甘蔗亲本种特异DNA序列的PCR检测及原位PCR定位的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代甘蔗栽培品种是一个遗传背景复杂的多倍体,其基因组的主体成份为热带种血缘,同时,又导入不少近缘种血缘,如割手密种、印度种、大茎野生种、中国种和斑茅等。本项目采用RAPD、ISSR标记等方法筛选、克隆了一系列甘蔗亲本种特异DNA片段,并进一步转化为甘蔗种、属特异PCR标记;并结合SSR标记特点,通过设计、合成与筛选SSR引物,找出可特异扩增甘蔗亲本种、属特异DNA序列的PCR引物;进而进行亲本种特异DNA序列在甘蔗亲本种及其后代栽培种中的遗传动态分析;同时对部分甘蔗亲本种、属特异DNA序列进行了原位PCR定位研究;并进行了甘蔗种质遗传基础的ISSR分析。本研究建立了快速、准确鉴定这些特定亲本遗传成分在甘蔗基因组中的结构特征的技术体系,为甘蔗遗传分析、种质鉴定及杂交亲本选配提供新的分子细胞学试验依据与方法。
     1筛选到113条甘蔗亲本种特异DNA片段,其中割手密种特异的53条,热带种特异19条,野生种特异10条,亲本种多态性条带31条。加上前期工作中从AFLP标记中回收但尚未纯化的46条甘蔗亲本特异片段,共得159条特异DNA片段。对其中72条特异DNA片段进行测序,得到了68条片段的序列组成。
     2设计合成了122对甘蔗亲本种特异引物,以12份甘蔗亲本种基因组为模板,对引物的特异性进行筛选,筛选到4类特异PCR引物。其中割手密种特异引物29对,甘蔗属内野生种特异引物14对,斑茅种质特异引物2对,甘蔗属特异引物27对。
     3利用部分特异PCR引物对39份亲本种和57份甘蔗栽培品种(品系)进行了特异PCR检测,分析了甘蔗亲本种特异血缘在后代中的传递情况及变化动态。结果表明,本试验筛选出的各种类型的特异DNA序列,均能以不同的概率在栽培种后代中传递,10条割手密特异DNA序列在含有割手密血缘的后代中传递时,ZT51-439序列传递率最高,为95.92%,ZT61-678传递率最低,为2%;25条野生种特异DNA序列在含有野生种血缘的甘蔗栽培种质中传递时,ZT85-700序列传递率最高,为92.98%,ZT82-460传递率最低,为17.54%。这表明甘蔗不同栽培种所含的野生种血缘是不同的。另外,18条甘蔗属特异DNA序列均能100%在后代中传递。16条斑茅种特异DNA序列能在含斑茅血缘的F1及F2代中传递而且传递率均为50%。
     4利用原位PCR技术,首次对甘蔗属特异DNA序列ZT37-377、ZT40-928和割手密种特异序列ZT52-439进行了染色体定位。这些特异DNA序列大多位于甘蔗拔地拉、崖城割手密11号的多条染色体的端粒,有少数位于染色体的着丝粒区域,个别位于染色体的整条臂上,属重复序列。其中ZT37-377初步定位于崖城割手密11号的第1~12号、第14~32号共56条染色体上;ZT40-928初步定位于拔地拉的第1~11号、第13~19号、第22~32号、第34~39号共69条染色体上;ZT52-439初步定位于崖城割手密11号的第2、5~7、9~20、23、25和29号共29条染色体上。
     5对崖城割手密11号和拔地拉进行了核型分析。崖城割手密11号的染色体核型公式为2n=64=56m(2sat)+8sm,绝对长度为1.54~2.95μm,相对长度为2.23%~4.28%,19号、28号、30及32号染色体为亚中部着丝点染色体(sm),其余28对染色体为中部着丝点染色体(m),第31号染色体短臂具有随体,核型为2A。拔地拉的染色体核型公式为2n=80=80m,绝对长度1.10~3.29μm,相对长度为1.39%~4.16%,40对染色体为中部着丝点染色体(m),核型为1B型。
     6对甘蔗属多态性引物ZT67扩增产物的热带种特异序列Aso64(378bp)、割手密特异序列Asp68(545bp)及Asp70(300bp)等序列进行同源比对,初步认为该热带种特异序列与割手密特异序列(Asp68、Asp70)之间的差异主要由于序列内部部分片段的缺失或插入而造成。此外,对21条有代表性的特异DNA序列进行了可能的功能基因分析。其中2条序列与已发表的功能序列有较低的同源性,而且所代表的可能功能大多与高梁二色克隆系列有关;而其余19条序列与已发表的功能序列几乎无同源性。
     7构建了96份甘蔗种质的ISSR指纹图谱,并进行了聚类分析;斑茅的指纹与甘蔗属存在着较明显的区别。云南割手密与崖城割手密、印度割手密及华南割手密未能聚在同一支,表明了割手密野生种种内变异水平高。
Modern sugarcane cultivars(Saccharum spp.)are polyploid or aneuploid clones of complex genetic background, with major components of the genome derived from S. officinarum, and the remainder from S. spontaneum, S. barneri, S. robustum, S. sinense, and Erianthus arundinaceus. In this thesis, a series of species/genus-specific DNA fragments of parental sugarcane were screened out by RAPD and ISSR markers and then cloned. Based on the cloned specific DNA fragments, PCR markers were developed. SSR primers for detection of species/genus-specific DNA were also selected. Then the genetic dynamic states of sugarcane parental specific DNA were analyzed between parents and their progenies. A few of species/genus-specific DNA sequences were located on chromosomes by in situ PCR. And the genetic base of sugarcane germplasm was analysed by ISSR marker.The technique system which could identify the structural character of species genuis component from parent in sugarcane genome rapidly and accurately was developed. These results could be the new bases and method for the research of sugarcane genetic analysis, species identification, parental selection for hybridization and so on.
     113 bands of specific DNA fragments were screened out, including 53 specific bands of S. spontaneum, 19 bands of S. officinarum, 10 bands of wild species of Saccharum spp. and 31 polymorphic bands of parent. Integrated with 46 bands of sugarcane parents which were generated by AFLP but still not purified, there were 159 bands of specific DNA fragments. The sequences of 72 bands of specific DNA fragments were sequenced and the actual sequence compositions of 68 bands were obtained.
     Based on that 122 pairs of primers were designed and synthesized, 4 types of specific PCR primers were screened out by using 12 sugarcane parental genomes as templates, including 29 pairs of S. spontaneum, 14 pairs of wild species of Saccharum spp.,27 pairs of Saccharum spp.and 2 pairs of Erianthus arundinaceus.
     With the genomic DNA of 39 sugarcane parents and 57 cultivars were amplified with some specific PCR primers, the dynamic and transferability of sugarcane parental specific genome were analyzed. The results showed that the specific DNA fragments could recover in cultivars with different probability. Among the recovering probability of 10 specific DNA fragments from S. spontaneum, ZT51-439 was the highest with the rate of 95.92% and ZT61-678 was lowest at the rate of 2%. Fragment with the highest recovering probability of 25 specific DNA sequences from wild species of Saccharum spp. was ZT85-700 with the rate of 92.98%, while ZT82-460 was the lowest at the rate of 17.54%. 18 specific DNA fragments of Saccharum could transfer to progeny with the rate of 100%. 16 specific DNA sequences of Erianthus arundinaceus could transfer in F1 and F2 with the rate of 50%. The specific sequences ZT37-377, ZT40-928 of Saccharum genus and ZT52-439 of S.
     spontaneum were located on chromosomes of cultivar YG No.11 and Badila by using in situ PCR. The signals mainly distributed on the telomere, some on centromere and very few on whole arms. ZT37-377 was located on the 56 chromosomes of YG No.11 with No. of 1~12 and 14~32 respectively. ZT52-439 was located on only 29 chromosomes of YG No.11 with No. of 2, 5~7, 9~20, 23, 25 and 29 respectively. ZT40-928 was located on the 69 chromosomes of Badila with No. of 1~11, 13~19, 22~32 and 34~39 respectively.
     Karyotype on YG No.11 and Badila was analysed. The karyotype formula of YG No.11 was 2n=64=56m(2sat)+8sm. Its karyotype belonged to 2A type. The absolute length of chromosome was 1.54~2.95μm, while the relative length was 2.23%~4.28%. Chromosomes of No.19, 28, 30 and 32 were sub-median kinetochores, others were median kinetochores. The short arm of chromosome of No. 31 had one satellite. As to Badila, the karyotype formula was 2n=80=80m and belonged to 1B type. The absolute length of chromosome was 1.10~3.29μm, and the relative length was 1.39%~4.16%.
     The specific DNA sequences Aso64(378bp), Asp68(545bp)and Asp70(300bp), amplified by polymorphism primer ZT67, were compared by landing NCBI. The results showed the main differences between these specific DNA sequences of S. officinarum(Aso64)and S. spontaneum(Asp68,Asp70)were the deficiency or insertion of some fragments. The probable functions of 21 typical specific DNA sequences were also analyzed and it showed that 19 sequences were not congenetic to the sequence of known functions. Only 2 sequences were low congenetic to the sequences of known functions and their probable function was mostly relative to Sorghum bicolor clone SBTXS. Fingerprint of 96 sugarcane germplasm was constructed by ISSR with 7 primers and the cluster analysis of the 96 sugarcane germplasm was performed. The banding profiles of E. arundinaceus were obviously differentiated from that of Saccharum spp.. Among S. spontaneum, Yunnan spont., Yacheng spont. , Huanan spont. and Indian spont. were not clustered into one group. This indicated that variation was common and distinct in S. spontaneum.
引文
1. C.W.迪芬巴赫,G.S.徳维克斯勒著. PCR 技术实验指南. 北京:科学出版社,2000,88~116
    2. 蔡青,文建成,范源洪等. 甘蔗属及其近缘植物的染色体分析. 西南农业学报,2002,15(2):16~19
    3. 陈辉,范源洪,向余颈攻等. 从核糖体 DNA ITS 区序列研究甘蔗属及其近缘属种的系统发育关系. 作物学报,2003,29(3):379~385
    4. 陈辉,范源洪. 甘蔗遗传多样性的分子检测. 分子植物育种,2003,1(5/6):713~720
    5. 陈林娇,缪颖,陈德海. 原位 PCR 技术及其应用. 生物工程进展,2000,20(2):60~65
    6. 戴艺民,卢川北,林江波等. 福建斑茅核型分析初报. 福建农业学报,2002,17(3):148~150
    7. 邓海华,符成,李奇伟等. 斑茅 F1 杂交可育亲本选择及其回交后代鉴定和主要经济性状. 热带作物学报,2004(4):97~101
    8. 邓海华,李奇伟,陈子云. 甘蔗亲本的创新与利用. 甘蔗,2004,11(3):7~12
    9. 邓海华,廖兆周,李奇伟. 斑茅 F2 杂种选育与同工酶标记辅助选择. 甘蔗糖业,2002,(1):1~5
    10. 邓海华,周耀辉,许玉娘等. 我国主要甘蔗杂交品系血缘分析. 甘蔗糖业,1996,6:1~8
    11. 邓绍同. 现代甘蔗栽培. 广州:广东科技出版社,1992
    12. 范源洪,宿兵. DNA 提纯方法对 6 种甘蔗亚族植物 RAPD 的影响. 西南农业学报,1999,12(1):1~7
    13. 符成,邓海华,陈西文. 海南甘蔗育种场斑茅研究利用. 甘蔗糖业,2003,(6):1~5
    14. 郭歌,陈成彬,李秀兰等. 黑麦 B 染色体端粒相关序列的克隆. 植物学报,1998,40 (12) :1123~1128
    15. 洪义欢,钱凯,秦秋琳等. 东乡野生稻重复序列的克隆分析及染色体定位. 扬州大学学报(农业与生命科学版),2006,27(3):56~61
    16. 胡笳. 原位逆转录 PCR 技术检测多肽:N-乙酰氨基半乳糖转移酶 2(ppGalNAcT2)在肿瘤细胞及肿瘤组织中的差异表达. 苏州大学硕士论文,2003
    17. 黄东益,郑成木. 甘蔗染色体组构成系统演化的研究. 热带作物学报,2000,21(1):43~51
    18. 黄东益. 栽培甘蔗染色体组构成的细胞学分析与原位杂交检测的研究. 华南热带农业大学硕士论文,1999:25
    19. 黄建生,王昌才. 原位聚合酶链式反应. 生命的化学,1995,15(5):37~40
    20. 黄留玉. PCR 最新技术原理、方法及其应用. 北京:化学工业出版社,2006,194~206
    21. 黄梅,袁仕取,朱作言. 原位杂交和原位 PCR 技术在鱼类基因定位中的应用. 水生生物学报,2001,25(2):195~201
    22. 纪小龙,李晓明,林汉良等. 原位 PCR. 诊断病理学杂志,1995,2(3):172~173
    23. 贾继增. 分子标记种质资源鉴定和分子标记育种. 中国农业科学,1996,29(4):1~10
    24. 解生勇. 分子细胞遗传学. 北京:中国农业科技出版社,1998
    25. 景涧春,何予卿,黄青阳等. 水稻野败型细胞质雄性不育恢复基因的 ISSR 和 SSR 标记分析. 中国农业科学,2000,33(2):10~15
    26. 孔秀英,周荣华,董玉探等. 尾状山羊草C基因组特异重复序列的克隆. 科学通报,1999,44(8):828~832
    27. 李保云,许新娟,刘广田. 提莫菲维小麦 G 组染色体特异性 RAPD 探针的筛选. 农业生物技术学报,2002,10(4):407~408
    28. 李富生,何丽莲.蔗茅(Efianthus fulvus)的特异性状与甘蔗杂交 F1 代染色体和 DNA 鉴定研究.分子植物育种,2003,1(5/6):775~781
    29. 李富生,林位夫,何顺长. 甘蔗杂种的染色体和 RAPD 鉴定研究. 植物遗传资源学报,2005,6(1):48~52
    30. 李贵全. 细胞学研究基础. 北京:中国林业出版社,2001,82~94
    31. 李懋学,张方. 哈尔滨:东北林业大学出版社,1999,142~149
    32. 李梅芬. 水稻生物枝术育种. 北京:中国农业出版社,2001,240~247
    33. 李文红,姚建亭,王继成等. 龙须菜( Gracilaria lemaneiformis )选育品系及其野生型的 ISSR指纹分析. 海洋与湖沼,2005,36(3):241~247
    34. 李雪梅. 寡核苷酸探针原位杂交和原位RT-PCR检测石蜡切片中PRRSV方法的建立及其应用. 四川大学硕士学位论文,2005
    35. 李远华,江昌俊,余有本. 茶树叶片 ?-葡萄糖苷酶基因的原位 PCR 研究. 茶叶科学,2004,24(2):147~150
    36. 刘榜,张庆德,李奎等. 微卫星 DNA 作为遗传标记的优点及前景. 湖北农业科学,1997,2:49~52
    37. 刘守斌,唐朝晖,尤明山等. 簇毛麦基因组特异性 PCR 标记的建立和应用. 遗传学报,2003,30(4):350~356
    38. 刘守斌,唐朝晖,尤明山等. 簇毛麦染色体组特异性 RAPD 标记的筛选、定位和应用. 遗传学报,2002,29(5):453~457
    39. 刘文荣,邓祖湖,张木清等. 甘蔗斑茅的杂交利用及其杂种后代鉴定系列研究. Ⅲ 甘蔗斑茅远缘杂交后代细胞遗传分析. 作物学报,2004,30(11):1093~1098
    40. 刘志勇,孙其信,姜岚等. 利用黑麦基因组特异 PCR 标记鉴别小麦 K 型雄性不育保持系. 农业生物技术学报,1997,5(3):205~210
    41. 马琦,徐耀先,杨建琪等.用原位 PCR 方法检测培养细胞中的单拷贝 SRY 基因. 武汉大学学报(自然科学版),1998,44(2):225~228
    42. 马琦,徐耀先,张锡元.原位 PCR 技术及其应用前景. 生物化学与生物物理进展,1996,44(2):488~492
    43. 彭绍光编. 甘蔗育种学. 北京:农业出版社,1990
    44. 任南,宋运淳,毕学知等. 玉米(Zea mays L.)两个广谱抗病基因 rip 和 pal1 的原位定位. 遗传学报,1998,25(3):271~277
    45. 石金锋,贾建航,金德敏等. 紫菜无性系特异 SCAR 标记的获得. 海洋学报,2003,25(1):128~131
    46. 石金锋,贾建航,王萍等. 紫菜无性系特异分子标记的获得. 高技术通讯,2000,10(118): 1~3
    47. 苏慧慈,刘彦仿. 原位 PCR. 北京:科学出版社,1997
    48. 苏慧慈,刘彦仿. 原位 PCR 技术. 北京:科学出版社,1995
    49. 苏伟,索振河. 原位 PCR 技术. 国外医学-遗传学分册,1996,19(2):64~66
    50. 田靫,卢一凡,邓继先等. 普通小麦中间偃麦草 TAI-27 中附加染色体的显微切割及特异性探针的筛选. 中国科学(C 辑),1999,29(2):174~179
    51. 万平,刘大钧. SSR 标记与植物遗传育种研究. 安徽农业大学学报,1998,25(1):92~95
    52. 王彩虹,王倩,戴洪义等. 苹果柱型基因 Co 的一个 AFLP 标记的 SCAR 转换. 2002,29(2):100~104
    53. 王得元,李颖等. DNA 分子标记在作物杂种优势研究中的应用. 西北农业学报,1998,7(3):94~97
    54. 王春国,宋文芹. 花椰菜细胞质雄性不育基因特异 PCR 标记的筛选. 遗传,2005,27(2):236~240
    55. 王新望,赖菁茹,姚大年等. 中国春 Phl 基因的 RAPD 标记鉴定. 农业生物技术,1999,7(1):29~35
    56. 王振山,陈浩,李小兵等. 一个 AA 基因组特异的串联重复序列的克隆及其在中国普通野生稻和栽培稻中的分化特征. 植物学报,1998,40(10):906~914
    57. 文建成,蔡青,范源洪等. 甘蔗属割手密(Saccharum Spontaneum),近缘属斑茅(Sclerostachya)及河八王(Narenga)的染色体数目研究. 甘蔗糖业,2001,(3):12~15
    58. 吴文嫱,黄东益,王英等. 甘蔗栽培种崖城96/46及其近缘亲本种崖城斑茅2号的核型分析. 热带农业科学,2006,26(3):5~7
    59. 吴文嫱,黄东益,庄南生. 原位 PCR 及其在植物研究中的应用. 热带农业科学,2006,26(2):65~69
    60. 吴文嫱. 甘蔗染色体上斑茅特异 DNA 序列的原位 PCR 定位. 华南热带农业大学硕士学位论文,2006
    61. 肖凤回,李奇伟,戴耀波. 甘蔗×斑茅杂种及其双亲的农艺、工艺、植物学性状和染色体观察. 云南农业大学学报,1995,10(1):29~34
    62. 肖莎,朱新生,郭琳琅. 半套式原位 PCR 技术在非何杰金淋巴瘤 bcl-2/JH 融合基因检测中的应用. 细胞与分子免疫学杂志,1997,13(增刊 1):14~15
    63. 肖莎,朱新生,郭琳琅. 原位 PCR 防脱片方法的选择及应用. 临床与实验病理学杂志,1998,l4(1):52
    64. 许莉萍,陈如凯.与甘蔗抗黑穗病基因连锁的 RAPD 标记筛选.应用与环境学报,2004,10(3):263~267
    65. 许莉萍,林彦锉,傅华英. 甘蔗抗黑穗病性评价及品种的抗性鉴定. 福建农业大学报,2000,29(3):292~295
    66. 杨清辉,李富生,肖风回. 割手密 RAPD 指纹图谱分析. 云南农业大学学报,1998,(4):347~351
    67. 杨清辉,李富生,肖凤回等. 斑茅染色体和植物学性状观察研究. 云南农业大学学报,1997,12(4):253~256.
    68. 余爱丽,张木清,陈如凯. ISSR 分子标记在甘蔗及其近缘属分类上的应用. 福建农林大学学报(自然科学版),2002,31(4):494~489
    69. 曾华宗,郑成木,朱稳等. 甘蔗种质间亲缘关系及特异标记的RAPD分析. 植物遗传资源学报,2003,4(2):99~103
    70. 张俊卫,包满珠. 分子标记在观赏植物分类中的应用. 北京林业大学学报,1998,20 (2):85~89
    71. 张文俊,Snape J W. 分子标记技术定位黑麦 6R 染色体上的抗小麦白粉病基因. 科学通报,1995,40(20):2274~2276
    72. 张学勇,董玉探,李培. E 和 St 基因组特异 RAPD 片段在部分小麦族植物中的分布. 遗传学报,1998,25(2):131 ~141
    73. 张增艳,王丽丽,辛志勇等. 中间偃麦草染色体 2Ai-2 特异 PCR 新标记的建立和 St 基因组特异序列的克隆. 遗传学报,2002,29(7):565~570
    74. 郑成木,黄东益. 甘蔗核型变化及其祖亲种血缘构成基本特征的研究. 云南大学学报,1999,21:121~122.
    75. 郑成木,庄南生,刘鸿艳等. 甘蔗祖亲种特异 DNA 探针的构建及应用研究进展. 科学技术与工程,2002,2(6):81~83.
    76. 郑成木. 甘蔗核型及染色体数目变化的研究.热带作物学报,1993,14(1):47~51.
    77. 郑成木. 甘蔗染色质的研究.热带作物学报,1994,15(2):39~43
    78. 郑雪芳,张木清,李奇伟等. 甘蔗斑茅的杂交利用及其杂种后代鉴定系列研究(二):甘蔗斑茅远缘真实杂种的分子鉴定. 分子植物育种,2004,2(1):35~42
    79. 中国农学会遗传资源学会编. 中国作物遗传资源,1994:499~518
    80. 朱其洪,贾旭,王京兆等. 用 RAPD 方法获得与小麦 BYDV 抗性分子标记. 科学通报,1995,40(19):1799~1801
    81. 庄南生,郑成木,黄东益等. 甘蔗种质遗传基础的 AFLP 分析.作物学报,2005,31(4):444~450
    82. 庄南生,郑成木,王英等.用 AFLP 片段构建甘蔗祖亲种特异 DNA 探针.热带作物学报,2004,25(3):18~23
    83. 庄南生. 甘蔗种质遗传基础的 AFLP 分析与种属特异探针及 STS 标记的研究. 华南热带农业大学博士论文,2003
    84. Ahn S N,Bollich N,Tanksley S D. RFLP tagging of a gene for aroma in rice. Theor. Appl. Genet.,1992,84:825~828
    85. Aitken K S,Jackson P A,Mclntyre C L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar.Theor. App1. Genet.,2005,110(5):789~801
    86. Aitken K S,Jackson P A,Mclntvre C L. Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp. ) cultivar ×Saccharum officinarum population. Theor. Appl. Genet.,2006,112:1306~1317
    87. Alix K,Baurens F C,Paulet F et al. Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome,1998,41(6):854~864
    88. Alix K,Paulet F,Glaszmann J C et al. Inter-Alu-like species-specific sequences in the Saccharum complex. Theor. Appl. Genet.,1999,99(6):962~968
    89. Appels R,Moran L B,Gustafson J P. Rye heterochromatin 1. studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Can J genet Cytol.,1986,28:645~657
    90. Bagasra O,Hansen L. in situ PCR techniques. New York,1997
    91. Besse P,McIntyre C L. Isolation and characterization of repeated DNA sequences from Erianthus spp. (Saccharinae: Andropogoneae) . Genome,1998,41(3):408~416
    92. Besse P,McIntyre C L,Wilson J R et al. Isolation of an Erianthus sect. Ripidium specific ribosomal DNA spacer fragment and its usefulness for studying Saccharum ×Erianthus introgression populations. Sugar 2000 Symposium: Sugarcane: research towards efficient and sustainable production. 1996,61~63
    93. Bhat S S Gill. The implication of 2n egg gametes in nobilisation and breeding of sugarcane. Euphytica,1985,(34):377~384
    94. Blake T K,Kadyrzhanora D,Shepherd K W et al. STS-PCR markers appropriate for wheat-barley introgression. Theor. Appl. Genet.,1996,93 :826~832
    95. Bournival B,Obanni M,Abad A et al. Isolation of a new species-specific repetitive sequence from Thinopyrurm elongatum and its use in the studies of alien translocations. Genome,1994,37:97~104
    96. Bradeen J M,Simon P W. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple,codominant,PCR-based marker form. Theor. Appl. Genet.,1998,97(5-6):960 ~967
    97. Bremer G. A cytological investigation of some cultivated kinds and their parents. Genetica(The Hague). The cytology of sugarcane,1924,6:497~525
    98. Burner D M , Legendre B L. Chromosome transmission and meiotic stablity of sugarcane(Saccharum spp. )hybrid derivatives. Crop Science,1993,33(3):600~606
    99. Chai Jian-Fang,Wu Zhi-Ming,Zhao He et al. Using subtracted AFLP to efficiently mark an alien chromosome fragment in Wheat background. Acta Botanica Sinica,2003,45(4):379~383
    100. Cordeior G M,Yong-Bao Pan,Henry et al. Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Science,2003,(165):181~189
    101. Cordeior G M,Casu R,Mcityre C L et al. Microsatellite markers from sugarcane (Saccharum spp. ) ESTs cross transferable to erianthus and sorghum. Plant Science,2001,(160):1115-1123
    102. Cusdrado A,Acevedo R,Moreno Diaz de la Espina S et al. Genome remodelling in three modern S. officinarumx×S. spontaneum sugarcane cultivars. Journal of Experimental Bontany,2004,55(398):847~854
    103. D’Hont ,Grivet L,Feldmann P. Characterisation of the double structure of modern sugarcane cultivars(Saccharum spp. )by molecular eytogenetices. Mol genet.,1996,250:405~413
    104. D’Hont A,Ison D,Alix K et al. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome,1998,41(2):221~225
    105. D’Hont A,Rao P S,Feldmann P et al. Identification and characterization of sugarcane intergeneric hybrids,Saccharum officinarum×Erianthus arundinaceus,with molecular markers and DNA in situ hybridization. Theor. Appl. Genet.,1995,91:320~326
    106. Danels J,Roach B T A taxonomic listing of Saccharum and related genera. Sugarcane,1987,Spring Suppl,16~20
    107. Darlinegton C D et al. Chromosome a ties of flowing plants(2 nd Edt). Londen:George Allen and Unw in Ltd,1955,421~422
    108. Decousset L,Griffiths S,Dunford R P et al. Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L. ) . Theor. Appl. Genet.,2000,101(8):1202~1206.
    109. Dieffenbach C W ,Lowe T M J,Dveksler G S. General concepts for PCR design. PCR Methods Appl.,1993,3:530~537
    110. Dussle M,Quint M,Xu L et al. Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers. Theor. Appl. Genet. ,2002,105(8):1190~1195.
    111. Dutt N L,Rao J T. The present taxonomic position of Saccharum and its congeners. Proc 7th Cong ISSCT,1951,281~293
    112. Fang D Q,Roose M L,Krueger R R et al. Fingerprinting trifoliate orange germplasm accessions with isoymes,RFLPs and inter-simple sequence repeat markers. Theor. Appl. Genet.,1997,95:211~219
    113. Flavell R B,Bennett M D,Smith J B et al. Genome size and the proportion of repeated nucleotide sequence in plant. Biochem Genet.,1974,12:257~269
    114. Flavell R B,Dell M,Hutchinson J. Nucleotide sequence organization in plant chromosome and evidence for sequence translocation during evolution. Cold Spring Harbor Symp Quant Biol.,1981,45;501~508
    115. Flavell R. Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B,1986,312:227~242
    116. Gilda Guerra,Carmen Aceali,Pilar Castllon Astllon et al. Sugarcane straw for cellulase production by Trichoderma Citrinoviride on solid bed. International Symposium on Sustainable Sugarcane and Sugar Production Technology,2004,12:83
    117. Graham J,McNicol R J. An examination of the ability of RAPD markers to determine the relationships within and between Rubus species. TAG,1995,90(7-8):1128~1132
    118. Grassl C O. Taxonomy of Saccharum relatives:Sclerostachya,Narenga and Erianthus. Proc 7th Cong ISSCT,1972,240~248
    119. Faruqui S A,Ramachancra K S,Pathak P S. Sugarcane and its residues in animal feeding system. International Symposium on Sustainable Sugarcane and Sugar Production Technology,2004,12:82
    120. GU J. Principles and applications of in situ PCR. Cell Vision,1994,1:8~19
    121. Guidet F,Rogowsky P,Taylor C et al. Cloning and characterization of a new rye-specific repeated sequence. Genome,1991,34:81~87
    122. Haase A T,Retzel E F,Staskus K A. Amplification and detection of lentiviral DNA inside cells. Proceedings of the National Academy of Sciences of United State of America,1990,87(13): 4971~4975
    123. Hack S M,Huckett B I,Butterfield M K. Application of microsatellite analysis to the screening ofputative parents of sugarcane cross AA40. Proceedings of the Annual Congress South African Sugar Technologists' Association,2002 (76):232~234
    124. Harvey M,Botha F C. Use of PCR-based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica,1996,89:257~265
    125. Hayashi M,Nishioka M,Kitamura K et al. Identification of AFLP markers tightly linked to the gene for deficiency of the 7S globulin in soybean seed and characterization of abnormal phenotypes involved in the mutation. Breeding-Science,2000,50(2):123~129.
    126. Hoarau J Y,Ofmann B,D'Hont A et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp. )I.Genome mapping with AFLP markers. Theor. App1. Genet.,2003,(103):84~97
    127. Huang Z F,Zhang W J,Yu B L,et al. The chromosome-specific marker's screening and identification of barley 6H chromosome. Acta Genetica Sinica,2000,27(8):713~718
    128. Isaacson S H,Asher D M,Gibbs C J et al. Detection of RNA viruses in archival brain tissue by in situ RT-PCR amplification and labeled-prove hybridization. Cell Vision,1994,1:25~28
    129. Jenkin M J,Reader S M,Purdie K A et al. Detection of rDNA sites in sugarcane by FISH. Chromosome Res.,1995,3(7):444~445
    130. Johansen B . In situ PCR on plant material with sub-cellular resolution. Annals of Botany,1997,11(5):697~700
    131. Koch L,Kolvraa S,Kirsten B et al. Chromosoma,1989,98: 259
    132. Koebner R M D. Generation of PCR based markers for the detection of rye chromatin in a wheat background. Theor. Appl . Genet.,1995,90:740~845
    133. Komminoth Paul,Long Aidan A,Ray R et al. In situ polymerase chain reaction detection of viral DNA,single-copy genes,and gene rearrangements in cell suspensions and cytospins. Diagnostic Molecular Pathology,1992,1(2):85~97
    134. Kotb Attia,Hamdi E,Abd E D et al. Identification of a RAPD marker linked to male sterile genes in PTGMS hybrid rice by bulked segregant analysis. Journal of Fudan University(Natural Science),2003,42(4):525~531
    135. kwok S,kellog D E,Mckiruley N D et al. Effects of primer-template mismatches on the polymerase chain reaction:Human immunodeficiency virus 1 model studies. Nucleic Acids Res.,1990,18:999~1005
    136. Lee J H,Graybosch R A,Kaeppler S M et al. A PCR assay for detection of a 2RL/ 2BS rye-wheat chromosome translocation. Genome,1996,39:605~608
    137. Lewis F. An approach to in situ PCR. Foster City:PE Applied Biosystems,1996
    138. Lima M L A ,Garcia A A F,Oliveira K M et al. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp. ). Theor. and Appl. Gene.,2002,104(1):30~38.
    139. Li W L,Chen P D,Qi L L et al. Isolation,characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theor. Appl. Genet.,1995,90:526~533
    140. Li X,Gardner D R,Ralphs M H et al. Development of STS and CAPS markers for identification of three tall larkspurs (Delphinium spp. ). Genome,2002,45(2):229~235
    141. Liu Z Y,Sun Q X,Ni Z F et al. Development of SCAR markers linked to the Pm21 gene conferring resistance to the powdery mildew in common wheat. Plant Breeding,1999,118:215~219
    142. Lima M L A ,Garcia A A F,Oliveira K M et al. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp. ). Theor. and Appl. Gene.,2002,104(1):30~38.
    143. Long A A,Komminoth P,Lee E et al. Comparison of indirect and direct in-situ polymerase chain reaction in cell preparations and tissue sections. Detection of viral DNA,gene rearrangements andchromosomal translocations. Histochemistry,1993,99(2):151~162
    144. Malek B von,Weber W E,Debener T. Identification of molecular markers linked to Rdr1,a gene conferring resistance to blackspot in roses. Theor. Appl. Genet.,2000,101(5-6):977~983
    145. McClean P E,Lee R K,Otto C et al. Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L. ). J Hered,2002,93(2):148~152
    146. Meksem K,Ruben E,Hyten D et al. Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics,2001,265(2):207~214
    147. Mercier B,Gaucher C,Feugeas O et al. Nucleic Acids Reserch,1990,18:5908
    148. Millan T,Osuna F,Cobos S et al. Using RAPD to study phylogenetic relationships in Rosa. TAG,1996,92(2):273~277
    149. Murayama S,Habuchi T,Yamagishi H et al. Identification of a sequence-tagged site (STS) marker linked to a restorer gene for ogura cytoplasmic male sterility in radish (Raphanus sativus L. ) by non-radioactive AFLP analysis. Euphytica,2003,129 (1): 61~68.
    150. Naik S,Gill K S ,Rao V S et al. Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor. Appl. Genet.,1998,97(4):535 ~540Nair N V,Selvi A,Sreenivasan T V et al. Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica,2002,127(2):219~225
    152. Negi M S,Devic M,Delseny M et al. Identification of AFLP fragments linked to seed coat colour in Brassica junceaand conversion to a SCAR marker for rapid selection. Theor. Appl. Genet. ,2000,101:146~152.
    153. Nei M,Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci.,USA,1979,76:5269~5273
    154. Obara M,Matsunaga S,Nakao S et al. A plant Y chromosome-STS marker encoding a degenerate retrotransposon. Genes Genet Syst,2002,77(6):393~398
    155. Olson M L,et al. A common language for physical mapping of the human genome. Science,1989,245:1434~1435
    156. Pan Y B,Burner D M,Legendre B L. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetics,2000,108(3):285~295.
    157. Pan Y B,Burner DM,Legendre B l et al. Molecular marker-assisted sugarcane breeding. Proceedings of the Inter American Sugar Cane Seminar,Crop Production and Mechanization,Miami,Florida,USA,1998,31~37 (En),296~303
    158. Paran I,Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet.,1993,85:985~993
    159. Parker G D,Langridge P. Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L. ). Molecular Breeding,2000,6 (2):169~174.
    160. Parsons B J,Newbury H J,Jackson M T et al. Constrasting genetic diversity relationships are revealed in rice (Oryza Sativa L. ) using different marker types. Mol Breed,1997,3:115~125
    161. Pinto L R,Oliveira K M,Ulian E C et al. Survey in the sugarcane expressed sequence tag database (SUCEST)for simple sequence repeats. Genome,2004,47(5):795~804
    162. Piperidis G,Mandy J,Christopher B J et al. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome,2000,43 (6):1033~1037
    163. Prins R,Groenewald J Z,Marais G F et al. AFLP and STS tagging of Lr19,a gene conferring resistance to leaf rust in wheat. Theor. Appl. Genet.,2001,103(4):618~624
    164. Rayburn A L,Gill B S. Molecular evidence for the origin and evolution of chromosome 4A in polyploidy wheats. Can. J. Genet. Cutol.,1985,27:246~250
    165. Reamon-Buttner S M,Jung C. AFLP-derived STS markers for the identification of sex in Asparagus officinalis L. Theor. Appl. Genet.,2000,100:432-438
    166. Rojas M R,Jiang H,Salati R et al. Functional analysis of proteins involved in movement of the monopartite begomovirus,Tomato Yellow Leaf Curl Virus. Virology,2001,291(1):110~125
    167. Sanchez A C,Brar D S,Huang N et al. Sequence tagged site marker-assisted selection for three bacterial blight resistance gene in rice. Crop Sci.,2000,40:92~797
    168. Sardesai N,Kumar A,Rajyashri K et al. Identification and mapping of an AFLP marker linked to Gm7,a gall midge resistance gene and its conversion to a SCAR marker for its utility in marker aided selection in rice. Theor. Appl. Genet.,2002,105 (5):691~ 698.
    169. Selvi A,Nair N V,Balasundaram N et al. Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome,2003,46:394~403
    170. Seo Y W,Jang C S,Johnson J W. Development of AFLP and STS markers for identifying wheat-rye translocations possessing 2RL. Euphytica,2001,121 (3): 279~287.
    171. Smith P,Koebner R,Boyd L. The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro. Theor. Appl. Genet.,2002,104(8):1278~1282
    172. Smith-Norowitz T,Zevallos E,Aaderson V et al. Modified in situ PCR-hybridization procedure. Cell vision,1994,1:84
    173. Soleimani V D,Baum B R,Johnson D A. Identification of Canadian durum wheat [Triticum turgidum L. subsp. durum(Desf. )Husn. ] cultivars using AFLP and their STS markers. Canadian Journal of Plant Science,2002,82(1):35~41
    174. Sreenivasan T V,Ahloowalia D S et al. Sugarcane Improvement through Breeding. Cytogenetides. In D J Hei(ed). Elsevier New York,1987,211~253
    175. Staginnus C,Winter P,Desel C et al. Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea(Cicer arietinunz L. )genome. Plant Mol Biol,1999,39:1037~1050
    176. Stebbins G L. Chromosmal evolution in higher plants. London:Edward Amold,1971
    177. Takamizo T,Spangenberg G,Suginobu K I et al. Intergeneric somatic hybridization in Gramineae; somatic hybrid plants between tall fescue (Festuca arundinacea Schreb)and Italian ryegrass(Lolium multiflorum Lam. ). Mol Gen Genet,1991,231:1~6
    178. Talbert L E,Bruckner P L,Smith L Y et al . Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor. Appl. Genet.,1996,93 :463~467
    179. Tomita M,Nakata N,Yasummure Y. Eco 01091 repeated DNA families specific to the genome of rye,Secale cereal L. In;Li Z S and Xin Z Y (eds) Proc 8th Int Wheat Genet sytrip. China Agricultural Scientech Press,Beijing,China,1993,789~791
    180. Vos P B,Bleeker R et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res.,1995,23:4407~4414
    181. Welsh J,McClell M. Fingerprinting genomes using PC R with arbitrary primers. Nucleic Acids Res,1990,18(24):7213~7218
    182. Williams C E M,Wang B,Holsten T E et al. Markers for selection of the rice Xa21 disease resistance gene. Theor. Appl. Genet.,1996,93:1119~1122
    183. Williams J G K,Kubelik A R,Livak K J et al. DNA polymorphisms amplified by arbitrary primers are useful as agenetic markers. Nucleic Acids Res.,1990,18(22):6531~6535
    184. Xu M L,Huaracha E,Korban S S et al. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome. 2001,44(1): 63~70.
    185. Xu M,Korban S S. AFLP-derived SCARs facilitate construction of a 1.1Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant Mol. Biol.,2002,50(4-5):803~818.
    186. Zanke C,Hemleben V. A new Solanum satellite DNA containing species-specific sequences which can be used for identification of genome parts in somatic hybrids of potato. Plant Science(Limerick),1997,126(2):185~191
    187. Zehbel L et al. In situ 3 S R. Cell Vision,1994,1:46~47
    188. Zietkiewicz E,Rafalski A,Labuda D. Genomic fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176~183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700