd ed.). Now York: John Wiley & Sons, 1980.
    18. Khouryieh H A M. Rheological characterization of xanthan-guar mixtures in dilute solutions. Ph.D thesis, College of Agriculture, Kansas State University. 2006.
    19. Dragan S, Mihai M, Ghimici L. Viscometric study of poly(sodium 2-acrylamido-2-methylpropanesulfonate) and two random copolymers. European Polymer Journal, 2003, 39(9): 1847-1854
    20. El-Hefian E A, Nasef M M, Yahaya A H. Preparation and characterization of chitosan/polyvinylalcohol blends-a rheological study. E-Journal of Chemistry, 2010, 7(s): s349-s357
    21. Yang L, Fu S, Zhu X, et al. Hyperbranched Acidic Polysaccharide from Green Tea. Biomacromolecules, 2011, 11(12): 3395-3405
    22. Kasaai M R. Intrinsic viscosity–molecular weight relationship and hydrodynamic volume for pullulan. Journal of Applied Polymer Science, 2006, 100(6): 4325-4332
    23. Nishinari K, Kohyama K, Williams P A, et al. Solution properties of pullulan. Macromolecules, 1991, 24(20): 5590-5593
    24. Morris E R, Cutler A N, Ross-Murphy S B, et al. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers, 1981, 1(1): 5-21
    25. Smidsr?d O. Solution properties of alginate. Carbohydrate Research, 1970, 13(3): 359-372
    26. Yolacan B. Factors affecting polyelectrolyte complex formation in aqueous solutions of sodium alginate/chitosan. Master thesis, Chemistry, Hacettepe University. 2006.
    27. Lafargue D, Lourdin D, Doublier J-L. Film-forming properties of a modified starch/kappa-carrageenan mixture in relation to its rheological behaviour. Carbohydrate Polymers, 2007, 70(1): 101-111
    28. Ioan C E, Aberle T, Burchard W. Light scattering and viscosity behavior of dextran in semidilute solution. Macromolecules, 2000, 34(2): 326-336
    29. Graessley W. The entanglement concept in polymer rheology. Berlin: Springer-Verlag, 1974, 1-179
    30. Constenla D T, Lozano J E, Crapiste G H. Thermophysical properties of clarified apple juice as a function of concentration and temperature. Journal of Food Science, 1989, 54(3): 663-668
    31. Kim W-W, Yoo B. Rheological behaviour of acorn starch dispersions: effects of concentration and temperature. International Journal of Food Science & Technology, 2009, 44(3): 503-509
    32. Florjancic U, Zupancic A, Zumer M. Rheological characterization of aqueous polysaccharide mixtures undergoing shear. Chemical and Biochemical Engineering Quarterly, 2002, 16(3): 105-118
    33. Lapasin R, Pricl S, Graziosi M, et al. Rheological properties of polysaccharide solutions and derived printing pastes in continuous and oscillatory flow conditions. Industrial & Engineering Chemistry Research, 1988, 27(10): 1802-1806
    34. Park S, Chung M-G, Yoo B. Effect of Octenylsuccinylation on Rheological Properties of Corn Starch Pastes. Starch-St?rke, 2004, 56(9): 399-406
    35. Yang X, Zhu W. Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose, 2007, 14(5): 409-417
    36. Clasen C, Kulicke W M. Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Progress in Polymer Science, 2001, 26(9): 1839-1919
    37. Doi M, Takimoto J. Molecular modelling of entanglement. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences, 2003, 361(1805): 641-652
    38. Sittikijyothin W, Torres D, Gon?alves M P. Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohydrate Polymers, 2005, 59(3): 339-350
    39. Mours M, Winter H H. Mechanical spectroscopy of polymers. San Diego: Academic Press, 2000, 495-546
    40. Da Silva J L A L, Rao M A. Viscoelastic properties of food hydrocolloid dispersions. New York: Elsevier Applied Science, 1992, 285-315
    41. Lopes da Silva J A, Goncalves M P, Rao M A. Viscoelastic behaviour of mixtures of locust bean gum and pectin dispersions. Journal of Food Engineering, 1993, 18(3): 211-228
    42. Wen Y H, Lin H C, Li C H, et al. An experimental appraisal of the Cox–Merz rule and Laun s rule based on bidisperse entangled polystyrene solutions. Polymer, 2004, 45(25): 8551-8559
    43. Chamberlain E K, Rao M A. Rheological properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydrate Polymers. 1999, 40(4): 251-260
    44. Verbeeten W M. Non-linear viscoelastic models for semi-flexible polysaccharide solution rheology over a broad range of concentrations. Journal of Rheology, 2010, 54 (3): 447-470
    45. Yasar K, Kahyaoglu T, Sahan N. Dynamic rheological characterization of salep glucomannan/galactomannan-based milk beverages. Food Hydrocolloids, 2009, 23(5): 1305-1311
    46. Grassi M, Lapasin R, Pricl S. A study of the rheological behavior of scleroglucan weak gel systems. Carbohydrate polymers, 1997, (29): 169-181
    1. Chen H. Functional properties and applications of edible films made of milk proteins. Journal of Dairy Science, 1995, 78: 2563-2583
    2. Koelsch C. Edible water vapor barriers: properties and promise. Trends in Food Science and Technology, 1994, 5: 76-81
    3. Yuen S. Pullulan and its applications. Process Biochem, 1974, 9: 7-9
    4. Singh R S, Saini G K, Kennedy J F. Pullulan: Microbial sources, production and applications. Carbohydrate Polymers, 2008, 73: 515-531
    5. Izydorczyk M, Cui S W, Wang Q. Polysaccharide gums: structures, functional properties, and applications. New York: Taylor & Francis Group, LLC, 2005, 293-299
    6. Fu S, Thacker A, Sperger D, Boni R, et al. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech, 2011, 12(2): 1-8
    7. Hay I D, Rehman Z U, Ghafoor A, et al. Bacterial biosynthesis of alginates. Journal of Chemical Technology & Biotechnology, 2010, 85(6): 752-759
    8. Bulacu M. Molecular Dynamics Studies of Entangled Polymer Chains. Enschede: PrintPartners Ipskamp, 2008.
    9. Hishikawa Y, Inoue S, Magoshi J, et al. Novel tool for characterization of noncrystalline regions in cellulose: A FTIR deuteration monitoring and generalized two-dimensional correlation spectroscopy. Biomacromolecules, 2005, (6): 2468-2473
    10. Guo Y, Wu P. Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydrate Polymers, 2008, 74(3): 509-513
    11. Watanabe A, Morita S, Kokot S, et al. Drying process of microcrystalline cellulose studied by attenuated total reflection IR spectroscopy with two-dimensional correlation spectroscopy and principal component analysis. Journal of Molecular Structure, 2006, 799(1-3): 102-110
    12. Buliga G, Brant D A. Temperature and molecular weight dependence of the unperturbed dimensions of aqueous pullulan. International Journal of Biological Macromolecules, 1987, 9(2): 71-76
    13. Gómez-D az D, Mavaza J M. Rheology of aqueous solutions of food additives: Effect of concentration, temperature and blending. Journal of Food Engineering, 2003, 56(4):387-392
    14. Ramachandran S, Shirlynn C, Etzer F. Rheologycal characterization of hydroxypropylcellulose gels. Drug Development and Industrial Pharmacy, 1999, (25): 153-161
    15. Ross-Murphy S B. Structure-property relationships in food biopolymer gels and solutions. Journal of Rheology, 1995, (39): 1451-1463
    16. Thaiudom S, Goff H D. Effect ofκ-carrageenan on milk protein polysaccharide mixtures. International Dairy, 2003, 13(1): 763-771
    17. Nishinari K. Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids. Colloid Polym Sci, 1997, 275:1093-1107
    18. Clasen C, Kulicke W M. Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Progress in Polymer Science, 2001, 26(9): 1839-1919
    19. Doi M, Takimoto J. Molecular modelling of entanglement. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences, 2003, 361(1805): 641-652
    20. Moresi M, Mancini M, Bruno M, et al. Viscoelastic properties of alginate gels by oscillatory dynamic tests. Journal of Texture Studies, 2001, (32): 375-396
    21.刘新星,钱丽颖,舒坦等.海藻酸钠水溶液的sol-gel转变与凝胶化点的决定[J].高分子学报,2003, 4(8): 484-488
    22. Matsumoto T, Kawai M, Masuda T. Viscoelastic and SAXS inversitigation of fractal structure near the gel point in alginate aqueous systems. Macromolecules, 1992, (25): 5430-5433
    23. Hamdine M, Heuzey M-C, Begin A. Effect of organic and inorganic acids on concentrated chitosan solutions and gels. International Journal of Biological Macromolecules, 2005, (37): 134-142
    24. Cao Y, Liu Z, Gao X, et al. Dynamic rheological properties and microstructures of liquid-crystalline poly(p-phenyleneterephthalamide) solutions in the presence of single-walled carbon nanotubes. J Polym Res, 2011, (18): 263-271
    25. Yang H-Y, Ping M, Zhou S. Investigation of water diffusion in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by generalized two-dimensional correlation ATR–FTIR spectroscopy. Polymer, 2009, (50): 1533-1540
    26. Sun B, Lai H, Wu P. Integrated microdynamics mechanism of the thermal-induced phase separation behavior of poly(vinyl methyl ether) aqueous solution. The Journal of Physical Chemistry B, 2011, (115): 1335-1346
    27. Innocenzi P, Malfatti L, Costacurta S, et al. Evaporation of Ethanol and Ethanol-Water Mixtures Studied by Time-Resolved Infrared Spectroscopy. J. Phys. Chem. A, 2008, (112): 6512-6516
    28. Noda I, Ozaki Y. Two-dimensional correlation spectroscopy. New York: John Wiley & Sons, Inc., 1993
    1. Yuen S. Pullulan and its applications. Process Biochemistry, 1974, (9): 7-9
    2. Singh R S, Saini G K, Kennedy J F. Pullulan: Microbial sources, production and applications. Carbohydrate Polymers, 2008, (73): 515-531
    3. ?aykara T, Demirci S, Eroglu M S, et al. Poly(ethylene oxide) and its blends with sodium alginate. Polymer, 2005, 46(24): 10750-10757
    4. Skjak-Br?k G, Moe S, Smidsr?d O, et al. Alginates. CRC Press, 2006
    5. Schuchmann H, Roy I, Peleg M. Empirical models for moisture sorption isotherms at very high water activities. Journal of Food Science, 1990, (55): 759-762
    6. Yang L, Paulson A T. Mechanical and water vapour barrier properties of edible gellan films. Food Research International, 2000, 33(7): 563-570
    7. Gennadios A, Weller C L. Moisture Adsorption by Grain Protein Films. Biological Systems Engineering, 1994, 37(2): 535-539
    8. Srinivasa P C, Ramesh M N, Kumar K R, et al. Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydrate Polymers, 2003, 53(4): 431-438
    9. Biliaderis C G, Lazaridou A, Arvanitoyannis I. Glass transition and physical properties of polyol-plasticised pullulan–starch blends at low moisture. Carbohydrate Polymers, 1999, (40): 29-47.
    10. Diab T, Biliaderis C G, Gerasopoul D, et al. Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 2001, (81): 988-1000
    11. Srinivasa P C, Rameshb M N, Kumarc K R, et al. Properties and sorption studies of chitosan-polyvinyl alcohol blend films. Carbohydrate Polymers, 2003, (53): 431-438
    12. Cheng L H, Karim A A, Seow C C. Effects of water-glycerol and water-sorbitol interactions on the physical properties of konjac glucomannan films. Food Engineering and Physical Properties, 2006, (71): 62-67
    13. Muller C M O, Yamashita F, Laurindo J B. Evaluation of the effects of glycerol and sorbitol concentration. Carbohydrate Polymers, 2008, (72): 82-87
    14. Seow C C, Cheah P B, Chang Y P. Antiplasticization by water in reduced-moisture food systems. Journal of Food Science, 1999, (64): 576-581
    15. Van den Berg, C. Development of BET-like models for sorption of water on foods: theory and relevance. Netherlands: Martinus Nijhoff Publishers, 1985
    16. Lomauro C J, Bakshi A S, Labuza T P. Evaluation of food moisture sorption isotherm equations. Part I: fruit, vegetable and meat products. Lebensmittel-Wissenschaft und -Technologie, 1985, (18): 111-117
    17. ASTM D882-02. Standard test method for tensile properties of thin plastic sheeting. Philadelphia: American Society for Testing and Materials, 2002
    18. Krochta J M. Films, Edible. In Kirk-Othmer Encyclopedia of Chemical Technology): John Wiley & Sons, Inc., 2000.
    19. ASTM E96. Standard test method for water vapor transmission of materials. Philadelphia: American Society for Testing and Materials,1993
    20. Stading M, Rindlav-Westling A, Gatenholm P. Humidity-induced structural transition in amylase and amylopectin films. Carbohydrate Polymers, 2001, (45): 209-217
    21. Mali S, Grossmann M V E, Garcia M A, et al. Microstructural characterization of yam starch films. Carbohydrate Polymers, 2002, (50): 379-386
    22. Fringant C, Desbrieres J, Milas M, et al. Characterisation of sorbed water molecules on neutral and ionic polysaccharides. International Journal of Biological Macromolecules, 1996, (18): 281-286
    23. Galin J C, Galin M. Water sorption in poly(ammonium sulfopropylbetaines). II. Sorption isotherms. Journal of Polymer Science B, 1992, (30): 1113-1121
    24. Timmermann E O. Multilayer sorption parameters: BET or GAB values? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, (220): 235-260
    25. Al-Muhtaseb A H, McMinn W A M, Magee T R A. Moisture sorption isotherm characteristics of food products: a review. Food and Bioproducts Processing, 2002, (80): 118-128
    26. Kouhila M, Kechaou N, Otmani M, et al. Experimental study of sorption isotherms and drying kinetics of Moroccan Eucalyptus Globulus. Drying Technology, 2002, (20): 2027-2039
    27. Enrione J I, Hill S E, Mitchell J R. Sorption and diffusional studies of extruded waxy maize starch-glycerol systems. Starch, 2007, (59): 1-9
    28. Timmermann E O, Chirife J, Iglesias H A. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 2001, (48): 19-31
    29. Boquet R, Chirife J, Iglesias H A. Equations for fitting water sorption isotherms of foods: II. Evaluation of various two parameter models. J Food Technol, 1978, (13): 319-327
    30. Lai H-M, Padua G W. Properties and Microstructure of Plasticized Zein Films. Cereal Chemistry Journal, 1997, 74(6): 771-775
    31. Sears J K, Darby J R. The technology of plasticizers. New York: Wiley, 1982
    32. Jackson W J, Caldwell J R. Antiplasticization.Ⅲ. Characteristics and properties of antiplasticizable polymers. Journal of Applied Polymer Science, 1967, (11): 227-244
    33. Guo J H. Effects of plasticizers on water permeation and mechanical properties of cellulose acetate: antiplasticization in slightly plasticized polymer. Drug Development and Industrial Pharmacy, 1993, (19): 1541-1555
    34. Fairley P, Monahan F J, German J B, et al. Mechanical properties and water vapor permeability of edible films from whey protein isolate and sodium dodecyl sulfate. Journal of Agricultural and Food Chemistry, 1996, (44): 438-443
    35. Gontard N, Guilbert S, Cuq J L. Water and glycerol as plasticizers affect mechanical and water vapour barrier properties of an edible wheat gluten film. Journal of Food Science, 1993, (58): 206-211
    36. Chang Y P, Cheah P B, Seow C C. Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. Food Engineering and Physical Properties, 2000, (65): 445-451
    37. Chang Y P, Karim A, Seow C C. Interactive plasticizing-antiplasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocolloids, 2006, (20): 1-8
    38. Tong Q, Xiao Q, Lim L.-T. Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Research International, 2008, 41(10): 1007-1014
    39. Krochta John M. Whey Protein Interactions: Effects on Edible Film Properties. American Chemical Society, 1998, (708): 158-167
    40. Champion D, Le Meste M, Simatos D. Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends in Food Science champTechnology, 2000, 11(2): 41-55
    41. Kalichevsky M T, Blanshard J M V. A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA. Carbohydrate Polymers, 1992, (19): 271-278
    42. Lazaridou A, Biliaderis C G. Thermophysical properties of chitosan, chitosan-strach and chitosan-pullulan films near the glass transition. Carbohydrate Polymers, 2002, (48): 179-190
    1. Chinachoti P. New techniques to characterize water in foods. Lancaster: Technomic, 1995, 191
    2. Hatakeyama T, Nakamura K, Hatakeyama H. Vaporization of bound water associated with cellulose fibres. Thermochimica Acta, 2000, (233): 352-353
    3. Mesgarzadeh A, Pfeiffer S, Engelke J, et al. Bound water in apo and holo bovine heart fatty-acidbinding protein determined by heteronuclear NMR spectroscopy. European Journal of Biochemistry, 1998, (251): 781-786
    4. Sutandar P, Ahn D J, Franses E I. FTIR ATR analysis for microstructure and water uptake in poly (methy1 methacrylate) spin cast and langmuir-blodgett thin films. Macromolecules, 1994, (27): 7316-7328
    5. Sammon C, Mura C, Yarwood J, et al. FTIR-ATR studies of the structure and dynamics of water molecules in polymeric matrixes. A comparison of PET and PVC. J. Phys. Chem, 1998, (102): 3402-3411
    6. Kitano H, Ichikawa K, Ide M, et al. Fourier transform infrared study on the state of water sorbed to poly (ethylene glycol) films. Langmuir, 2001, (17): 1889-1895
    7. Lasagabaster A, Abad M J, Barral L, et al. FTIR study on the nature of water sorbed in polypropylene (PP)/ethylene alcohol vinyl (EVOH) films. European Polymer Journal, 2006, (42): 3121-3132
    8. Ide M, Yoshikawa D, Maeda Y, et al. State of water inside and at the surface of poly (ethylene glycol) films examined by FT-IR. Langmuir, 1999, (15): 926-929
    9. Jeroen van S. Spectroscopy of Polysaccharides. New York: CRC Press, 2003
    10. Herrera-Gómez1 A, Velázquez-Cruz G, Martín-Polo M O. Analysis of the water bound to a polymer matrix by infrared spectroscopy. J. Appl. Phys. 2001, 89(10): 5431-5438
    11. Van Hoogmoed C G, Busscher H J, de Vos P. Fourier transform infrared spectroscopy studies of alginate–PLL capsules with varying compositions. Journal of Biomedical Materials Research Part A, 2003, 67A(1): 172-178
    12. Kirill I S. Determination of structural peculiarities of dexran, pullulan and -irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate Research, 2002, 337(16): 1445-1451
    13. Lawrie G, Keen I, Drew B, et al. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules, 2007, 8(8): 2533-2541
    14. Sakugawa K, Ikeda A, Takemura A, et al. Simplified method for estimation of composition of alginates by FTIR. Journal of Applied Polymer Science, 2004, 93(3): 1372-1377
    15. Cotugno S, Larobina D, Mensitieri G, Musto P, et al. A novel spectroscopic approach to investigate transport processes in polymers: the case of water-epoxy system. Polymer, 2001, (42): 6431-6438
    16. Orofino T A, Hopfenberg H B, Stannett V. Characterization of penetrant clustering in polymers. J. Mocromol. Sci. Phys. 1969, B3(4): 777-788
    17. Hernandez R J, Gavara R. Sorption and transport of water in nylon-6 films. J. Polym. Sci. B, 1994, (32): 2367-2374
    18. Lim L-T, Britt I, Tung M A. Sorption and transport of water vapor in nylon 6,6, film. J. Appl. Polym. Sci. 1999, (71):197-206
    19. Tong Q Y, Xiao Q, Lim L-T. Preparation and properties of pullulan-alginate-carboxymethylcellulose blend films. Food Research International, 2008, (41): 1007-1014
    1. Quirijns E J, van Boxtel A J B, van Loon W K P, et al. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 2005, 85(11): 1805-1814
    2. Nunes R V, Rotstein E. Thermodynamics of the water-foodstuff equilibrium. Drying Technol, 1991, (9): 113-117
    3. Beristain C I, Garcia H S, Azuara E. Enthalpy-Entropy compensation in food vapor adsorption. Journal of Food Engineering, 1996, 30(3–4): 405-415
    4. Tsami E. Net isostcric heat of sorption in dried fruits. J. Food Eq, 1991, (14): 327-315
    5. Goula A M, Karapantsios T D, Achilias D S, et al. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, 2008, 85(1): 73-83
    6. Togrul H, Arslan N. Moisture sorption isotherms and thermodynamic properties of walnut kernels. Journal of Stored Products Research, 2007, (43): 252-264
    7. Moreira R, Chenlo F, Torres M D, et al. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 2008, 88(4): 514-521
    8. McMinn W A M, Magee T R A. Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering, 2008, 60(2): 157-165
    9. Pérez-Alonso C, Beristain C I, Lobato-Calleros C, et al. Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, 2006, 77(4): 753-760
    10. Lomauro C J, Bakshi A S, Labuza T P. Evaluation of food moisture sorption isotherm equations. Part I: fruit, vegetable and meat products. Lebensmittel-Wissenschaft und -Technologie, 1985, (18): 111-117
    11. Al-Muhtaseb A H, McMinn W A M, Magee T R A. Water sorption isotherms of starch powders. Part 2: Thermodynamic characteristics. Journal of Food Engineering, 2004, 62(2): 135-142.
    12. Rizvi R R H, Benado A L. Thermodynamic properties of dehydrated foods. Food Technology, 1984, (38): 83-92
    13. Rizvi S S H. Thermodynamics of foods in dehydration. New York: Marcel Dekker, 1986, 133-214
    14. Othmer D F. Correlating vapor pressure and latent heat data. A new plot. Industrial Engineering Chemistry, 1940, (32): 841-856
    15. Kaya S, Kahyaoglu T. Thermodynamic properties and sorption equilibrium of pestil (grape leather). Journal of Food Engineering, 2005, 71(2): 200-207
    16. Gabas A L, Menegalli F C, Telis-Romero J. Water Sorption Enthalpy-Entropy Compensation Based on Isotherms of Plum Skin and Pulp. Journal of Food Science, 2000, 65(4): 680-680
    17. McMinn W A M, Al-Muhtaseb A H, Magee T R A. Enthalpy–entropy compensation in sorption phenomena of starch materials. Food Research International, 2005, 38(5): 505-510
    18. McLaughlin C P, Magee T R A. The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering, 1998, 35(3): 267-280
    19. Maskan M, G??ü? F. The fitting of various models to water sorption isotherms of pistachio nut paste. Journal of Food Engineering, 1997, 33(3–4): 227-237
    20. Madamba P S, Driscoll R H, Buckle K A. Enthalpy-entropy compensation models for sorption and browning of garlic. Journal of Food Engineering, 1996, 28(2): 109-119
    21. Leffler J E. The enthalpy–entropy relationship and its implications for organic chemistry. Journal of Organic Chemistry, 1995, (20): 1202-1231
    22. McMinn W A M, McKee D J, Magee T R A. Moisture adsorption behaviour of oatmeal biscuit and oat flakes. Journal of Food Engineering, 2007, 79(2): 481-493
    23. Tolaba M P, Suarez C, Viollaz P. Spreading pressure–water activity and moisture relationships in starchy materials. Drying Technology, 1995, (13): 2097-2111
    24. Iglesias H A, Chirife J, Viollaz P. Thermodynamics of water vapour sorption by sugar beet root. Journal of Food Technology, 1976, (11): 91-101
    25. Mazza G. Thermodynamic Considerations of water vapour sorption by horseradish roots. Lebensmittel-Wissenschaft und-Technologie, 1980, 13, 13-17
    26. Maria Martelli S, Moore G, Silva Paes S, et al. Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT - Food Science and Technology, 2006, 39(3): 292-301
    27. Yang L, Paulson A T. Mechanical and water vapour barrier properties of edible gellan films. Food Research International, 2000, 33(7): 563-570
    28. Stading M, Rindlav-Westling A, Gatenholm P. Humidity-induced structural transition in amylase and amylopectin films. Carbohydrate Polymers, 2001, (45): 209-217
    29. Mali S, Grossmann M V E, Garcia M A, et al. Microstructural characterization of yam starch films.Carbohydrate Polymers, 2002, (50): 379-386
    30. Rhim J-W, Lee J H. Thermodynamic Analysis of Water Vapor Sorption Isotherms and Mechanical Properties of Selected Paper-Based Food Packaging Materials. Journal of Food Science, 2009, 74(9): E502-E511
    31. Lee J H, Lee M J. Effect of drying method on the moisture sorption isotherms for Inonotus obliquus mushroom. LWT - Food Science and Technology, 2008, 41(8): 1478-1484
    32. Perdomo J, Cova A, Sandoval A J, et al. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, 2009, 76(2): 305-313
    33. Brett B, Figueroa M. Moisture sorption characteristics of starchy products. Oat flour and rice flour. B.Sc. thesis, Simón Bolívar University, Venezuela, 2005
    34. Mulet A, Garc a-Pascual P, Sanjuán N, et al. Equilibrium isotherms and isosteric heats of morel (Morchella esculenta). Journal of Food Engineering, 2002, 53(1): 75-81
    35. Maroulis Z B, Tsami E, Marinos-Kouris D, et al. Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering, 1988, 7(1): 63-78
    36. Hossain M D, Bala B K, Hossain M A, et al. Sorption isotherms and heat of sorption of pineapple. Journal of Food Engineering, 2001, 48(2): 103-107
    37. Wang N, Brennan J G. Moisture sorption isotherm characteristics of potatoes at four temperatures. Journal of Food Engineering, 1991, (14): 269-282
    38. Volman D H, Simons J W, Seed J R, et al. Sorption of water vapor by starch. Thermodynamics and structural changes for dextrin, amylose, and amylopectin. Journal of Polymer Science, 1960, 46(148): 355-364
    39. Falade K O, Adetunji A I, Aworh O C. Adsorption isotherm and heat of sorption of fresh- and osmo-oven dried plantain slices. European Food Research and Technology, 2003, 217(3): 230–234
    40. Lahsasni S, Kouhila M, Mahrouz M. Adsorption–desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica). Energy Conversion and Management, 2004, 45(2): 249-261.
    41. Hill T L, Emmett P H, Joyner L G. Calculation of thermodynamic functions of adsorbed molecules from adsorption isotherm measurements: Nitrogen on graphon. Journal of American Chemical Society, 1951, (73): 5102-5107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700