内燃机振声信号时频特性分析及源信号盲分离技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机振声信号为典型的非平稳时变信号,频率成分十分复杂,采用传统的谱分析方法难以对其进行时域局部化分析,无法全面地揭示信号频率成分的时变特性。时频分析方法是一种时频局域化分析方法,能在时间和频率上同时描述信号的能量密度或强度,揭示信号中所包含的频率分量及其随时间变化的特性。近年来,随着数字信号处理技术的不断发展,基于非平稳信号处理的时频分析方法已逐渐应用于内燃机振声信号分析领域,并取得了一定的研究成果。
     本文主要围绕国家自然科学基金项目“内燃机声信号的独立成分小波分析及燃烧噪声源的诊断”和教育部高等学校博士学科点专项基金“通过发动机辐射声的小波分析诊断燃烧性能和噪声源”展开,在深入研究小波变换、S变换、Hilbert-Huang变换以及独立成分分析的基本原理与算法的基础上,以多台发动机为研究对象,系统深入地开展了时频分析方法和盲分离技术在内燃机振声信号时频特性分析和振动噪声源识别中的应用研究,研究结果对内燃机振动噪声控制具有重要意义。全文的主要研究内容如下:
     1、从噪声污染的严重性和危害性出发,阐述了开展内燃机振动噪声控制研究的实际意义;通过对小波变换、S变换、Hilbert-Huang变换以及独立成分分析的发展概况及其在工程领域的应用进行调查研究,分析了各种时频分析方法和盲分离技术应用于内燃机振声信号时频特性研究和振动噪声源识别的可行性。
     2、对时频分析的基本概念进行了定义与区分,归纳总结了时频分析的基本原理与基本性质。
     3、在对小波变换的基本原理进行深入研究的基础上,以多台发动机为研究对象,采用连续小波变换方法对其稳态和瞬态工况(加速过程)的振声信号进行时频分析,研究不同工况下振声信号的能量分布规律,以及其主要频率成分随时间(转速)变化的特性,结合内燃机的结构特点和工作机理,分析振动噪声产生的原因。
     4、采用小波包分解的方法对内燃机噪声信号进行小波包逐层分解和系数重构,将与内燃机燃烧过程相关的频带信号进行合成重构,得到燃烧激励产生的噪声信号,并对其进行连续复小波变换和三维小波能量谱分析,分析气缸燃烧状态,提取内燃机燃烧过程相关的特征信息。
     5、在对S变换基本原理和相应算法进行深入研究的基础上,开展S变换技术在内燃机振声信号分析中的应用研究。以多台发动机为研究对象,采用S变换对其稳态工况和瞬态工况(加速过程)的振声信号进行时频分析处理,分析振声信号的能量分布规律,以及其主要频率成分和能量分布随时间(转速)变化的情况,结合内燃机的结构特点,分析振动噪声产生的原因。
     6、在对Hilbert-Huang变换技术的基本原理和相关算法进行深入研究的基础上,开展Hilbert-Huang变换技术在内燃机振声信号分析中的应用研究。以某六缸发动机为研究对象,采用EMD方法对其振声信号进行分解,得到多个具有不同频率的IMF分量,分别对各分量进行Hilbert变换,分析其幅值和频率随时间变化的特性,并结合内燃机的结构和振动噪声产生机理,分析各分量产生的原因,识别振动噪声源。
     7、在对独立成分分析的基本理论和相关算法进行深入研究的基础上,开展独立成分分析在内燃机振声信号分析中的应用研究。通过对内燃机振声信号的独立性和高斯性进行分析,揭示ICA方法在内燃机振声信号分析中的可行性,并以某六缸发动机为研究对象,采用ICA方法分别对其振声信号进行盲分离,结合小波变换技术识别内燃机主要噪声源和机体的振动激励源。
The vibration and noise signal of internal combustion (I.C.) engine is typically non-stationary and time-varying with complicated frequency components. Traditional spectral analysis methods can neither analyze this signal in local time domain nor reflect the time-varying characteristics of the frequency components. The time-frequency analysis method is characterized by time-frequency localization. It can simultaneously describe the energy density or intensity of signal in time and frequency. Therefore, this method can reveal the frequency components included in signal and the related variation with time. In recent years, with the development of digital signal processing technologies, the time-frequency analysis method suitable for processing non-stationary signals, has gradually been introduced and brought on some achievements in processing the vibration and noise signal of I.C. engine.
     This research is mainly originated from the project "Diagnosis of combustion noise source based on independent component analysis and wavelet transform of engine sound signal"(National Natural Science Foundation Project, No:50575203) and "Diagnosis of combustion performance and noise source based on wavelet analysis of engine radiation noise"(ph.D. Programs Foundation Project of Ministry of Education, No: 20030335092). The basic principles and algorithms of wavelet transform, S transform, Hilbert-Huang transform together with independent component analysis were investigated deeply and thoroughly. Taking several engines for example, the time-frequency analysis method and blind source separation technique were employed to study on the time and frequency characteristics of engine vibration and noise signals as well as to identify the vibration and noise sources. The research results are of great significance to the vibration and noise control of engine. The research details were as follows:
     1. Starting with the severity and harmfulness of noise, the importance of controlling engine vibration and noise was then expatiated. After investigating the development and applications of wavelet transform, S transform, Hilbert-Huang transform, and independent component analysis, the feasibility of these techniques used for analyzing the time and frequency characteristics and identifying vibration and noise sources of engine was explored.
     2.The basic concepts of time-frequency analysis were firstly defined and differentiated. Then the basic principles and characteristics of time-frequency analysis were summarized.
     3. Based on an in-depth study of the basic principles of wavelet transform, continuous wavelet transform was adopted to analyze the vibration and noise signals in time-frequency domain when engine was under steady and transient workload. The energy distribution of signals recorded in different conditions and variance of their predominant frequency components with time or engine speed were subsequently investigated. Afterwards, the cause of engine vibration and noise was analyzed according to the previous results together with the engine structural characteristics and working mechanism.
     4. Based on the wavelet packet decomposition and coefficient reconstruction of engine noise signal, the subband signals relevant to engine combustion process were combined and reconstructed, and noise signals resulted from the combustion excitation were obtained. Moreover, continuous complex wavelet transform was adopted to analyze the reconstructed signal. The three-dimensional wavelet power spectrum was also calculated to investigate the combustion condition of each cylinder and extract the related information.
     5. Based on an in-depth study of the basic principles and relevant algorithms of S transform, the research on the application of S transform in analysis of engine vibration and noise signals was conducted. Taking several engines for example, S transform was employed to process vibration and noise signals in time-frequency domain when engine was under steady and transient workload. Then the energy distribution law of signals was studied. Furthermore, variation of prominent frequency components with time was analyzed. Finally, the cause of vibration and noise was deduced according to engine structural characteristics.
     6. Based on an in-depth study of the basic principles and relevant algorithms of Hilbert-Huang transform, the research on its application in analysis of engine vibration and noise signals was conducted. Taking a six cylinder engine for example, the vibration and noise signals were decomposed into a collection of intrinsic mode functions (IMFs) with different frequencies by the method of EMD. Then Hilbert transform was adopted to analyze the amplitude and frequency of each IMF varying with time. In terms of the mechanism of the engine structural vibration and noise, the origination of each IMF was deduced. The vibration and noise sources were identified as well.
     7. Based on an in-depth study of the basic principles and relevant algorithms of independent component analysis, the research on its application in analysis of engine vibration and noise signals was conducted. The independence and gaussianity of vibration and noise signals was firstly investigated to demonstrate the feasibility of this method used for analyzing the vibration and noise signals of engine. Taking a six cylinder engine for example, the technology of independent component analysis and wavelet transform was adopted to separate the vibration and noise signals of engine and identify its vibration and noise sources.
引文
1.World Health Organization.Guidelines for community noise,1999
    2.杨金才.内燃机噪声源识别的声模态及A计权小波改进算法的研究[D].杭州:浙江大学,2006,1
    3.韩松涛.内燃机的振动噪声控制及现代设计方法学研究[D].天津:天津大学,2002,1
    4.E.C.Grover,N.Lalor.A review of low noise diesel engine design at I.S.V.R[J].Journal of Sound and Vibration,1973,28(3)
    5.朱孟华.内燃机振动与噪声控制[M].北京:国防工业出版社,1995
    6.吴炎庭,袁卫平.内燃机噪声振动与控制[M].北京:机械工业出版社,2005
    7.庞剑,谌刚,何华等.汽车噪声与振动-理论与应用[M].北京:北京理工大学出版社,2006
    8.T.Pride.Origines of engine noise[J].SAE paper:800534,1980
    9.Y.Yawata..Identification of internal noise sources in diesel engines[J].SAE paper:833130,1983
    10.长春汽车研究所,吉林工业大学,发动机噪声计算机分析,课题报告,1982
    11.N.Kaemmer..Surface intensity measurement on a vibrating cylinder[J].Noise-Con79,Proceeding,1979
    12.J.Y.Chung..Application of acoustic intensity measurement to engine noise evaluation[J].SAE paper:790502,1979
    13.P.J.Yorke..The application of identizalized response analysis to diesel engine noise assement[J].SAE paper:750836,1975
    14.J.D.Maynard,E.G.Williams,Y.Lee.Nearfield acoustic holography:I.Theory of generalized holography and the development of NAH[J].J.Acoustical Society of America,1985,78(4):1395-1413
    15.杨殿阁,郑四发,李愈康等.用于声源识别的声全息重建方法的研究[J].声学学报,2001,26(2):56-160
    16.飞思科技产品研发中心编著.小波分析理论与MATLAB7.0实现[M].北京:电子工业出版社,2005
    17.A.Grossman,J.Morlet.Decomposition of Hardy functions into integrable wavelets of constant shape[J].SIMA J.Math.Anal.,1984,15:723-736
    18.Li,S.Akishita,T.Kato.Engine failure diagnosis with sound signals using the wavelet transform[J].SAE paper:970034,1997
    19.D.Scholl,B.Yang.Wavelet-based visualization,separation,and synthesis tools for sound quality of impulsive noises[J].SAE paper:2003-01-1527
    20.R.Tafreshi..Malfunction detection in multi-cylinder engines using wavelet packet dictionary[J].SAE paper:2005-01-2261
    21.吴波,何岭松,蔡志强等.基于小波变换的波形特征抽取与识别[J].华中理工大学学报,1993,21(1):77-81
    22.赵纪元.基于小波理论、神经网络的实用诊断技术研究[D].西安:西安交通大学,1997,6
    23.韩军.内燃机的非平稳信号分析方法及其噪声源小波识别技术的研究[D].天津:天津大学,2004,1
    24.张兢.发动机汽缸振动信号的小波包分解与故障诊断[J].机械与电子,2006,6(3):6-9
    25.金岩.基于小波变换与独立分量分析的内燃机振声特性研究[D].杭州:浙江大学,2007,7
    26.R.G.Stockwell,L.Mansinha,R.P.Lowe.Localization of the complex spectrum:the S transform[J].IEEE transactions on signal processing,1996,44(4):998-1001
    27.C.R.Pinnegar,L.Mansinha.The S-transform with windows of arbitrary and varying shape [J].Geophysics,2003,68(1):381-385
    28.邹文.S变换时频分析技术及其在地震勘探中的应用研究[D].武汉:中国地质大学,2005,5
    29.刘喜武,年静波,刘洪.基于广义S变换技术的地震波能量衰减分析[J].勘探地球物理进展,2006,29(1):20-24
    30.P.K.Dash,B.K.Panigrahi,GPanda.Power quality analysis using S-transform[J].IEEE transactions on power delivery,2003,18(2):406-411
    31.占勇,程浩忠,丁屹峰.基于S变换的电能质量扰动支持向量机分类识别[J].中国电机工程学报,2005,25(4):51-56
    32.吕干云,程浩忠,郑金菊,汪晓东.基于S变换和多级SVM的电能质量扰动检测识别[J].电工技术学报,2006,21(1):121-123
    33.赵风展,杨仁刚.基于S变换和时域分析的电能质量扰动识别[J].电网技术,2006,30(15):90-94
    34.杨洪耕,刘守亮,肖先勇.基于S变换时频等值线图与幅值包络向量实现电压凹陷的分类[J].电工技术学报,2006,21(8):75-80
    35.P.D.Mefadden,J.G.Cook,L.M.Forster.Decomposition of gear vibration signals by the generalized S transform.[J].Mechanical Systems and Signal Processing,1999,13(5),691-707
    36.王成栋,张优云,夏勇.基于S变换的柴油机气阀机构故障诊断研究[J].内燃机学报,2003(4):271-275
    37.N.E.Huang,Z.Shen,S.R.Long..The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.R.Soc.Lond,1998,A454:903-995
    38.N.E.Huang.A new method for nonlinear and non-stationary time series analysis:empirical mode decomposition and Hilbert spectral analysis[J].SPIE,2000,4056:197-209
    39.R.R.Zhang,S.Ma..Hilbert-Huang transform analysis of dynamic and earthquake motion recordings[J].Journal of engineering mechanics,ASCE,2003,129(8):861-875
    40.张郁山.希尔伯特-黄变换(HHT)与地震动时程的希尔伯特谱方法与应用研究[D]. 北京:中国地震局地球物理研究所,2003,11
    41.尹逊福,徐龙,熊学军等.南海东部区域的海流状况-Ⅲ.海流的经验模分解和Hibert 谱[J].海洋科学进展,2003,21(2):148-159
    42.H.T.Vincent,S-L.J.Hu,Z.Hou.Damage detection using empirical mode decomposition method and a comparison with wavelet analysis[J].Proe.of the second international workshop on structural health monitoring,1999,891-900
    43.J.N.Yang,Y.Lei,S.W.Pan,N.E.Huang.System identification of linear structures based on Hilbert-Huang spectral analysis,Part 1.Normal modes[J].Earthquake Engineering and Structural Dynamics,2003,32:1443-1467
    44.J.N.Yang,Y.Lei,S.W.Pan,N.E.Huang.System identification of linear structures based on Hilbert-Huang spectral analysis,Part 2.Complex modes[J].Earthquake Engineering and Structural Dynamics,2003,32:1533-1554
    45.石春香.HHT变换及其在结构分析中的应用[D].上海:同济大学,2004,2
    46.孙列.基于希尔伯特-黄变换(HHT)的地震作用结构损伤识别[D].杭州:浙江大学,2007,5
    47.B.M.Gravier,N.J.Napal,J.A.Pelstring..An assessment of the application of the Hilbert spectrum to the fatigue analysis of marine risers[C].Proeeedings of the international offshore and polar engineering conference,2001,2:268-275
    48.R.X.Gao,R.Yan.Non-stationary signal processing for beating health monitoring[J].Int.J.Manufacturing Research,2006,1(1):18-40
    49.杨宇.基于EMD和支持向量机的旋转机械故障诊断方法研究[D].长沙:湖南大学,2005,5
    50.陈军圣.基于Hilbert-Huang变换的旋转机械故障诊断方法研究[D].长沙:湖南大学,2005,5
    51.任玥.基于Hilbert-Huang变换的滚动轴承智能诊断方法研究[D].成都:西南交通大学,2007,4
    52.J.Herault..Space or time adaptive signal processing by neural network models,in Denker ed.:"neural network for computing"[C].AIP Conference proceedings,1986
    53.C.Jutten..Blind separation of sources,Pt.Ⅰ:An adaptive algorithm based on neuromimetic architecture[J].Signal Processing,1991,24(1):1-10
    54.P.Comon..Blind separation of sources,Pt.Ⅱ:Problem statement[J].Signal Processing,1991,24(1):11-20
    55.J.F.Cardoso..Higher order contrast for independent component analysis[J].Neural Computation,1999,11(1):157-193
    56.J.F.Cardoso..Blind beamforming for non-Gaussian signal[J].IEEE-Pro.F,1993,140(6):157-193
    57.T.W.Lee..Independent component analysis using an extended informax algorithm for sub-Gaussian and super- Gaussian sources[J].Neural Computation,1999,11(2):409-433
    58.S.I.Amari..New learning in structural parameter space-natural Riemannian gradient[J].Advances in Neural Information Processing Systems,1997,9:127-133
    59.A.Hyvarinen..A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9(7):1483-1492
    60.F.Gu,W.Li,A.D.Ball..A study of the engine noise from diesel engines using the independent component analysis[J].Mechanical Systems and Signal Processing,2001,15(6):1165-1184
    61.M.El.Badaoui,J.Daniere,F.Guillet,C.Serviere.Separation of combustion noise and piston-slap in diesel engine-Part Ⅰ:Separation of combustion noise and piston-slap in diesel engine by cyclic Wiener filtering[J].Mechanical Systems and Signal Processing,2005,19:1209-1217
    62.C.Serviere,J.L.Lacoume,M.El.Badaoui.Separation of combustion noise and piston-slap indiesel engine-Part Ⅱ:Separation of combustion noise and piston-slap using blind source separation methods[J].Mechanical Systems and Signal Processing,2005,19:1165-1184
    63.科恩著,白居宪译.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998
    64.于伟凯.EMD时频分析方法的理论研究与应用[D].秦皇岛:燕山大学,2006,10
    65.张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,2007
    66.胡广书.现代信号处理教程[M].北京:清华大学出版社,2004
    67.吴正国,夏立,尹为民.现代信号处理技术-高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社,2003
    68.张贤达.现代信号处理[M].北京:清华大学出版社,2002
    69.胡昌华,周涛,夏启兵等.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,2002
    70.葛哲学,陈仲生.Matlab时频分析技术及应用[M].北京:人民邮电出版社,2006
    71.D.Gabor.Theory of communication[J].IEEE,1946,93:429-457
    72.飞思科技产品研发中心编著.MATLAB6.5辅助小波分析与应用[M].北京:电子工业出版社,2003
    73.彭玉华.小波变换与工程应用[M].北京:科学出版社,1999
    74.M.Farge.Wavelet transforms and their application to turbulence[J].Annual Review of Fluid Mechanics,1992,24:395-457
    75.陈学华.时频分布与地震信号谱分析研究[D].成都:成都理工大学,2006,5
    76.赵淑红.时频分析方法及其在地震数据处理中的应用[D].西安:长安大学,2006,4
    77.邵恩坡,程汉华.发动机进气噪声产生的机理及其控制[J].小型内燃机,1994,23(4):44-47
    78.S.Rice.Mathematical analysis of random noise[J].Bell Syst.Tech.J,1994,(23):21-32
    79.于德介,陈军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006
    80.I.Magrin-Chagnolleon,G.Richard.Empirical mode decomposition based time-frequency attributes[C].Proc,of the 69th SEG Meeting,1999
    81.Norden E.Huang,Zheng.Shen,and Steven.R.Long.A new view of Nonliear water waves:the Hilbert Spectrum[J].Annual Review of Fluid Mechanics,1999,5(31):417-457
    82.P.Handrin,P.Goncalves,G.Rilling.Detrending and denoising with EMD[J].IEEE Sig Proc Roy Soc London A,2004,454:631-636
    83.黄诚惕.希尔伯特-黄变换及其应用研究[D].成都:西南交通大学,2006,5
    84.钟佑明.希尔伯特-黄变换局瞬信号分析理论的研究[D].重庆:重庆大学,2002,4
    85.徐士良.计算机常用算法[M].北京:清华大学出版社,1995
    86.杨世锡,胡劲松,吴昭同,严拱标.基于高次样条插值的经验模态分解方法研究浙江大学学报[J].2004,38(3):267-270
    87.胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究[D].杭州:浙江大学,2003,3
    88.邓拥军,王伟,钱成春等.EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001,46(3):257-263
    89.盖强,马孝江,张海勇.一种消除局域波法中边界效应的新方法[J].大连理工大学学报,2002.42(1):115-117
    90.黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓[J].海洋学报,2003,25(1):1-11
    91.张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题[J].自然科学进展,2003,13(10):1054-1059
    92.程军圣,于德介,杨宇.基于支持矢量回归机的Hilbert-Huang变换端点效应问题的处理方法[J].机械工程学,2006,42(4):23-31
    93.谭善文.多分辨希尔伯特-黄(Hilbert-Huang)变换方法的研究[D].重庆:重庆大学,2001.5
    94.T.M.Cover,J.A.Thomas.Elements of information theory[M].New York:Wiley Series in Telecommunication,1991
    95.G.Deco..An information-theoretic approach to neural computing[M].Springer-Verlag Scientific Publishers,1996
    96.傅祖芸.信息论-基础理论与应用[M].北京:电子工业出版社,2001
    97.朱雪龙.应用信息论基础[M].北京:清华大学出版社,2001
    98.杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006
    99.A.Hyvarinen,J.Karhunen,E.Oja.Independent Component Analysis[M].John Wiley&Sons,Inc.2001
    100.张贤达.时间序列分析-高阶统计量方法[M].北京:清华大学出版社,1996
    101.P.Comon.Independent component analysis,A new concept?[J].Signal processing,1994,36:287-314
    102.T.V.Nguyen,J.C.Patra,W.Mica.An ICA-based digital watermarking technique[J].Proceedings of the Fourth IEEE International Symposium.2004,12:306-309
    103.A.Hyvarinen, E.Oja. Independent component analysis: algorithm and application [J].Neural Networks. 2000,13(45): 411-430
    104.M.Girolami.Self-organizing artifitial neural networks for signal separation[D].Scotland:Paisley University, 1997
    105.J.F.Cardoso.Higher-order contrast for independent component analysis[J].Neural Computation, 1999,11(1):157-192
    106.A.Hyvarinen.New approximations of different entropy for independent component analysis and projection pursuit[J].Advances in Neural Information Processing Systems, 1998,10:273-279
    107.G.Darmois.Analyze des liaisons de probabilitie[C].Proceedings of International Statistics Conferences 1947,Washington,DC, 1951,III(A):231
    108.J.Erikson,V.Koivunen.Blind identifiability of class of nonlinear instantaneous ICA models[C].Proc.EUSIPCO,Toulouse,France,2002,2:7-10
    109.A.Hyvarinen,P.Pajunen.Nonlinear independent component analysis:existence and uniqueness results[J].Neural Networks,1999,12(3):429-439
    110.C.Jutten,A.Taleb.Source separation:from dusk till dawn[C].Proc.ICA2000, Helsinki,Finland, 2000:15-26
    111.A.Taleb.A generic framework for blind source separation in structured nonlinear models[J]. IEEE Trans.Signal Processing,2002,50(8):1819-1830
    112.A.Taleb, C.Jutten. Source separation in post-nonlinear mixtures[J].IEEE Trans.Signal Processing,1999,47(10):2807~2820
    
    113.马健仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社, 2006
    
    114.J.F.Cardoso..Blind signal processing:statistical principles[C]. Proc. IEEE, 1998, 86(10):2009-2025
    115.A.J.Bell..An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995,7:1129-1159
    116.H.H.Yang..Adaptive on-line learning algorithms for blind separation:maximum entropy and minimum mutual information[J]. Neural Networks, 1999,9(67): 1457-1481
    117.T.W.Lee..A unifying information-theoretic framework for independent component analysis[J]. International Journal of Computer and Mathematics with Application, 2000,31(11):1-12.
    
    118.J.F.Cardoso..Informax and maximum likelihood for blind source separation[J].IEEE Signal Processing Letter, 1995,7:1129-1159
    119.A.Hyvarinen. Survey on independent component analysis[J]. Laboratory of Computer and Information Science, Helsinki University of Technology. PO.Box 5400, FIN-02015 HUT, Finland
    120.A.Hyvarinen, E.Oja. A fast fixed-point algorithm for independent component analysis[J].Laboratory of Computer and Information Science, Helsinki University of Technology. Rakentajanaukio 2C,02150 Espoo,Finland
    121.A.Hyvarinen.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions of Neural Networks,1999,10(3)
    122.焦卫东.基于独立分量分析的旋转机械故障诊断方法研究[D].杭州:浙江大学,2003.11
    123.T.W.Lee,M.Girolami,T.J.Sejnowski.Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources[J].Neural Computation,1999,11(2):417-441
    124.J.C.Platt,F.Faggin.Networks for the separation of sources that are superimposed and delayed[J].Advances in Neural Information Processing Systems,1991,4:730-737
    125.P.Fabry,C.Serviere.Blind separation of noisy harmonic signals using only second order statistics[J].FRANCE
    126.L.Parra,C.Spence.Convolutive Blind Separation of Non-Stationary Sources[J].IEEE Transactions on Speech and Audio Processing,2000,8(3)
    127.H.L.Nguyen..Blind source separation for convolutive mixture[J].Signal Processing,1995,45:209-229
    128.N.Charkani..Self-adaptive separation of convolutively mixed signals with a recursive structure[J].Part Ⅰ.Signal Processing,1999,73:225-254
    129.N.Charkani..Self-adaptive separation of convolutively mixed signals with a recursive structure[J].Part Ⅱ.Signal Processing,1999,75:117-140
    130.K.Torkkola..Blind deconvolution,information maximization and recursive filters[J].Proc.ICASSP,1997,3301-3304
    131.Y.Liu..Practical frequency domain ICA algorithm capable of solving permutation and gain ambiguities for digital communication system[J].Electronics Letters,2004,40(13):839-840
    132.张安清.盲分离技术及其在水声信号中的应用研究[D].大连:大连理工大学,2006,3
    133.P.Smaragdis.Blind separation of convolved mixtures in the frequency domain[J].International workshop on Independence & Artificial Neural Networks University of La Laguna,Tenerife,Spain,1998
    134.H.H.Yang,S.Amari,A.Cichocki.Information-theoretic approach to blind separation of sources in non-linear mixture[J].Signal Processing,1998,64:291-300.
    135.H.Lappalainen,A.Honkela.Bayesian nonlinear independent component analysis by multi-layer perceptrons[J].Advances in Independent Component Analysis,Springer,2000:93-121
    136.P.Pajunen.Nonlinear Independent component analysis by self-organizing maps[C].Proc.Int.Conf.on Artificial Neural Networks,Bochum,Germany,1996:815-820
    137.P.Pajunen,A.Hyvarinen,J.Karhunen.Nonlinear blind source separation by self-organizing maps[C].Proc.Int.Conf.on Neural Information Processing,Hong Kong,1996:1207-1210
    138.C.M.Bishop,N.D.Lawrence.Variational bayesian independent component analysis[J].Technical Report,Computer Laboratory,University of Cambridge,U.K.2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700