5p15.33 TERT-CLPTM1L基因区域多态性与鼻咽癌的遗传关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:TERT-CLPTM1L基因区域多态性已被报道与多种肿瘤的发生风险相关。该区域存在两个已知的基因,端粒酶反转录酶(telomerase reverse transcriptase, TERT)和唇腭裂跨膜1样蛋白(cleft lip and palate transmembrane 1 like, CLPTM1L)基因。鉴于这两个基因的生化、生理功能和肿瘤病理学意义,这一基因区域是生物学证据非常充分的鼻咽癌易感基因候选位点,因此本研究探讨了这一基因区域多态性与鼻咽癌遗传易感性的关系。
     方法:采用生物信息学与文献调研相结合的方法,根据中国汉族人群(CHB人群)HapMap II数据,在TERT-CLPTM1L基因区域选择单倍型标签单核苷酸多态性(htSNPs)位点。采用中通量的基于Sequenom质谱技术和SNPstream的分型方法,以及TagMan法和聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)分型方法,在广西鼻咽癌病例对照人群(病例855人,对照1036人)中对htSNPs进行了分型,以多因素logistic回归方法分析htSNPs与鼻咽癌的发生风险和病程进展的相关性。在独立人群——广东鼻咽癌病例对照人群(病例997人,对照972人)及广西鼻咽癌核心家系人群中对上述阳性关联的SNP位点进行验证。用生物信息学方法对在多个人群中均呈阳性关联的位点进行功能预测,用双荧光素酶报告基因实验研究阳性关联的位点不同基因型之间是否具有增强子活性的差异,并研究不同等位型之间在端粒长度、TERT mRNA及蛋白表达水平.CLPTM1L mRNA及蛋白表达水平的差异。
     此外,还研究了TERT下游的功能性串联重复多态性MNS16A与鼻咽癌发生发展的相关性。采用PCR联合电泳的方法,在广西鼻咽癌病例对照人群中对TERTMNS16A进行分型。以多因素logistic回归方法分析MNS16A与鼻咽癌的发生风险和病程进展的相关性。
     结果:在TERT-CLPTM1L基因区域共确定了26个htSNPs。在广西鼻咽癌病例对照人群中分型成功25个位点,统计分析去除分布不符合哈迪-温伯格平衡准则的位点和最小等位频率(MAF)小于0.01的位点3个。以多因素logistic回归方法分析,在校正年龄、性别、吸烟、吸烟量、饮酒、家族史后,经过SNPSpD多重检验校正,在加性遗传模式和共显性遗传模式下共有4个SNPs (rs2736098、rs2735845、rs402710和rs401681)与鼻咽癌的发生风险相关。对这4个SNPs在广东鼻咽癌病例对照人群中进行了验证,发现rs2735845和rs401681仍然与鼻咽癌的发生风险显著相关(广西广东联合人群中rs2735845, OR=1.23,95% CI=1.12-1.35, P= 4.64×10-5; rs401681, OR=0.81,95% CI=0.74-0.90, P=1.00×10-4)。而且这两个位点相互独立,与环境因素不存在交互作用。22个htSNPs中没有发现与鼻咽癌病程进展相关的位点。功能实验显示,在脐带来源的间充质干细胞中,与CC基因型相比,rs2735845 G等位携带者的CLPTM1L mRNA水平显著增加(P=0.02);与CC基因型相比,rs401681 TT基因型与短的端粒长度显著相关(P=0.002)。免疫组化实验显示,TERT、CLPTM1L在鼻咽癌组织中表达均高于非癌鼻咽部组织。
     对TERT功能性串联重复MNS16A进行分型,经多因素logistic回归分析发现MNS16A S等位型(272和243bp)是鼻咽癌发生风险的保护等位型(OR=0.86,95%CI=0.78-0.96,P=0.014),而且在分化差的鳞状细胞癌组中其保护作用更显著。此外,携带S等位的鼻咽癌患者年龄较LL基因型(333/302和302/302bp)鼻咽癌患者年龄大。S等位为鼻咽癌独立的保护因素,与年龄、性别、吸烟、吸烟量、饮酒及家族史无交互作用。MNS16A与鼻咽癌严重程度不相关。通过免疫组化实验,比较MNS16A基因型之间TERT的蛋白表达水平,发现携带S等位型的个体其TERT的表达显著低于携带LL基因型的个体(P=0.035)。
     结论:TERT-CLPTM1L基因区域的多态性位点与鼻咽癌的易感性显著相关。本研究首次鉴定出了与鼻咽癌遗传易感性关联的TERT-CLPTM1L基因区域中的两个单核苷酸多态性位点(rs2735845和rs401681)和一个串联重复多态性位点(MSN16A)。本研究为鼻咽癌的遗传易感性提供了新的遗传标记,有助于鼻咽癌发病机理的进一步研究和鼻咽癌的早期预防、诊断和个体化治疗。
Background & Aim:Sequence variants at the TERT-CLPTM1L locus have been reported to be associated with many cancers. Given the function of TERT (telomerase reverse transcriptas) and CLPTM1L (cleft lip and palate transmembrane 1 like) gene in cancer, this region is an attractive candidate susceptibility locus of nasopharyngeal carcinoma (NPC). In this study we assessed the genetic association of sequence variants at the TERT-CLPTM1L locus with the risk of NPC.
     Methods:The haplotype-tagging SNPs (htSNPs) were selected from TERT-CLPTM1L locus by bioinformatics analysis and literature's investigation. All the htSNPs were firstly genotyped in a cases-controls population recruited from Guangxi province (855 patients with NPC and 1036 controls without cancer). The genetic associations with the risk and severity of NPC were analyzed by logistic regression. The main genotyping methods are Sequenom iPLEX Gold technology and Genome-Lab SNPstream 12-plex genotyping platform. The SNPs, which were associated with susceptibility to NPC in Guangxi case-control population, were validated in the other independent populations, including a case-control population recruited from Guangdong province (997 patients with NPC and 972 controls without cancer) and a nuclear families population recruited from Guangxi province (231 families). Functional prediction of the SNPs which were associated with the susceptibility to NPC in multiple independent populations was performed by bioinformatics analyses. Dual-luciferase reporter assaies were performed to test the difference of the enhancer activity between two alleles of the SNPs. We also compared the length of telomere, TERT mRNA and protein levels, CLPTM1L mRNA and protein levels between the different genotypes of the SNPs.
     In addition, we assessed the association of MNS16A, a functional tandem repeats polymorphism in the downstream region of the TERT gene locus, and risk of NPC in the case-control population recruited from Guangxi province. This polymorphism was genotyped by PCR and electrophoresis. The genetic associations with the occurrence and progression of NPC were analyzed by logistic regression.
     Results:During the discovery stage,26 htSNPs across the TERT-CLPTM1L region were selected and genotyped in the Guangxi NPC case-control population. After multiple testing correction, four SNPs (rs2736098, rs2735845, rs401710 and rs401681) were significantly associated with the NPC risk after adjustment for age, sex, smoking status, alcohol use and family history. Replications of these four SNPs were performed in the independent Guangdong case-control population, and only rs2735845 and rs401681 was confirmed to be associated with the risk of NPC (in the combined population from Guangxi and Guangdong:rs2735845, OR=1.23,95% CI=1.12-1.35, P=4.64×10-5 and rs401681, OR= 0.81,95% CI=0.74-0.90, P=1.00 x 10-4). rs2735845 and rs401681 were two independent markers in the association with NPC after corrected by each other. No SNP was significantly associated with the severity of NPC after multiple testing correction. Functional analysis in samples of UC fMSCs showed that compared with CC genotype, the carriers with rs2735845 [G] had a increased level of CLPTM1L mRNA (P =0.02) and rs401681 TT genotype was associated with short telomere length (P=0.002). By immunohistochemistry assay, we found TERT and CLPTM1L were overexpressed in the tissue of NPC, compared with the nasopharyngeal tissue without cancer (both P< 0.001).
     We found that the short allele carriers (S,272 and 243 bp) of the MNS16A were associated with decreased risk of nasopharyngeal carcinoma (OR=0.86,95% CI= 0.78-0.96, P=0.014) compared with those only have long alleles (L,333 and 302 bp), especially in poorly differentiated squamous cell carcinoma. Subjects with the S allele tended to be older than those with the LL genotypes by age at diagnosis. Furthermore, immunohistochemical analyses showed that the short allele may also have decreased TERT expression in NPC tissues compared with LL genotype (P=0.035).
     Conclusion:The polymorphisms rs2735845, rs401681 and MNS16A at TERT-CLPTM1L locus on 5p15.33 were confirmed to be associated with the risk of NPC. These findings indicate that the variations at the TERT-CLPTM1L locus on 5p15.33 may confer the susceptibility to NPC.
引文
[1]Parkin DM, Laara E, Muir CS. Estimates of the worldwide frequency of sixteen major cancers in 1980 [J]. Int J Cancer,1988,41 (2):184-197.
    [2]Chan AT, Teo PM, Huang DP. Pathogenesis and treatment of nasopharyngeal carcinoma [J]. Semin Oncol,2004,31(6):794-801.
    [3]Zhu K, Levine RS, Brann EA, Hall HI, Caplan LS, Gnepp DR. Case-control study evaluating the homogeneity and heterogeneity of risk factors between sinonasal and nasopharyngeal cancers [J]. Int J Cancer,2002,99(1):119-123.
    [4]Hildesheim A, Levine PH. Etiology of nasopharyngeal carcinoma:a review [J]. Epidemiol Rev,1993,15(2):466-485.
    [5]Lu SJ, Day NE, Degos L, Lepage V, Wang PC, Chan SH, Simons M, McKnight B, Easton D, Zeng Y et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region [J]. Nature,1990,346(6283):470-471.
    [6]Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, Li XL, Hu DX, Tan C, Xiang JJ, Zhou J et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma [J]. Cancer Res,2004,64(6):1972-1974.
    [7]Feng BJ, Huang W, Shugart YY, Lee MK, Zhang F, Xia JC, Wang HY, Huang TB, Jian SW, Huang P et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4 [J]. Nat Genet,2002, 31(4):395-399.
    [8]Kennedy D. Breakthrough of the year [J]. Science,2007,318(5858):1833.
    [9]Badner JA, Gershon ES, Goldin LR. Optimal ascertainment strategies to detect linkage to common disease alleles [J]. Am J Hum Genet,1998, 63(3):880-888.
    [10]Jiang RC, Qin HD, Zeng MS, Huang W, Feng BJ, Zhang F, Chen HK, Jia WH, Chen LZ, Feng QS et al. A functional variant in the transcriptional regulatory region of gene LOC344967 cosegregates with disease phenotype in familial nasopharyngeal carcinoma [J]. Cancer Res,2006,66(2):693-700.
    [11]Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: design and analysis issues [J]. Mutat Res,2005,573(1-2):54-69.
    [12]Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association studies [J]. Theor Popul Biol,2001,60(3):155-166.
    [13]Jalbout M, Bouaouina N, Gargouri J, Corbex M, Ben Ahmed S, Chouchane L. Polymorphism of the stress protein HSP70-2 gene is associated with the susceptibility to the nasopharyngeal carcinoma [J]. Cancer Lett,2003, 193(1):75-81.
    [14]Cho EY, Hildesheim A, Chen CJ, Hsu MM, Chen IH, Mittl BF, Levine PH, Liu MY, Chen JY, Brinton LA et al. Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1 [J]. Cancer Epidemiol Biomarkers Prev,2003,12(10):1100-1104.
    [15]Nazar-Stewart V, Vaughan TL, Burt RD, Chen C, Berwick M, Swanson GM. Glutathione S-transferase M1 and susceptibility to nasopharyngeal carcinoma [J]. Cancer Epidemiol Biomarkers Prev,1999,8(6):547-551.
    [16]Deng L, Zhao XR, Pan KF, Wang Y, Deng XY, Lu YY, Cao Y. Cyclin D1 polymorphism and the susceptibility to NPC using DHPLC [J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2002,34(1):16-20.
    [17]He Y, Zhou G, Zhai Y, Dong X, Lv L, He F, Yao K. Association of PLUNC gene polymorphisms with susceptibility to nasopharyngeal carcinoma in a Chinese population [J]. J Med Genet,2005,42(2):172-176.
    [18]Zhou G, Zhai Y, Cui Y, Qiu W, Yang H, Zhang X, Dong X, He Y, Yao K, Zhang H et al. Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal carcinoma [J]. Hum Mutat,2007,28(11):1091-1097.
    [19]Tse KP, Tsang NM, Chen KD, Li HP, Liang Y, Hsueh C, Chang KP, Yu JS, Hao SP, Hsieh LL et al. MCP-1 Promoter Polymorphism at 2518 is associated with metastasis of nasopharyngeal carcinoma after treatment [J]. Clin Cancer Res,2007,13(21):6320-6326.
    [20]Zhou G, Zhai Y, Cui Y, Zhang X, Dong X, Yang H, He Y, Yao K, Zhang H, Zhi L et al. MDM2 promoter SNP309 is associated with risk of occurrence and advanced lymph node metastasis of nasopharyngeal carcinoma in Chinese population [J]. Clin Cancer Res,2007,13(9):2627-2633.
    [21]Pennisi E. Breakthrough of the year. Human genetic variation [J]. Science, 2007,318(5858):1842-1843.
    [22]McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges [J]. Nat Rev Genet,2008,9(5):356-369.
    [23]McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J et al. Lung cancer susceptibility locus at 5p15.33 [J]. Nat Genet,2008.40(12):1404-1406.
    [24]Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk [J]. Nat Genet,2008,40(12):1407-1409.
    [25]Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, Jakobsdottir M, Helgadottir H, Thorlacius S, Aben KK et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types [J]. Nat Genet,2009,41 (2):221-227.
    [26]Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY et al. Genome-wide association study identifies five susceptibility loci for glioma [J]. Nat Genet,2009, 41(8):899-904.
    [27]Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs KB, Arslan AA, Bueno-de-Mesquita HB, Gallinger S, Gross M et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33 [J]. Nat Genet,2010, 42(3):224-228.
    [28]Turnbull C, Rapley EA, Seal S, Pernet D, Renwick A, Hughes D, Ricketts M, Linger R, Nsengimana J, Deloukas P et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer [J]. Nat Genet,2010, 42(7):604-607.
    [29]Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, Mirabello L, Jacobs K, Wheeler W, Yeager M et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma [J]. Am J Hum Genet,2009, 85(5):679-691.
    [30]Miki D, Kubo M, Takahashi A, Yoon KA, Kim J, Lee GK, Zo JI, Lee JS, Hosono N, Morizono T et al. Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations [J]. Nat Genet,2010,42(10):893-896.
    [31]Hsiung CA, Lan Q, Hong YC, Chen CJ, Hosgood HD, Chang IS, Chatterjee N, Brennan P, Wu C, Zheng W et al. The 5p15.33 locus is associated with risk of lung adenocarcinoma in never-smoking females in Asia [J]. PLoS Genet,2010, 6(8).
    [32]Broderick P, Wang Y, Vijayakrishnan J, Matakidou A, Spitz MR, Eisen T, Amos CI, Houlston RS. Deciphering the impact of common genetic variation on lung cancer risk:a genome-wide association study [J]. Cancer Res,2009, 69(16):6633-6641.
    [33]Mushiroda T, Wattanapokayakit S, Takahashi A, Nukiwa T, Kudoh S, Ogura T, Taniguchi H, Kubo M, Kamatani N, Nakamura Y. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis [J]. J Med Genet,2008, 45(10):654-656.
    [34]Stacey SN, Sulem P, Masson G, Gudjonsson SA, Thorleifsson G, Jakobsdottir M, Sigurdsson A, Gudbjartsson DF, Sigurgeirsson B, Benediktsdottir KR et al. New common variants affecting susceptibility to basal cell carcinoma [J]. Nat Genet,2009,41(8):909-914.
    [35]Savage SA, Chanock SJ, Lissowska J, Brinton LA, Richesson D, Peplonska B, Bardin-Mikolajczak A, Zatonski W, Szeszenia-Dabrowska N, Garcia-Closas M. Genetic variation in five genes important in telomere biology and risk for breast cancer[J]. Br J Cancer,2007,97(6):832-836.
    [36]Shen J, Terry MB, Gurvich I, Liao Y, Senie RT, Santella RM. Short telomere length and breast cancer risk:a study in sister sets [J]. Cancer Res,2007, 67(11):5538-5544.
    [37]Ruiz-Llorente S, Montero-Conde C, Milne RL, Moya CM, Cebrian A, Leton R, Cascon A, Mercadillo F, Landa I, Borrego S et al. Association study of 69 genes in the ret pathway identifies low-penetrance loci in sporadic medullary thyroid carcinoma [J]. Cancer Res,2007,67(19):9561-9567.
    [38]Zee RY, Ridker PM, Chasman DI. Genetic variants in eleven telomere-associated genes and the risk of incident cardio/cerebrovascular disease:The Women's Genome Health Study [J]. Clin Chim Acta,2011, 412(1-2):199-202.
    [39]Shen J, Gammon MD, Wu HC, Terry MB, Wang Q, Bradshaw PT, Teitelbaum SL, Neugut AI, Santella RM. Multiple genetic variants in telomere pathway genes and breast cancer risk [J]. Cancer Epidemiol Biomarkers Prev,2010, 19(1):219-228.
    [40]Johnatty SE, Beesley J, Chen X, Macgregor S, Duffy DL, Spurdle AB, deFazio A, Gava N, Webb PM, Rossing MA et al. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot" [J]. PLoS Genet, 2010,6(7):e1001016.
    [41]Matsubara Y, Murata M, Yoshida T, Watanabe K, Saito I, Miyaki K, Omae K, Ikeda Y. Telomere length of normal leukocytes is affected by a functional polymorphism of hTERT [J]. Biochem Biophys Res Commun,2006, 341(1):128-131.
    [42]Hsu CP, Hsu NY, Lee LW, Ko JL. Ets2 binding site single nucleotide polymorphism at the hTERT gene promoter--effect on telomerase expression and telomere length maintenance in non-small cell lung cancer [J]. Eur J Cancer,2006,42(10):1466-1474.
    [43]Wang L, Soria JC, Chang YS, Lee HY, Wei Q, Mao L. Association of a functional tandem repeats in the downstream of human telomerase gene and lung cancer [J]. Oncogene,2003,22(46):7123-7129.
    [44]Kirwan M, Dokal I. Dyskeratosis congenita, stem cells and telomeres [J]. Biochim Biophys Acta,2009,1792(4):371-379.
    [45]Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, Young NS. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia [J]. N Engl J Med,2005,352(14):1413-1424.
    [46]Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R, Vulliamy T, Dokal I. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome [J]. Blood,2007,110(13):4198-4205.
    [47]Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA,3rd et al. Telomerase mutations in families with idiopathic pulmonary fibrosis [J]. N Engl J Med,2007, 356(13):1317-1326.
    [48]Armanios M, Chen JL, Chang YP, Brodsky RA, Hawkins A, Griffin CA, Eshleman JR, Cohen AR, Chakravarti A, Hamosh A et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita [J]. Proc Natl Acad Sci U S A,2005, 102(44):15960-15964.
    [49]Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y. A novel gene, CRR9, which was up-regulated in CDDP-resistant ovarian tumor cell line, was associated with apoptosis [J]. Biochem Biophys Res Commun,2001, 280(4):1148-1154.
    [50]Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells [J]. Science,2007,315(5820):1850-1853.
    [51]Kolquist KA, Ellisen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, Haber DA, Gerald WL. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues [J]. Nat Genet,1998,19(2):182-186.
    [52]Cao Y, Bryan TM, Reddel RR. Increased copy number of the TERT and TERC telomerase subunit genes in cancer cells [J]. Cancer Sci,2008, 99(6):1092-1099.
    [53]Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer [J]. Cancer Genet Cytogenet,2008,182(1):1-11.
    [54]Hwang KT, Han W, Cho J, Lee JW, Ko E, Kim EK, Jung SY, Jeong EM, Bae JY, Kang JJ et al. Genomic copy number alterations as predictive markers of systemic recurrence in breast cancer [J]. Int J Cancer,2008, 123(8):1807-1815.
    [55]Yamamoto Y, Chochi Y, Matsuyama H, Eguchi S, Kawauchi S, Furuya T, Oga A, Kang JJ, Naito K, Sasaki K. Gain of 5p15.33 is associated with progression of bladder cancer [J]. Oncology,2007,72(1-2):132-138.
    [56]Olovnikov AM. [Principle of marginotomy in template synthesis of polynucleotides] [J]. Dokl Akad Nauk SSSR,1971,201(6):1496-1499.
    [57]Baird DM, Rowson J, Wynford-Thomas D, Kipling D. Extensive allelic variation and ultrashort telomeres in senescent human cells [J]. Nat Genet, 2003,33(2):203-207.
    [58]Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis [J]. Lancet,2001,358(9280):472-473.
    [59]Valdes AM, Richards JB, Gardner JP, Swaminathan R, Kimura M, Xiaobin L, Aviv A, Spector TD. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis [J]. Osteoporos Int, 2007,18(9):1203-1210.
    [60]Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress [J]. Proc Natl Acad Sci U S A,2004,101(49):17312-17315.
    [61]Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women [J]. Lancet,2005,366(9486):662-664.
    [62]Svenson U, Ljungberg B, Roos G. Telomere length in peripheral blood predicts survival in clear cell renal cell carcinoma [J]. Cancer Res,2009, 69(7):2896-2901.
    [63]McGrath M, Wong JY, Michaud D, Hunter DJ, De Vivo I. Telomere length, cigarette smoking, and bladder cancer risk in men and women [J]. Cancer Epidemiol Biomarkers Prev,2007,16(4):815-819.
    [64]Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR. Telomere dysfunction:a potential cancer predisposition factor [J]. J Natl Cancer Inst,2003,95(16):1211-1218.
    [65]Risques RA, Vaughan TL, Li X, Odze RD, Blount PL, Ayub K, Gallaher JL, Reid BJ, Rabinovitch PS. Leukocyte telomere length predicts cancer risk in Barrett's esophagus [J]. Cancer Epidemiol Biomarkers Prev,2007, 16(12):2649-2655.
    [66]Svenson U, Nordfjall K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, Henriksson R, Lenner P, Roos G. Breast cancer survival is associated with telomere length in peripheral blood cells [J]. Cancer Res,2008, 68(10):3618-3623.
    [67]Bataille V, Kato BS, Falchi M, Gardner J, Kimura M, Lens M, Perks U, Valdes AM, Bennett DC, Aviv A et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo [J]. Cancer Epidemiol Biomarkers Prev,2007,16(7):1499-1502.
    [68]Han J, Qureshi AA, Prescott J, Guo Q, Ye L, Hunter DJ, De Vivo I. A prospective study of telomere length and the risk of skin cancer [J]. J Invest Dermatol,2009,129(2):415-421.
    [69]d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence [J]. Nature,2003, 426(6963):194-198.
    [70]Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis:a link between cancer and aging [J]. Proc Natl Acad Sci U S A,2001,98(21):12072-12077.
    [71]Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA. Longevity, stress response, and cancer in aging telomerase-deficient mice [J]. Cell,1999,96(5):701-712.
    [72]Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity [J]. EMBO J, 1992,11 (5):1921-1929.
    [73]Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, Rodriguez EG, Kuo WL, Ljung BM, Chew K, Myambo K et al. In situ analyses of genome instability in breast cancer [J]. Nat Genet,2004,36(9):984-988.
    [74]Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans [J]. Nat Genet,2001, 28(2):155-159.
    [75]Gordon KE, Ireland H, Roberts M, Steeghs K, McCaul JA, MacDonald DG, Parkinson EK. High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma [J]. Cancer Res,2003,63(2):458-467.
    [76]Baird DM. Variation at the TERT locus and predisposition for cancer [J]. Expert Rev Mol Med,2010,12:e16.
    [77]Cong Y, Shay JW. Actions of human telomerase beyond telomeres [J]. Cell Res,2008,18(7):725-732.
    [78]Wang X, Xiao J, Zhao S, Tian Y, Wang G. [Expression of telomerase subunits and its relationship with telomerase activity in nasopharyngeal carcinoma] [J]. Zhonghua Yi Xue Za Zhi,2001,81(9):553-556.
    [79]Peng H, Wang X, Yang G, Jiang S, Zhao T. [The study on the role of telomerase activity in human nasopharyngeal carcinoma] [J]. Zhonghua Er Bi Yan Hou Ke Za Zhi,2000,35(4):289-291.
    [80]Cheng RY, Yuen PW, Nicholls JM, Zheng Z, Wei W, Sham JS, Yang XH, Cao L, Huang DP, Tsao SW. Telomerase activation in nasopharyngeal carcinomas [J]. Br J Cancer,1998,77(3):456-460.
    [81]Shen Y, Wang Y, Chen S, Xiao B, Su J, Tao Z. [The effect of shRNA targeting hTERT on telomerase and the expression of PCNA and Caspase-3 in nasopharyngeal carcinoma cells] [J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2008,22(9):411-415.
    [82]Bellon M, Nicot C. Regulation of telomerase and telomeres:human tumor viruses take control[J]. J Natl Cancer Inst,2008,100(2):98-108.
    [83]Goel A, Boland CR. Recent insights into the pathogenesis of colorectal cancer [J]. Curr Opin Gastrocntcrol,2010,26(1):47-52.
    [84]Garcia-Closas M, Chanock S. Genetic susceptibility loci for breast cancer by estrogen receptor status [J]. Clin Cancer Res,2008,14(24):8000-8009.
    [85]Kiemeney LA, Grotenhuis AJ, Vermeulen SH, Wu X. Genome-wide association studies in bladder cancer:first results and potential relevance [J]. Curr Opin Urol,2009,19(5):540-546.
    [86]Hamano T, Matsui H, Sekine Y, Ohtake N, Nakata S, Suzuki K. Association of SNP rs1447295 and microsatellite marker DG8S737 with familial prostate cancer and high grade disease [J]. J Urol,2010,184(2):738-742.
    [87]Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, Feng QS, Low HQ, Zhang H, He F et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci [J]. Nat Genet,2010,42(7):599-603.
    [88]Jo CH, Kim OS, Park EY, Kim BJ, Lee JH, Kang SB, Han HS, Rhee SH, Yoon KS. Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion [J]. Cell Tissue Res,2008, 334(3):423-433.
    [89]Cawthon RM. Telomere measurement by quantitative PCR [J]. Nucleic Acids Res,2002,30(10):e47.
    [90]Lincz LF, Mudge LM, Scorgie FE, Sakoff JA, Hamilton CS, Seldon M. Quantification of hTERT splice variants in melanoma by SYBR green real-time polymerase chain reaction indicates a negative regulatory role for the beta deletion variant [J]. Neoplasia,2008,10(10):1131-1137.
    [91]Wang Y, Hu Z, Liang J, Wang Z, Tang J, Wang S, Wang X, Qin J, Shen H. A tandem repeat of human telomerase reverse transcriptase (hTERT) and risk of breast cancer development and metastasis in Chinese women [J]. Carcinogenesis,2008,29(6):1197-1201.
    [92]Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer [J]. Nat Genet,2009,41(8):882-884.
    [93]Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, Bjorklund M, Wei G, Yan J, Niittymaki I et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling [J]. Nat Genet,2009,41(8):885-890.
    [94]Andersson U, Osterman P, Sjostrom S, Johansen C, Henriksson R, Brannstrom T, Broholm H, Christensen HC, Ahlbom A, Auvinen A et al. MNS16A minisatellite genotypes in relation to risk of glioma and meningioma and to glioblastoma outcome [J]. Int J Cancer,2009,125(4):968-972.
    [95]Carpentier C, Lejeune J, Gros F, Everhard S, Marie Y, Kaloshi G, Laigle-Donadey F, Hoang-Xuan K, Delattre JY, Sanson M. Association of telomerase gene hTERT polymorphism and malignant gliomas [J]. J Neurooncol,2007,84(3):249-253.
    [96]Jin G, Yoo SS, Cho S, Jeon HS, Lee WK, Kang HG, Choi YY, Choi JE, Cha SI, Lee EB et al. Dual roles of a variable number of tandem repeat polymorphism in the TERT gene in lung cancer [J]. Cancer Sci,2011,102(1):144-149.
    [97]Hofer P, Baierl A, Feik E, Fuhrlinger G, Leeb G, Mach K, Holzmann K, Micksche M, Gsur A. MNS16A tandem repeats minisatellite of human telomerase gene:a risk factor for colorectal cancer [J]. Carcinogenesis,2011.
    [98]Wang L, Wei Q, Wang LE, Aldape KD, Cao Y, Okcu MF, Hess KR, El-Zein R, Gilbert MR, Woo SY et al. Survival prediction in patients with glioblastoma multiforme by human telomerase genetic variation [J]. J Clin Oncol,2006, 24(10):1627-1632.
    [99]Wang L, Wang LE, Mao L, Spitz MR, Wei Q. A functional variant of tandem repeats in human telomerase gene was associated with survival of patients with early stages of non-small cell lung cancer [J]. Clin Cancer Res,2010, 16(14):3779-3785.
    [1]Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation [J]. Genome Res,1998,8(12):1229-1231.
    [2]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al. Initial sequencing and analysis of the human genome [J]. Nature,2001,409(6822):860-921.
    [3]Knight JC. Functional implications of genetic variation in non-coding DNA for disease susceptibility and gene regulation [J]. Clin Sci (Lond),2003, 104(5):493-501.
    [4]Ponomarenko JV, Orlova GV, Merkulova TI, Gorshkova EV, Fokin ON, Vasiliev GV, Frolov AS, Ponomarenko MP. rSNP_Guide:an integrated database-tools system for studying SNPs and site-directed mutations in transcription factor binding sites [J]. Hum Mutat,2002,20(4):239-248.
    [5]Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA [J]. Hum Mol Genet,2007, 16(9):1124-1131.
    [6]Brookes AJ. The essence of SNPs [J]. Gene,1999,234(2):177-186.
    [7]Pritchard JK, Cox NJ. The allelic architecture of human disease genes:common disease-common variant...or not? [J]. Hum Mol Genet,2002, 11(20):2417-2423.
    [8]Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association studies [J]. Theor Popul Biol,2001,60(3):155-166.
    [9]Zhou G, Zhai Y, Cui Y, Qiu W, Yang H, Zhang X, Dong X, He Y, Yao K, Zhang H et al. Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal carcinoma [J]. Hum Mutat,2007, 28(11):1091-1097.
    [10]Barrett JC. Haploview:Visualization and analysis of SNP genotype data [J]. Cold Spring Harb Protoc,2009,2009(10):pdb ip71.
    [11]Song CM, Yeo BH, Tantoso E, Yang Y, Lim YP, Li KB, Rajagopal G. iHAP--integrated haplotype analysis pipeline for characterizing the haplotype structure of genes [J]. BMC Bioinformatics,2006,7:525.
    [12]de Bakker PI. Selection and evaluation of Tag-SNPs using Tagger and HapMap [J]. Cold Spring Harb Protoc,2009,2009(6):pdb ip67.
    [13]Edlund CK, Lee WH, Li D, Van Den Berg DJ, Conti DV. Snagger:a user-friendly program for incorporating additional information for tagSNP selection [J]. BMC Bioinformatics,2008,9:174.
    [14]Pico AR, Smirnov Ⅳ, Chang JS, Yeh RF, Wiemels JL, Wiencke JK, Tihan T, Conklin BR, Wrensch M. SNPLogic:an interactive single nucleotide polymorphism selection, annotation, and prioritization system [J]. Nucleic Acids Res,2009,37(Database issue):D803-809.
    [15]Kennedy D. Breakthrough of the year [J]. Science,2007,318(5858):1833.
    [16]McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits:consensus, uncertainty and challenges [J]. Nat Rev Genet,2008,9(5):356-369.
    [17]Pennisi E. Breakthrough of the year. Human genetic variation [J]. Science,2007, 318(5858):1842-1843.
    [18]Ng PC, Henikoff S. Predicting deleterious amino acid substitutions [J]. Genome Res,2001, 11(5):863-874.
    [19]Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs:server and survey [J]. Nucleic Acids Res,2002,30(17):3894-3900.
    [20]Yue P, Melamud E, Moult J. SNPs3D:candidate gene and SNP selection for association studies [J]. BMC Bioinformatics,2006,7:166.
    [21]Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool for the annotation of pathological mutations on proteins [J]. Bioinformatics,2005,21(14):3176-3178.
    [22]Reumers J, Schymkowitz J, Ferkinghoff-Borg J, Stricher F, Serrano L, Rousseau F. SNPeffect:a database mapping molecular phenotypic effects of human non-synonymous coding SNPs [J]. Nucleic Acids Res,2005,33(Database issue):D527-532.
    [23]Karchin R, Diekhans M, Kelly L, Thomas DJ, Pieper U, Eswar N, Haussler D, Sali A. LS-SNP:large-scale annotation of coding non-synonymous SNPs based on multiple information sources [J]. Bioinformatics,2005,21(12):2814-2820.
    [24]Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder:A web resource to identify exonic splicing enhancers [J]. Nucleic Acids Res,2003, 31(13):3568-3571.
    [25]Yeo G, Hoon S, Venkatesh B, Burge CB. Variation in sequence and organization of splicing regulatory elements in vertebrate genes [J]. Proc Natl Acad Sci U S A, 2004,101(44):15700-15705.
    [26]Sandelin A, Wasserman WW, Lenhard B. ConSite:web-based prediction of regulatory elements using cross-species comparison [J]. Nucleic Acids Res,2004, 32(Web Server issue):W249-252.
    [27]Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K et al. TRANSFAC and its module TRANSCompel:transcriptional gene regulation in eukaryotes [J]. Nucleic Acids Res,2006,34(Database issue):D108-110.
    [28]Palin K, Taipale J, Ukkonen E. Locating potential enhancer elements by comparative genomics using the EEL software [J]. Nat Protoc,2006, 1(1):368-374.
    [29]Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, Bjorklund M, Wei G, Yan J, Niittymaki I et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling [J]. Nat Genet,2009,41(8):885-890.
    [30]Wang X, Tomso DJ, Chorley BN, Cho HY, Cheung VG, Kleeberger SR, Bell DA. Identification of polymorphic antioxidant response elements in the human genome [J]. Hum Mol Genet,2007,16(10):1188-1200.
    [31]Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins [J]. Science,1989,245(4916):371-378.
    [32]Dedon PC, Soults JA, Allis CD, Gorovsky MA. A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions [J]. Anal Biochem,1991,197(1):83-90.
    [33]Hudson ME, Snyder M. High-throughput methods of regulatory element discovery [J]. Biotechniques,2006,41(6):673,675,677 passim.
    [34]McDaniell R, Lee BK, Song L, Liu Z, Boyle AP, Erdos MR, Scott LJ, Morken MA, Kucera KS, Battenhouse A et al. Heritable individual-specific and allele-specific chromatin signatures in humans [J]. Science,2010, 328(5975):235-239.
    [35]Knight JC, Keating BJ, Rockett KA, Kwiatkowski DP. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading [J]. Nat Genet,2003,33(4):469-475.
    [36]Majka J, Speck C. Analysis of protein-DNA interactions using surface plasmon resonance [J]. Adv Biochem Eng Biotechnol,2007,104:13-36.
    [37]Heyduk T, Heyduk E. Molecular beacons for detecting DNA binding proteins [J]. Nat Biotechnol,2002,20(2):171-176.
    [38]Noureddine MA, Menendez D, Campbell MR, Bandele OJ, Horvath MM, Wang X, Pittman GS, Chorley BN, Resnick MA, Bell DA. Probing the functional impact of sequence variation on p53-DNA interactions using a novel microsphere assay for protein-DNA binding with human cell extracts [J]. PLoS Genet,2009, 5(5):e1000462.
    [39]Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, Young RA, Bulyk ML. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays [J]. Nat Genet,2004,36(12):1331-1339.
    [40]Simonis M, Kooren J, de Laat W. An evaluation of 3C-based methods to capture DNA interactions [J]. Nat Methods,2007,4(11):895-901.
    [41]Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer [J]. Nat Genet,2009,41(8):882-884.
    [42]Arnone MI, Dmochowski IJ, Gache C. Using reporter genes to study cis-regulatory elements [J]. Methods Cell Biol,2004,74:621-652.
    [43]Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK. Understanding mechanisms underlying human gene expression variation with RNA sequencing [J]. Nature,2010, 464(7289):768-772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700