端粒酶和PinX1基因在食管癌中的表达及生物学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:食管癌(esophageal carcinoma, EC)是全世界最常见的消化道恶性肿瘤之一,我国的食管癌发病率较高,河北省磁县更是食管癌的高发区,严重影响着人们的生活质量和生命健康。端粒、端粒酶在肿瘤细胞的永生化和演进中扮演重要角色。端粒酶的激活可以导致细胞无限制地增殖和肿瘤的发生。端粒(telomere)作为分子钟控制着人类细胞的复制与衰老,与细胞的寿命密切相关。正常细胞每次分裂,端粒DNA长度会缩短55~200 bp,经历多次分裂后缩短至其下限时,细胞最终凋亡或死亡。端粒酶(telomerase)是一种以自身RNA为模板的逆转录酶,其核心组分之一端粒酶逆转录酶(human telomerase reverse transcriptase , hTERT)是端粒酶发挥活化作用的重要途径,它的表达调控在端粒酶活性调节中起关键作用,是细胞呈现端粒酶活性的决定因素。已有大量研究发现,在恶性肿瘤的发生中存在有端粒DNA长度的缩短,并且端粒酶的激活维持了大多数组织的端粒长度,抵消了细胞分裂导致的端粒DNA消耗。说明端粒缩短在恶性肿瘤的演变中起重要作用。已有大量研究表明,人体正常细胞除少量细胞如精原细胞、胚胎细胞、干细胞外,大多数细胞的端粒酶几乎都是无活性的,而与之相反在绝大多数恶性肿瘤中端粒酶活性高表达,表达率高达90%以上。因此端粒酶的活化可能是恶性肿瘤发生发展的多种基因改变中起到了至关重要的作用,并且可以作为最具普遍性和特异性的肿瘤分子标记物,在肿瘤的诊断和治疗中具有重要的地位。而抑制端粒酶的活性,将有可能阻止肿瘤细胞恶性增殖,这种特性使端粒酶成为当今肿瘤诊治研究的热点。
     本实验利用了多项实验方法检测端粒DNA长度、端粒酶hTERT蛋白含量及细胞内DNA含量在食管癌高发区现场人食管癌、异型增生及正常食管的表达,探讨与食管癌发生及生物学行为的关系,试图为食管癌的早期诊断提供客观参考指标,并为揭示食管癌的发生、发展的机制提供理论依据。采用端粒重复序列扩增反应(TRAP)-ELISA和TRAP -银染法半定量技术,检测食管癌及异型增生组织中端粒酶活性的表达,探讨端粒酶活性与食管癌发生发展及其与临床病理因素的关系。
     PinX1基因作为端粒酶的内源性抑制基因,近年来被认为是一种潜在的抑癌基因,其表达可能与多种肿瘤的发生发展有关。有实验证实在胃癌、大肠癌及白血病患者中PinX1表达明显下降,端粒酶活性增强。但是也有研究显示PinX1在肝癌细胞中的表达与正常组织无显著差异,而与之相应的是此类肿瘤中大部分端粒酶活性也增强。目前PinX1基因在肿瘤细胞中的作用和对端粒酶活性的调控及在细胞癌变中的机制尚不十分清楚。有关PinX1基因在食管癌中的研究国内外也鲜有报道。PinX1基因的作用越来越引起人们的重视,但到目前为止,PinX1基因在食管癌中生物学意义、作用机理国内外的报道很少,并且没有适合研究PinX1基因的食管癌细胞模型。由于基因转染已经成为治疗肿瘤等基因表达异常的有效手段,那么,通过外源性过表达PinX1基因能否抑制食管癌细胞的增殖?是否可以抑制端粒酶活性?本实验中利用多项技术,应用细胞模型研究PinX1在人食管癌、异型增生组织及正常食管组织中的表达,探讨PinX1与食管癌发生发展及与食管癌临床分期、病理分型及预后的相关性,并分析与端粒酶活性表达的相关性。研究转染PinX1基因前后细胞增殖凋亡等的变化,初步了解该基因对食管癌细胞的生物学影响。同时我们应用TRAP-ELISA和TRAP-银染法检测转染前后Eca109细胞端粒酶活性的变化,进一步探讨PinX1基因与端粒酶的关系。
     方法:
     1端粒DNA长度及端粒酶hTERT在食管癌高发区人群中的表达及生物学意义
     收集采集自河北省磁县食管癌高发区现场的咬检组织1000例,所有患者未接受过化疗和放疗。从中选取130例,根据病情分为3组,第1组为正常食管组织36例,第2组为异型增生组织50例,第3组为食管鳞癌组织44例。经病理组织学诊断,50例异型增生食管粘膜组织中,22例为轻度增生组织,28例为重度增生组织;44例食管鳞状细胞癌中,20例为高分化鳞癌、11例为中分化鳞癌,13例为低分化鳞癌,25例侵及纤维膜及周围软组织,19例未侵及纤维膜;20例为淋巴结转移,24例为无淋巴结转移。采用流式细胞术方法(flow cytometry, FCM)和免疫组织化学方法(immunohistochemistry, IHC)检测测端粒DNA长度、端粒酶hTERT蛋白含量及细胞内DNA含量在食管癌高发区现场人食管癌、异型增生及正常食管的表达,分析与食管癌发生及与临床病理特征的关系。
     2食管癌中的端粒酶活性和PinX1的表达及其生物学意义
     收集食管鳞状细胞癌手术切除标本130例,每例标本分别取癌组织、癌旁组织(距癌边缘2-5cm)及手术切缘正常食管粘膜(距癌边缘5cm以上)。从中选取50例食管鳞状细胞癌、异型增生及正常食管粘膜组织。经病理组织学诊断,50例食管鳞状细胞癌,39例为高中分化鳞癌,11例为低分化鳞癌,34例侵及纤维膜,16例未达到纤维膜,17例淋巴结转移,33例未转移。采用逆转录聚合酶链反应(reverse transcription-polymerase chain reaction, RT-PCR)、流式细胞术方法(flow cytometry, FCM)、TRAP-ELISA和TRAP-银染法检测食管癌组织、异型增生、正常粘膜组织中端粒酶活性和PinX1基因和蛋白的表达,分析端粒酶活性和PinX1表达与食管癌临床病理特征的关系。
     3基因转染PinX1对食管癌Eca109细胞增殖和凋亡以及端粒酶活性的影响
     利用分子生物学技术构建pCDNA3.1(+)-PinX1重组质粒。采用脂质体转染方法将pCDNA3.1(+)-PinX1重组质粒转染Eca109细胞,同时也设置空载体pCDNA3.1转染组。转染72小时后用G418进行稳定转染细胞的筛选,筛选出来的阳性细胞分别命名为Eca109/PinX1、Eca109/pCDNA3.1细胞。
     应用激光共聚焦方法测定转染效率,MTS方法检测过表达PinX1对Eca109/ PinX1、Eca109/pCDNA3.1、Eca109细胞生长抑制作用。FCM方法检测细胞生长周期和细胞凋亡。RT-PCR、FCM、Western-blot方法检测Eca109/PinX1、Eca109/pCDNA3.1、Eca109细胞中PinX1基因及蛋白的表达,TRAP-ELISA和TRAP-银染法检测端粒酶活性在细胞中表达。
     结果:
     1端粒DNA长度及端粒酶hTERT在食管癌高发区人群中的表达及生物学意义
     FCM检测端粒长度结果显示,端粒DNA长度在食管癌组织中表达量与正常食管组织相比明显缩短,在食管正常组织、异型增生组织、癌组织的表达量呈现逐渐降低趋势(P<0.01);端粒DNA长度在食管轻度增生、重度增生之间呈逐渐降低趋势,重度增生组与轻度增生组相比明显缩短(P<0.01),轻度增生组与正常组比较无显著性差异(P>0.05)。随着细胞学分级增高,端粒DNA长度Q-FISH值逐渐降低,端粒DNA长度与细胞学分级呈负相关(r=-0.79, P <0.01)。
     FCM检测端粒酶hTERT基因蛋白含量,在癌、重度增生、轻度增生和正常食管的FI值分别为1.84±0.21、1.39±0.24、1.13±0.19和0.87±0.18,癌组hTERT含量高于重度增生组(P <0.01)、重度增生组高于轻度增生组(P<0.01),轻度增生组与正常组相比无显著性差别。随着细胞学分级增高, hTERT的FI值随之升高, hTERT蛋白含量与细胞学分级呈正相关关系(r=0.83, P<0.01)。根据FI值>1.0为阳性表达的判断标准,轻度增生组、重度增生组和癌组hTERT蛋白阳性表达率分别为68.18%、92.86%和95.45%,重度增生组和癌组的表达率都高于轻度增生组(P<0.01)。
     FCM检测正常组、轻度增生组、重度增生组和癌组细胞DNA含量,DI值分别为1.03±0.34、1.06±0.28、1.17±0.25和1.54±0.37,正常组、轻度增生组和重度增生组的DI值呈上升趋势(P>0.05),癌组的DI值明显高于重度增生组。DI值与细胞学分级正相关(r=0.62, P<0.01);正常组、轻度增生组、重度增生组和癌组DNA异倍体率分别为11.11(4/36)、9.09(2/22)、28.57(8/28)和81.82(36/44),癌组异倍体率高于重度增生组(P<0.01),重度增生组高于轻度增生组(P<0.05);从正常组到癌组PI值分别为10.98±4.11、14.15±4.76、18.97±5.27和28.79±5.47,随着细胞学分级的升高,PI值增大,癌组显著高于重度增生组(P<0.01),重度增生组高于轻度增生组(P<0.05)。PI值与细胞学分级正相关(r=0.64, P<0.01)。
     130例食管样本的DI值与PI值高度正相关(r=0.76, P<0.01);端粒长度Q-FISH值与端粒酶hTERT蛋白FI值负相关(r=-7.49, P<0.01);端粒Q-FISH值与DI值负相关(r=-0.41, P<0.01)。
     IHC结果显示:端粒酶hTERT蛋白阳性颗粒呈棕黄色,阳性物质全部位于上皮细胞和癌细胞的核内。在异型增生组织,端粒酶hTERT蛋白的阳性表达部位主要集中在基底细胞层及其上方的细胞核内,随着食管黏膜上皮增生程度的加重,hTERT阳性细胞逐渐增多,阳性细胞带上移。正常食管粘膜组织中阳性表达率为11.1%(4/36),异型增生组织和癌组织hTERT蛋白阳性表达率分别为44.0%(22/50)和86.37%(38/44)。三者阳性率比较,癌组织显著高于异型增生组织(P<0.01),异型增生组织高于正常上皮组织(P<0.01)。
     2食管癌中的端粒酶活性和PinX1的表达及其生物学意义
     端粒酶活性检查结果显示,在食管癌、异型增生和正常食管组织中,阳性表达率分别为84.0%、62.0%及6.0%,食管癌及异型增生组织与正常食管粘膜比较具有显著统计学差异(P<0.05)。端粒酶活性的平均A值分别为食管癌组织1.457±0.838、食管异型增生组织0.429±0.346和正常食管粘膜组织0.073±0.039。三组间两两比较端粒酶活性的平均A值均存在高度显著统计学差异(P<0.05)。按正常食管粘膜组织、食管异型增生组织和食管鳞癌组织的序列,端粒酶阳性表达率和平均A值依次明显增高。食管癌组织中端粒酶阳性表达率与组织学分级和淋巴结转移无关,而端粒酶活性的平均A值与组织学分级和淋巴结转移有关;食管癌组织中端粒酶阳性表达率及端粒酶活性的平均A值与其他临床病例因素如年龄、性别和浸润深度等无关。
     RT-PCR及FCM检测PinX1结果显示,PinX1 mRNA及蛋白在食管癌组织中表达均显著低于食管正常粘膜(P <0.01),在食管正常粘膜、异型增生、癌组织之间呈现逐渐降低趋势(P <0.05)。食管癌组织中,PinX1 mRNA和蛋白与分化程度、浸润深度及有无淋巴结转移密切相关(P <0.05),与性别和年龄无明显相关(P >0.05)。食管癌组织中端粒酶活性表达与PinX1蛋白表达呈负相关性(rs =-0.883,P=0.000)。
     3基因转染PinX1对食管癌Eca109细胞增殖和凋亡以及端粒酶活性的影响
     应用脂质体转染方法,将pCDNA3.1(+)-PinX1重组质粒及空载体pCDNA3.1成功转染入Eca109细胞中,并应用G418成功筛选出稳定转染细胞,转染pCDNA3.1- PinX1重组质粒与空载体pCDNA3.1的阳性克隆细胞分别记为Eca109/ PinX1、Eca109/pCDNA3.1细胞。
     MTS法测定增殖情况结果显示,转染PinX1基因后,Eca109细胞生长明显减慢(P<0.05);而Eca109细胞与仅转染入空载体的Eca109细胞生长比较,两者无明显差异(P>0.05)。
     FCM测定细胞生长周期实验结果显示,转染PinX1基因的Eca109细胞的G_0/G_1期细胞数(%)为70.58±5.26,明显高于未转染或仅转染空载体的食管癌Eca109细胞的G_0/G_1期细胞数(%)(分别为53.14±4.83及47.27±3.73)(P<0.05)。说明转染PinX1基因后,细胞的增殖明显变慢,细胞生长阻滞于G_0/G_1期(Fig. 3-9)。
     FCM测定细胞凋亡实验结果显示,流式细胞仪检测细胞凋亡表明:转染PinX1基因的Eca109细胞的凋亡率(%)为23.28±5.73,明显高于未转染或仅转染空载体的食管癌Eca109细胞的凋亡率(%)(分别为0.27±0.18及3.40±1.09)(P<0.05)。说明转染入PinX1基因后,细胞发生早期凋亡改变。RT-PCR、Western-blot和FCM检测结果显示,Eca109/ PinX1细胞中PinX1 mRNA和蛋白表达水平较Eca109/pCDNA3.1、Eca109细胞显著升高(P <0.05)。
     细胞端粒酶活性的检测结果显示,转染PinX1基因后,细胞端粒酶活性明显降低(P<0.05)。
     转染前后Eca109中端粒酶活性表达与细胞增殖指数(PI)表达呈正相关性(rs=0.451,P=0.000)。
     结论:
     1端粒DNA长度在食管癌前细胞及癌细胞中明显缩短,并且随病变程度加重而递减。端粒酶hTERT、细胞内DNA含量和PI值在食管上皮癌变发生中明显递增,提示食管癌变与三者密切相关。端粒DNA长度、端粒酶hTERT在食管癌前病变早期即出现变化,可以做为监测食管癌发生发展的参考指标。端粒酶hTERT与食管癌的临床病理特征无关,不能做为食管癌病人预后的指标。端粒缩短、端粒酶hTERT高表达都与食管癌变密切相关,有望以上述二者为靶点指导抗肿瘤的基因治疗。
     2食管癌及异型增生组织中存在端粒酶活性表达,并存在量的差异。端粒酶活性在异型增生即呈现高表达,随着病变的加重,端粒酶活性依次显著增高,提示端粒酶参与了食管癌的发生与发展,端粒酶的激活是食管癌的早期事件。端粒酶可望成为食管癌的病情监测及早期诊断的生物学指标。端粒酶活性A值与食管癌的组织学分级和淋结转移有关,提示食管癌端粒酶活性A值可作为判断疗效和评价预后的指标。PinX1在食管癌组织中表达显著低于食管正常组织,在食管正常组织、异型增生组织、癌组织之间呈现逐渐降低趋势。PinX1在食管癌中表达和病理分级呈负相关,分级越高,PinX1表达越低。浸润深度达到纤维膜者、有淋巴结转移者的PinX1表达要低于浸润深度未达到纤维膜者、无淋巴结转移者。认为PinX1是一种潜在的食管癌相关基因,检测PinX1的表达水平可能对评价食管癌恶性程度、转移潜能和预后评估有重要的临床价值。食管癌组织中端粒酶活性与PinX1表达呈显著负相关性,证实PinX1抑制端粒酶活性。
     3首次应用脂质体转染方法建立食管癌细胞株Eca109/PinX1,目前国内外文献尚未见相关报道。Eca109细胞转染PinX1基因后,细胞的增殖明显变慢,细胞生长阻滞于G_0/G_1期,细胞发生早期凋亡改变。Eca109细胞转染PinX1基因后,端粒酶活性明显降低,并且端粒活性与细胞增殖指数呈显著正相关,考虑在食管癌细胞中PinX1基因通过降低端粒的活性,减弱细胞的增殖,有望成为食管癌治疗的分子靶点。
Objectives:Esophageal carcinoma is one of the most common malignant gastrointestinal tumors. Telomeres are repetitive DNA sequences at the ends of linear chromosomes that are essential for chromosome protection and genomic stability, which play the key role in human cell replication and aging. Shortening of telomeres is associated with each round of cell division and eventually results in the cells apoptosis or death. Once telomeres are short, cells enter an irreversible growth arrest state called replicative senescence. So maintenance of telomere length is important in preventing the consumption of telomere DNA during cell division. Telomerase, a cellular reverse transcriptase, helps stabilize telomere length in human stem, reproductive and cancer cells by compensating this progressive telomere attrition through de novo addition of TTAGGG repeats to the chromosome ends. Among telomerase, the human telomerase reverse transcriptase (hTERT) is one of core components and plays a key role in the activation of telomerase. Though telomerase is considered to be necessary for the indefinite proliferation of human cells, several lines of studies show high level expressions of telomerase are found in tumor, which implicate that activation of telomerase plays a key role in the malignant transformation process. Since most cancers express telomerase, this indicates that telomerase-induced telomere length manipulations may have utility for tissue engineering to malignant proliferation and involve in cancer development. Inhibition of telomerase results in gradual erosion of telomeres followed by cessation of proliferation or apoptosis, and thus may be a promising target for cancer therapy.
     As the endogenous suppressor genes of telomerase, PinX1 is regarded as one of potential tumor suppressor genes and involves in variety of tumor development. Recent reports showed that expression of PinX1 was obviously decreased and telomerase activity was enhanced in gastric carcinoma, colorectal cancer and leukemia. But it was also reported that there was no significant difference in the expression of PinX1 in the hepatumo tissues compared to that in normal control tissues, while high telomerase activity was found in the hepatumo tissues. Those contradictious researches showed the exact role of PinX1 genes in regulation of telomerase activity in tumor cells is still unclear. So it is also unclear whether PinX1 inhibits telomerase activity and/or suppresses tumor cell proliferation. It is achieved to set up an esophageal cancer cells model to get insight into the functions of PinX1 gene in regulating the telomerase activity. The development of telomerase inhibitors as therapeutic agents has become new method for cancer therapy and the study of PinX1 in esophageal cancer cells will contribute to the advanced therapeutic schemes.
     In order to explore the role of telomere and telomerase in carcinogenesis of esophageal epithelium, the telomere length and the expression of hTERT protein in esophageal carcinoma and atypical hyperplasia were measured by FCM and IHC. Meanwhile, telomerase activity of esophageal carcinoma and atypical hyperplasia tissues was further detected by TRAP- argentation. Relationship between telomere length and telomerase activation and esophageal carcinoma clinical pathological features was analyzed to explore the involvement of telomere and telomerase in carcinogenesis of esophageal epithelium.
     In order to explore the role of PinX1 in carcinogenesis of esophageal epithelium and in inhibiting telomerase activation, the expression of PinX1 in esophageal carcinoma and atypical hyperplasia were measured by FCM and IHC and the proliferation and apoptosis of Eca 109 cells transfected with Exogenous PinX1 were assessed by RT-PCR, FCM and Western blot. Meanwhile, telomerase activity of Eca 109 cells transfected with PinX1 was further detected by TRAP- argentation.
     Methods:
     1 Expression of length of telomere DNA and hTERT in high-risk area of esophageal carcinoma and related biology significance
     esophageal carcinoma tissues from the patients without chemotherapy and radiotherapy from esophageal carcinoma high-risk area of China were collected in this study. All the specimens were verified by pathologic diagnosis, 44 cases of esophageal squamous cell carcinoma (ESCC), 50 dysplasia of esophageal squamous epithelium and 36 normal esophageal mucosa. 44 ESCC tissues included well (n=20) and moderately differentiated ESCC (n=11), poorly differentiated ESCC (n=13), fibrous membrane invasion (n=25), fibrous membrane untouched (n=19), lymph node metastasis positive (n=20), lymph node metastasis negative (n=24). 50 dysplasia of esophageal squamous epithelium included 22 cases of mild dysplasia and 28 cases of severe dysplasia. The telomere length and the expression of hTERT protein in esophageal carcinoma and atypical hyperplasia were measured by flow cytometry (FCM) and immunohistochemistry (IHC). Relationship between their expressions and clinical pathological features was analyzed.
     2 Expression of telomerase activity and PinX1 in esophageal carcinoma and related biology significance
     Esophageal carcinoma tissues, paired adjacent mucosa (2~5cm from margin of esophageal carcinoma), and paired normal mucosa (at least 5cm from margin of esophageal carcinoma) were obtained from resected surgical specimens of esophageal squamous cell carcinoma (ESCC). All the specimens were verified by pathologic diagnosis, 50 cases of esophageal squamous cell carcinoma, dysplasia of esophageal squamous epithelium and normal esophageal mucosa were selected from 130 specimens. 80 ESCC tissues included well and moderately differentiated ESCC (n=39), poorly differentiated ESCC(n=11) ; fibrous membrane invasion(n=34), fibrous membrane untouched(n=16); lymph node metastasis positive(n=17), lymph node metastasis negative(n=33). PinX1 gene and protein expression in 50 resected surgical specimens of esophageal carcinoma, dysplasia of esophageal squamous epithelium and normal esophageal mucosa were detected by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and flow cytometry(FCM). Telomerase activity was detected by transcription-polymerase chain reaction- argentation (TRAP- argentation). Relationship between their expressions and clinical pathological features was analyzed.
     3 Effects of PinX1 gene on the proliferation and apoptosis and telomerase activity of esophageal cancer cell
     We clone the whole length of PinX1 gene from gene bank and ligate the whole length of PinX1 gene to the pCDNA3.1 vector to construct the custom-crafted plasmid pCDNA3.1- PinX1. The positive clones pCDNA3.1- PinX1 was transfected to Eca109 cells and positive cell clones were selected with G418 after transfected 72h. Eca109 cell transfected with pCDNA3.1 as control group. Eca109 cell transfected with pCDNA3.1- PinX1 and pCDNA3.1 was named Eca109/ PinX1 and Eca109/pCDNA3.1 cell respectively.
     Transfected rate was investigated by laser confocalmicroscopy and the effect of PinX1 on the growth of Eca109/ PinX1, Eca109/pCDNA3.1 as well as Eca109 cells was detected by MTS. The expression of PinX1 mRNA and protein in transfection Eca 109 cells were investigated by RT-PCR, FCM as well as Western-blot. The changes of telomerase activity in Eca109/ PinX1, Eca109/pCDNA3.1 as well as Eca109 cells were measured by TRAP- argentation. Results:
     1 Expression of length of telomere DNA and hTERT in high-risk area of esophageal carcinoma and related biology significance Value of Q-FISH was detected by FCM in normal esophageal epithelium group, mild dysplasia group, severe dysplasia group and cancinoma group. Value of Q-FISH in cancinoma group was higher than that in severe dysplasia group (P<0.01), severe dysplasia group was higher than mild dysplasia group (P<0.01). There was a negative correlation betwen telomere length and cytologic grade(r=-0.79, P<0.01).
     FI value of hTERT in normal esophageal epithelium group, mild dysplasia group, severe dysplasia group and cancinoma group was 0.87±0.18, 1.13±0.19, 1.39±0.24 and 1.84±0.21. FI value of hTERT in cancinoma group was higher than that in severe dysplasia group (P<0.01), severe dysplasia group was higher than mild dysplasia group (P<0.01). FI value of hTERT was positive related with cytologic grade(r=0.84, P<0.01); According to the standard: value of FI>1.0 was positive, expreesing rate of hTERT portain was 68.18%、92.86% and 95.45% in groups of mild dysplasia, severe dyaplsia and carcinoma. expressing rate in cancinoma group and severe dysplasia group were higher than that in mild dysplasia group (P<0.01).
     From normal group to cancinoma group value of DI (DNA Index) was 1.03±0.34, 1.06±0.28, 1.17±0.25 and 1.54±0.37. DI value in cancinoma group was higher than that in severe dysplasia group (P<0.01), severe dysplasia group was higher than mild dysplasia group (P<0.01). There was positive correlation betwen value of DI and cytologic grade (r=0.62, P<0.01). With the cytologic grade progressing value of PI (proliferation index) increased, value of PI (28.79±5.47) in cancinoma group was higher than that (18.97±5.27) in severe dysplasia group. Value of PI was positive related with cytologic grade (r=0.64, P<0.01).
     There was show significant positive correlation betwen value of DI and PI(r=0.76, P<0.01), and negative correlation between Q-FISH value of telomere and FI value of hTERT(r=-7.49, P<0.01), as well as Q-FISH value of telomere vs. value of DI(r=-0.41, P<0.01).
     The expression of hTERT located in nucleus of esophageal epithelial cells and cancerous cells by Immunohistochemistry staining. The positive rate of hTERT in incisal margin normal tissue was 11.1%(4/36), and those in para-tumorous dysplasia tissues and cancinoma were 44.0%(22/50) and 86.37%(38/44), there was instinct difference of positive expression among them (P<0.01). Expression of hTERT had no relationgship observed with age, gender, differentation grade, lymph node matastasis and invasive degree of patients (P>0.05).
     2 Expression of telomerase activity and PinX1 in esophageal carcinoma and related biology significance
     The positive rate of telomerase activity were 84%,62% and 6% respectively in 50 resected surgical specimens of esophageal carcinoma, dysplasia of esophageal squamous epithelium and normal esophageal. Telomerase activity in esophageal cancer tissues and dysplasia of esophageal squamous epithelium were significantly higher than that in normal tissues (P<0.05).The A value of telomerase activity were 1.457±0.838, 0.429±0.346 and 0.073±0.039 in 50 resected surgical specimens of esophageal carcinoma, dysplasia of esophageal squamous epithelium and normal esophageal (P<0.05). The A value of telomerase activity was related to the tumor tissue grade and lymph no demetastasis (P<0.05, P<0.01), but not to other clinicopathological features in ESCCS (P>0.05).
     The expression of PinX1 mRNA and protein in esophageal cancer tissues were significantly lower than that in normal tissues (P<0.01). In esophageal cancer tissues, there were no difference in the expression of PinX1 mRNA and protein between age and gender (P>0.05), but the expression of PinX1 in poorly differentiated, fibrous membrane invasion and lymph node metastasis positive ESCC were significantly lower than that in well and moderately differentiated, fibrous membrane untouched and lymph node metastasis negative tissues (P<0.05).
     There was significant negative correlation between telomerase activity expression and PinX1 protein expression (rs =-0.883,P=0.000).
     3 Transfection of PinX1 gene, its influence to esophageal cancer cell and telomerase activity
     Eca109/PinX1 and Eca109/pCDNA3.1 cell were established successfully. PinX1-transfected Eca109 cells grew more slowly than the cells without transfection or transfected with void vectors (P<0.05). The growth of PinX1-transfected cells was retarded and blocked into G0/G1 stage. The apoptosis rate was higher in PinX1-transfected Eca109 than that in PinX1-untransfected cells or transfected with void vectors only by FCM.
     The expression of PinX1 mRNA and protein in Eca109/PinX1 cells was significantly higher than that in Eca109/pCDNA3.1 and Eca109 cells (P<0.05). The expression of telomerase activity was lower in PinX1-transfected Eca109 than that in PinX1-untransfected cells or transfected with void vectors only (P<0.05). There was significant positive correlation between telomerase activity expression and PI expression (rs=0.451,P=0.000).
     Conclusions:
     1 Shortening of telomeres and increased hTERT expression, DNA content and PI value were found in ESC, which showed telomeres and telomerase are associated to carcinogenesis of esophageal epithelium. The difference of telomere length and hTERT expression in tumor of initial period of carcinogenesis might be a useful cancer biomarker for early diagnosis of ESC.
     2 Telomerase activity was increased in atypical hyperplasia tissues than that in normal tissues of the esophagus. Upon to the malignant degrade of pathological changes in ESC, the telomerase activity increased more in malignant tumor. The results suggested that telomerase is involved in tumor progression and serves as an early event in ESC, and may contribute to early diagnosis of ESC and supervising the development of ESC. The A value of telomerase activity was related to the tissue grade and lymph node metastasis in ESC, but not to other clinicopathologieal features. It suggested that the A value of telomerase activity may be used as a sign to estimate the curative effect and to appraise the prognosis of ESC.
     The down-expression of PinX1 was founded in ESC. The down grade is depended for the clinical stage and pathological grade in ESC. PinX1 gene may be used as one of the molecular markers to determine the malignant degree, metastasis potency and predicting progression of ESC. Telomerase activity expression was significant negative correlation to PinX1 expression, suggested that PinX1 can decrease telomerase activation.
     3 Within the successfully established Eca109/PinX1esophageal cancer cell model, the esophageal cancer Eca109 cells growths were inhibited by PinX1 transfenction evidenced by increased apoptosis and an arrest of G0/G1 phase and telomerase activity of Eca 109 cells was decreased by PinX1 gene. The results show PinX1 serves as an inhibitors of telomerase activity to suppress tumor development.
引文
1 Sung YH, Choi YS, Cheong C, et al. The pleiotropy of telomerase against cell death. Mol Cell, 2005, 19(3): 303~309
    2 Shay JW, Keith WN. Targeting telomerase for cancer the rapeutics[J]. Br J Cancer, 2008, 98(4): 677~685
    3 Masutomi K, Possemato R, Wong JM, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA, 2005, 102(23): 8222 ~8227
    4 Hastie ND, Dempster M, Dunlop MG, et al. Telomere reduction in colorectal carcinoma and aging. Nature, 1990, 346: 866~868
    5刘复生主编.中国肿瘤病理学分类(上卷).科学技术文献出版社, 2001, 67~69
    6 Diestra JE, Scheffer GL, Catala I, et al. Frequent expression of the multi-drug resistance-associated protein, BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol, 2002, 198(2): 213~219
    7 Larbcharoensub N, Leopairat J, Sirachainan E, et al. Association betweenmultidrug resistance-associated protein 1 and poor prognosis in patients with nasopharyngeal carcinoma treated with radiotherapy and concurrent chemotherapy. Hum Pathol, 2008, 39(6): 837~845
    8 Gabriela M, Baerlocher, Jennifer Mark, et al. Telomere Length Measurement by Fluorescence In Situ Hybridization and Flow Cytometry: Tips and Pitfalls. Cytometry, 2002, 47:89~99
    9崔巍,陈健萌.流式原位杂交检测白血病核骨髓异常增生综合征患者端粒长度的研究.中华检验学杂志, 2002, 25(1): 12~15
    10 Morkve O, Leaerum OD. Flow cytometry measurement of p21, p53 protein expression and DNA content in paraffin embedded tissues from bronchial carcinoma. Cytometry, 1991, 12: 438~444
    11 Hiyama E, Yokoyama T, Tatsumoto N, et al. Telomerase activity in gastric cancer. Cancer Res, 1995, 55: 3258~3262
    12 Shay JW, Bacchteei S. A Survey of Telomerase Activity in Human Cancer[J]. Eur J Cancer 1997,33(5): 787~791
    13 Hiyama T, Yokozaki H, Kitadai Y,et al.Overespression of human telomerase RNA is an early event in oesophageal carcinogenesis[J]. Virchows Arch. 1999, 434(6): 483~487
    14 Li C, Liang Y, Wu M, et al. Telomerase activity analysis of esophageal carcinoma using microdissection-TRAP assay [J]. Chin Med J (Engl). 2002,115(9): 1405~1408
    15 Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer[J]. Science. 1994, 266(5193): 2011~2015
    16 Mullet HJ. The collecting net woods hole. Collect Net, 1938, 13: 181~198
    17 Henderson ER, Blackburn EH. An overhanging 3' terminus is a conserved feature of telomeres. Mol Cell Biol, 1989, 9: 345~348
    18 Karleseder J, Broccoli D, Dai Y, et al. p53 and ATM dependent apoptosis induced by telomeres lacking TRF2. Science, 1999, 283: 1321~1325
    19 Bellon M,Nicot C. Regulation of telomerase and telomeres: human tumor viruses take control[J]. J Natl Cancer Inst, 2008,100(2): 98~108
    20左明,吴俊辉,刘宝善等.结直肠癌端粒酶活性检测及其对预后判断的意义[J].广东医学, 2007, 28(8): 1252~1253
    21付玲,李耀明.不同癌症患者血清胆固醇水平和组织的端粒酶活性分析及临床意义[J].医药论坛杂志, 2008, 29(14): 18~19
    22 MaruyamaY, Hanai H, Kaneko E. Telomere length and telomerase activity in intestinal metaplasia adenoma and well-differ-entiated adenocarcinoma of the stomach. Nippon Rinsho, 1998, 56(5): 1186~1189
    23 Meeker AK, Hicks JL, Gabrielson E, et al. Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol, 2004, 164(3): 925~935
    24 Yoon HJ, Choi IY, Kang MR, et al. DNA topoisomeraseⅡcleavage of telomeres in vitro and in vivo. Biochim Biophys Acta, 1998, 1395(1): 110~120
    25 Cimino-Reale G, Pascale E, Battiloro E, et al. The length of telomeric Grich strand 3-overhang measured by oligonucleotide ligation assay[J]. Nucleic Acids Res, 2001, 29(7): E35
    26 LAW H, LAU Y. Validation and development of quantitative flow cytometry-based fluorescent insitu hybridization for intercenter comparison of telomere length measurement [J]. Cytometry, 2001, 43 (2): 150~153
    27 Schmid I, Jamieson BD. Assessment of telomere length, phenotype, and DNA content. Curr Protoc Cytom. 2004, 7: 7~26
    28 Shigeru H, Leonard MH. Oxidative Stress-Induced Single-Strand Breaks in Chromosomal Telomeres of Human Retinal Pigment Epithelial Cells In Vitro. Invest Ophthalmol Visci, 2001, 42: 2139~2144
    29 Tatsumoto N, Hiyama E, Murakami Y, et al. High telomerase activity is an independent prognostic indicater of poor outcome in colorectal cancer. Clin Cancer Res, 2000, 6: 2696~2701
    30 Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis, 2005,26(5):867~874
    31 Nagai N, Oshita T, Murakami, et al. Semiquantitativeanalysis of temomerase activity in cervical and precancerous. Oncol Rep, 1999, 6:325~328
    32 Yi XM, Shay JW, Wright WE. Quantitive of telomerase component and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res, 2001, 29(23): 4818~4825
    33 Crowe DL, Nguyen DC, Tsang KJ, et al. E2F-1 represses transcription of human telomerase reverse transcriptase gene. Nucleic Acids Res, 2002, 29(13): 2789~2794
    34 Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target forcellular and viral oncogenic mechanisms. Carcinogenesis, 2003, 24(7): 1167~1176
    35 Zhang XL, Vernon M, Zhou W, et al. Telomere shorting and apoptosis in telomerase-inhibited human tumor cell. Genes Dev, 1999, 13(8): 2388~2399
    36 Li C, Wu M, Liang Y, et al. Analysis of telomerase activity in esophageal carcinoma using microdissection telomeric repeat amplification protocol assay [J]. Zhonghua Yi Xue Za Zhi. 2002 10;82(1):39~42
    37 Ikeguchi M, Unate H, Maeta M, et al. Detection of telomerase activity in esophageal squamous cell carcinoma and normal esophageal epithelium. Langenbecks Arch Surg. 1999, 384(6): 550~555
    38赵春芳,陈朝伦.食管癌组织端粒酶活性的研究.癌症, 2000, 19: 131~134
    39 Akira M, Yoshiyuki K, Hirotaka I, et al. Telomerase activity in esophageal squamous cell carcinoma: down-regulation by chemotherapeutic agent. J Surg Oncol, 2002, 79(1): 37~45
    40张登学,张翠萍,顾丽华,等.食管癌端粒酶活性的研究.中华消化杂志,1999,19(5): 298~300
    41左连富,林培中,齐凤英,等.食管癌前细胞DNA、端粒酶含量及多基因表达产物的定量检测.生物化学与生物物理进展, 2002,29: 273~277
    42 Kiyozaka Y, Asai A, Yammaoto D, et al. Establishment of novel human esophageal cancer cell line in relation to telonere dynamics and telorase activity. Dig Dis Sci. 2000,45: 870~879
    43 Stewart SA, Hahn WC, O'Connor BF, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci U S A. 2002, 99(20): 12606~11
    1刘复生主编.中国肿瘤病理学分类(上卷).科学技术文献出版社, 2001, 67-69
    2尹小青,黄立军,黄志中,等.食管癌组织中端粒酶活性检测及其意义[J].现代肿瘤医学, 2009, 17(6): 1070-1071
    3 Meyerson M, Counter CM, Eaton EN, et al. hTERT, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cell and during immlortalization. Cell, 1997, 90: 785-795
    4 Saretzki G, Petersen S, Petersen I, et al. hTERT gene dosage correlates with telomerase activity in hunlan lung cancer cell lines. Cancer Lett, 2002, 176: 81 -91
    5 Lehner R, Enomoto T, McGregor JA, et al. Quantitative analysis of telomerase hTERT mRNA and telomerase activity in endometrioid adenoearcinoma and in normal endometrium.Gyneeol Oncol, 2002, 84: 120 - 125
    6 Bellon M, Nicot C. Regulation of telomerase and telomeres:human tumor viruses take control[J]. Natl Cancer Inst, 2008,100(2): 98-108
    7 Parkinson EK, Minty F. Anticancer therapy targeting telomeres and telomerase: current status [J]. Bio Drugs, 2007, 21(6): 375-385
    8张复辉,陈宏,崔玉华,等.端粒酶与癌胚抗原联合测定鉴别良恶性胸腔积液[J].现代肿瘤医学, 2007, 15(5): 635-637
    9黄立军,王云杰,王小平,等. Bcl-2及端粒酶在非小细胞肺癌组织中的表达[J].现代肿瘤医学, 2006, 14(7): 808-810
    10 Shay JW, Bacchetti S.A survey of telomerase activity in human cancer. Eur J Cancer, 1997, 33: 787-791
    11 Ikeguchi M, Kaibara N. Telomerase activity in esophageal squamous cell carcinoma and in normal esophageal epithelium adjaeent to carcinoma. Nippoon Rinsho, 1998, 56: 1176-1180
    12 Takubo K, Nakanura K, Izumiyama N. Telomerase activity in esophageal carcinoma. J Surg Oncol, 1997, 66: 88-92
    13张登学,张翠萍,顾华丽,等.食管癌端粒酶活性的研究.中华消化杂志, 1999, 19: 298-300
    14 Nagai N, Oshita T, Muralami J,et al. Semiquantitative analysis of telomerase activity in cervical cancer and precaneerous lesions. Oncol Rep, 999, 6: 325-328
    15 Kakihana M, Yahata N, Hirano T, et al.Telomerase activity during carcinogesis in the bronchus. Oncol Rep, 2002, 9: 43-49
    16邓春华,丘少鹏,陈小君,等.膀胱移行上皮癌组织端粒酶活性的检测及意义.癌症, 2000, 19: 75-77
    17赵春芳,陈朝伦.食管癌组织端粒酶活性的研究.癌症, 2000, 19: 131-133
    18 Wang SJ, Sakamoto T, Yasuda SI S, et al. The relationship between telomere length and telomerase activity in gynecologic cancers. Gynecol Oncol, 2002, 84: 81-84
    19 Yashima K, Milchgrub S, Gollahon LS, et al. Telomerase enzyme activity and RNA expression during the multistage pathogenesis of breast carcinoma. Clin Cancer Res, 1998, 4: 229-234
    20刘颖,凌世淦,于继云.肾癌相关基因的研究进展[J].细胞和分子免疫学杂志, 2005, 21: 110-112
    21 Zhou XZ, Lu KP. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor [J]. Cell, 2001, 107(3): 347-359
    22 Lin J, Blackburn EH. Nucleolar protein PinX1p regulates telomerase by sequestering its potein catalytic subunit in an inactive complex lacking telonlerase RNA [J]. Genes Dev, 2004, 18(4): 387-396
    23 Smogorzewska, Bas VS. Control of human telomere length by TRF1 and TRF2 [J]. Mol and Cel Bio, 2000, 20(5): 1659-1668
    24 Baumann P, Podell E, Thomas R. Human Potl(Protection of Telomeres) Protein,Cytoloealization,Gene Structure,and Alternative Splicing [J]. Mol and Cel Bio, 2002, 22(22): 8079-8087
    25 Bockmuhl U, Ishwad CS, Ferrell RE, et al. Association of 8p23 deletions with poor survival in head and neck cancer [J]. Otolaryngol, Head NeckSurg. 2001, 124: 451-455
    26 Emi M, Fujiwara Y, Nakajima T, et al. Frequent loss of heterozygosity for locion chromosome 8p in hepatocellular carcinoma,colorectal cancer,and lung cancer [J]. Cancer Res, 1998, 52: 5368-5372
    27 Muscheck M, Sukosd F, Pesti T, et al. High density deletion mapping of bladder cancer localizes the putative tomor suppressor gene between loci D8s504 and 8s264 at chromosome 8p23.3 [J]. Lab Invest, 2000, 80: 1089-1093
    28 Liao C, Zhao MJ, Zhao J, et al.Over-expression of LPTS-L in hepatocellular carcinoma cell line SMMC-7721 induces crisis. World J Gastroenterol, 2002, 8(6): 1050-1052
    29付强,朱理玮,王鹏志.内源性端粒酶抑制基因在大肠癌中的表达及临床研究[J].中华普通外科杂志, 2004, 19(3): 157-159
    1 Lu M, Kwan T, Yu C, et al. Peroxisome proliferators-activated receptor gamma agonists promote TRAIL-induced Apoptosis by Reducing Survivin levels via CyclinD3 Repression and Cell Cycle Arrest. J Boil Chem, 2005, 280: 6742-6751
    2 Zhou XZ, Huang P, Shi R, et al. The telomerase inhibitor PinX1 is a major haploinsufficient tumor suppressor essential for chromosome stability in mice. J Clin Invest. 2011 Apr 1; 121(4): 1266-82
    3 Xiao Zhen Zhou and Kun Ping Lu . The Pin2 / TRF1– Interacting Protein PinX1 Is a Potent Telomerase Inhibitor. Cell ,2001,107:347-359
    4 Lin J, Blackburn EH. Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev 2004, 18(4):387-396
    5 Banik SS, Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERT and Htr. J Biol Chem, 2004, 279(50):51745 -51748
    6 Lin J, Jin R, Zhang B, et al. Characterization of a noval effect of hPinX1 on hTERT nucleolar location. Biochem Biophys Res Commun, 2007, 353(4):946-952
    7 Chang Q,Pang JC , LI J, Hu L, Kong X, Ng HK. Molecular analysis of PinX1 in medulloblastomas.Int J Cancer.2004,109(2):309-314
    8 Oh BK,Chae KJ,park C,Park YN. Molecular analysis of PinX1 in human hepatoecllular careinoma.Oncol ReP.2004,12(4):861-866
    9 Hawkins GA,Chang BL,Zheng SL,Isaaes SD,Wiley KE,Bleeeker ER,Walsh PC,Meyers DA,Xu J,Isaacs WB. Mutational analysis of PinXl in hereditary prostate cancer. Prostate.2004,60(4):298-302
    10 Akiyama Y,Maesawa C,Wada K,Fujisawa K,Itabashi T,Noda Y, Honda T,Sato N,Ishida K,Takagane A,Saito K,Masuda T.Human PinX1,a Potent telomerase inhibitor,is not involved in human gastrointestinal tract careinoma.Oncol ReP.2004,11(4):871-874
    11 Sun J, Huang H, Zhu Y, et al. The expression of telomeric proteins and their probable regulation of telomerase during the differentiation of all-trans-retinoic acid-responsive and resistant acute promyelocytic leukemia cells. Int J Hematol, 2005, 82(3):215-223
    12 Wang HB, Wang XW, Zhou G, et al. PinX1 inhibits telomerase activity in gastric cancer cells through Mad1/c-Myc pathway. J Gastrointest Surg. 2010 Aug;14(8):1227-34
    13 Guglielmi B, Werner M. The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition.JBiolChem,2002,277(38):35712-35719
    1 Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. MMBR, 2002, 66: 407~425.
    2 Shay JW, Zou Y, Hiyama E. Telomerase and cancer. Human Molecular Genetics, 2001, 10: 677~685.
    3 Makarov VL, Hirose Y, Langmore JP ,et al. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell,1997, 88(5):657~666.
    4 Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97(4):503~514.
    5 Nikitina T, Woodcock CL. Closed chromatin loops at the ends of chromosomes. J Cell Biol, 2004, 66(2):161~165.
    6 Stansel RM, Subramanian D, Griffith JD. p53 binds telomeric single strand overhangs and t-loop junctions in vitro. J Biol Chem, 2002, 277(14): 11625 ~ 11628.
    7 Olaussen KA, Dubrana K, Domont J, et al. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol, 2006, 57(3):191~214.
    8 Hong Y, Haussler M, Lam JW, et al. Label-free fluorescent probing ofG-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chemistry, 2008, 14(21): 6428~6437.
    9 Chong L, Van Steensel B, Broccoli D, et al. A human telomeric protion. Science, 1995, 270: 1663~1667.
    10朱庸.抗肿瘤药物端粒酶抑制剂的研究进展.海峡药学, 2007 19: 4~7.
    11 Henderson ER, Blackburn EH. An overhanging 3' terminus is a conserved feature of telomeres. Mol Cell Biol, 1989, 9: 345~348.
    12 Karleseder J, Broccoli D, Dai Y, et al. p53 and ATM dependent apoptosis induced by telomeres lacking TRF2. Science, 1999, 283: 1321~1325.
    13 Choi JE, Kang HG, Jang JS,et al. Polymorphisms in telomere maintenance genes and risk of lung cancer. Cancer Epidemiol Biomarkers Prev. 2009 Oct;18(10):2773~81.
    14 Broccoli D, Smogorzewska A, Chong L, et al. Human telomeres contain two distinct Myb-related proteins TRF1 and TRF2. Nature Genet, 1997, 17: 231~235.
    15 Van Steensel B, Smogorzewska A, De lange T. TRF2 protect human tlomeres from end to end fusions. Cell, 1998, 92: 401~403.
    16 Van Steensel B, De lange T. Contrlo of telomere length by the human telomere protion TRF1. Nature, 1997, 385: 740~743.
    17 Smogorzewska A, van Steensel B, Bianchi A, et al. Contrlo of human telomere length by TRF1 and TRF2. Mol. Cell Biol. 2000, 20: 1659~1668.
    18 Bianchi A, Stansel RM, Fairall L, et al. TRF1 binds a bipartite tolomeric site with extreme spatial flexibility. EBMO, 1999, 18: 5735~5744.
    19 Cesare AJ, Kaul Z, Cohen SB, et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol. 2009 Dec;16(12):1244~51.
    20 Lord RV, Salonga D, Danenberg KD, et al. Telomerase reverse transcriptase expression is increased early in the Barrett's metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg. 2000, 4(2): 135 ~ 142.
    21 Stewart SA, Weinberg RA.Telomeres:cancer to human aging. Annu Rev Cell Dev Biol, 2006, 22:531~557.
    22 Greider CW, Blackbum EH. Identification of a specific telomere transferase activity in Tetrahymena extracts [J]. cell, 1985, 43(2Pt1): 405~413.
    23 Morin GB. The Human telomere term inal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeat [J]. Cell, 1989, 59(3): 521 ~529.
    24 Fajkus J, DvoráckováM, SykorováE. Analysis of telomeres and telomerase. Methods Mol Biol. 2008;463:267~96.
    25 Chan A, BouléJB, Zakian VA. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet. 2008 Oct;4(10):e1000236.
    26 Nakamura TM, Morin GB, Chapman KB, et al Telomerase catalytic subunit homologs from fission yeast and human[J]. Science, 1997, 277( 5328): 955~959.
    27 Feng J, Funk WD, Wang SS et al The RNA camponent of human telomerase[J]. Science, 1995, 269(5228): 1236~1241.
    28李晋芳.端粒酶及端粒酶抑制剂的研究.口腔颌面外科杂志,2007,17:285~287.
    29 Cong YS, Wen J, Bacchetti S. The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter[J]. Hum MolGenetics, 1999, 8(1): 137~142.
    30 Cairney CJ, Keith WN. Telomerase redefined: Integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie, 2008, 90(1):13~23.
    31 Poole JC, Andrews LG, Tollefsbol TO. Activity, function, and gene regulation of the catalytic subunit of telomerase(hTERT).Gene, 2001, 269 (1-2):1~12.
    32 Blasco MA. Telomeres and human disease: ageing, cancer and beyond.Nat Rev Genet 2005, 6(8):611~622.
    33 Masutomi K, Possemato R, Wong JM, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA, 2005, 102(23): 8222 ~8227.
    34 Lingner J, Hughes TR, Shevchenko A, et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 1997, 276(5312): 561~567.
    35 Cong YS, Shay JW. Actions of human telomerase beyond telomeres [J]. Cell Research, 2008, 18(8): 725~737.
    36 Shay JW, Keith WN. Targeting telomerase for cancer the rapeutics[J]. Br J Cancer, 2008, 98(4): 677~683.
    37 Fukushima M, Shinomura N, Nakamura K, et al. Demonstration of human telomerase reverse transcriptase by in situ hybridizatio in lung carcinoma. Oncol Rep, 2004, 12(6): 1227~1232.
    38 Sung YH, Choi YS, Cheong C, Lee HW. The pleiotropy of telomerase against cell death. Mol Cell, 2005, 19(3):303~309.
    39 Theiner CA, Feigon J. Structure and function of telomerase RNA[J]. Current Opinion in Structural Biology, 2006,16(3): 307~318
    40 Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis, 2005,26(5): 867~874.
    41 Nagai N, Oshita T, Murakami J, et al. Semiquantitative analysis of telomerase activity in cervical cancer and precancerous lesions. Oncol Rep. 1999 Mar-Apr;6(2):325-8.
    42 Kim, NW. Specific association of human telomerase activity with immortal cells and cancer.Science, 1994, 266: 2011~2014.
    43温洪涛,张岚,张蕾,等.不同食管病变组织中端粒酶活性的测定.胃肠病学和肝病学杂志, 2001, 10(4): 338~340.
    44 Ramakrishnan S, Eppenberger U, Mueller H, et al. Expression profile of the putative catalytic subunit of the telomerase gene. Cancer Res. 1998, 58(4): 622~625.
    45姚成才.端粒酶抑制剂与肿瘤治疗研究进展.肿瘤防治研究,2004, 31:62~64.
    46 Kameshima H, Yagihashi A, Yajima T, et al. Expression oftelomerase-associated genes: reflection of telomerase activity in gastric cancer? World J Surg. 2001 Mar;25(3):285-9, iv.
    47 Yibin Deng, Sandy Chang. Role of telomeres and telomerase in genomic instability, senescence and cancer[J]. Pathobiology in Focus, 2007, 87(11): 1071~1076.
    48 Kyo S, Takakura M, Taira T, et al. Spl cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res, 2000, 28 (3): 669~677.
    49 Kyo S, Takakura M, Kanaya T, et al. Estrogen activates telomerase. Cancer Res, 1999, 59 (23): 5917~5921.
    50 Xu D, Popov N, Hou M, et al. Switch from Myc/Max to Madl/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci, 2001, 98(7): 3826~3831.
    51 Cong YS, Bacchetti S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem, 2000, 275(46): 35665~35668.
    52 Goueli BS, Janknecht R. Regulation of telomerase reverse transcriptase gene activity by up stream stimulatory factor. Oncogene, 2003, 22 (39): 8042 ~8047.
    53 Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis, 2003, 24 (7):1167~1176.
    54 Sekaric P, Cherry JJ, Androphy EJ. Binding of HPV 16 E6 to E6AP is not required for activation of hTERT. J Virol, 2008, 82(1): 71~76.
    55 James MA, Lee JH, Klingelhutz AJ. HPV 16-E6 associated hTERT promoter acetylation is E6AP dependent, increased in later passage cells and enhanced by loss of p300. Int J Cancer, 2006, 119(8): 1878~1885.
    56 Oh S, Song YH, Yim J, et al. Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene, 2000, 19 (11): 1485~1490.
    57 Rottmann S, Luscher B. The Mad side of the Max network: antagonizingthe function of Myc and more. Curr Top Microbiol Immunol, 2006, 302: 63~122.
    58 Rottmann S, Speckgens S, Luscher-FirzlaffJ, et al. Inhibition of apoptosis by MAD1 is mediated by repression of the PTEN tumor suppressor gene. FASEB J, 2008, 22(4): 1124~1134.
    59 Gunes C, Lichtsteiner S, Vasserot AP, et al. expression of the htert gene is regulated at the level of transcriptional initiation and repressed by madl,cancer res, 2000, 60 (8):2116~2121.
    60 Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 down regulates E-cadherin and induces invasion. Mol Cell,2001, 7(6): 1267~1278.
    61 Yang H, Kyo S, Takatura M, et al. Autocrine transforming growth factor beta suppresses telomerase activity and transcription of human telomerase reverse transcriptase in human cancer cells. Cell Growth Differ, 2001, 12(2): 119~127.
    62 Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase, Cell, 2003, 113(7): 881~889.
    63 Zhou XZ, Lu KP. The Pint/TRF 1-interacting protein PinXl is a potent telomerase inhibitor. Cell, 2001, 107(3):347~359.
    64 Guglielmi B, Werner M. The yeast homolog of human PinXl is involved in rRNA and small nucleolar RNA maturation,not in telomere elongation inhibition[J]. J Biol Chem, 2002, 277(38): 35712~35719.
    65 Kondo T, Oue N, Mitani Y, et al. Loss of heterozygosity and histone hypoacetylation of the PINXl gene are associated with reduced expression in gastric carcinoma[J]. Oncogene, 2005, 24(1): 157~164.
    66 Gregory A, Hawkins, Bao LC, et al. Mutational Analysis of PINX1 in Hereditary Prostate Cancer[J]. The Prostate, 2004, 60: 298~302.
    67 Sun C, Wu Z, Jia F, et al. Identification of zebrafish LPTS: A gene with similarities to human LPTS/PinXl that inhibits telomerase activity. Gene, 2008, 420(1): 90~98.
    68 Herrmann G, Kais S, Hoffbauer J, et al. Conserved interactions of thesplicing factor Ntrl/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism. Nucleic Acids Research, 2007, 35(7): 2321~2332.
    69孙洁,谭亚敏,黄河,等.白血病细胞中端粒酶抑制因子Pinxl的表达与端粒酶活性关系的研究[J].中国病理生理学杂志, 2006, 26 (9): 1725 ~ 1728.
    70 Akiyama Y, Maesawa C, Wada K, et al. Human PinXl, a potent telomerase inhibitor,is not involved in human gastrointestinal tract carcinoma. Oncol Rep, 2004, 11(4): 871~874.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700