大型水轮发电机损耗、发热与通风问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电机设计与制造技术的进步,大型水轮发电机的容量不断提高,功率体密度不断增加。但与此同时,其损耗、发热与通风的问题也变得越来越严重。为了保证大型水轮发电机的可靠运行和使用寿命,有必要对其降低损耗与发热、改善通风效果的方法进行系统而深入的研究。针对大型水轮发电机设计与制造中的这些关键技术问题,本文采用电路、风路、热路和电磁场、温度场的分析计算方法,对大型水轮发电机的定子线棒换位问题、空载电压波形问题、转子阻尼系统损耗和温升问题、混合通风问题和定子温升问题进行了研究,其主要工作与取得的成果如下。
     首先,针对大型水轮发电机的结构特点,对其定子线棒的换位方法及其减损效果进行了研究,分析了360o全换位、360o空换位、不足360o换位、360o延长换位等4种不同方法的优缺点,推导并提出了完整的股线漏感电势简明计算公式,为股线环流及其附加损耗的分析计算奠定了理论基础。在Windows平台上研发了1套大型水轮发电机定子线棒换位优化设计软件,并结合4台不同机组,对上述4种不同换位方法的减损效果进行了对比研究。在此基础上,提出了混合换位的思想与“不足360o+延长”换位、“不足360o+空段”换位、“360o延长+空段”换位等3种新方法。结果表明,与传统的Roebel线棒360o全换位方法相比,各种改进换位方法的最佳可减损效果可达95%以上,其中360o延长换位方法的减损效果最好,3种新的混合换位方法为大型水轮发电机定子线棒优化设计提供了更为丰富、灵活的选择方案。
     其次,分析并建立了“二维非线性稳态电磁场有限元结合解析公式计算损耗”、“二维非线性时变运动电磁场有限元及其损耗计算”、“二维非线性时变运动电磁场场路耦合有限元及其损耗计算”等3种不同的电磁场和转子损耗计算模型以及转子三维各向异性稳态温度场有限元计算模型,为大型水轮发电机的电磁场、温度场综合分析以及转子涡流、损耗、温升的计算奠定了理论基础。与试验数据的对比表明,“模型3”的计算精度更高。
     第三,利用本文建立的二维非线性时变运动电磁场场路耦合有限元及其损耗计算模型,针对大型水轮发电机不对称磁极结构设计方案,首次对其改善空载电压波形的效果进行了研究。结果表明,采用极靴偏心和阻尼条偏心的结构设计方案,对削弱齿谐波、改善发电机空载电压波形、提高电能质量具有明显效果,可以替代定子铁心斜槽等传统设计方法,具有制造工艺简单等优点。
     第四,利用本文建立的二维非线性时变运动电磁场有限元及其损耗计算模型、转子三维各向异性稳态温度场有限元计算模型,针对大型贯流式水轮发电机的不同运行工况、不同转子结构和不同材料,对电磁场和温度场进行了大量的计算与分析。结果表明,在额定运行工况和12%负序运行工况时,每根阻尼条的涡流和损耗不等,背风面阻尼条的损耗与温升明显大于迎风面阻尼条的损耗与温升,转子最高温度出现在阻尼绕组上。
     最后,针对大型贯流式水轮发电机的结构特点,对其轴向与径向混合通风系统和二次冷却循环系统进行了研究,分别建立了混合通风系统的等效风路模型和定子等效热路模型,推导并提出了具有良好收敛性的复杂风网通用迭代算法,为大型水轮发电机的通风发热计算奠定了理论基础。在此基础上,在Windows平台上研发了1套大型水轮发电机通风发热计算软件,并针对新型的定子铁心叠片不等距分段结构设计,对发电机的混合通风系统与定子温升进行了分析与计算。结果表明,在以轴向通风为主的混合通风系统中,定子铁心叠片采用不等距分段结构设计方案,对改善各支路风量的分配、降低定子铁心和绕组的温升发热具有良好效果,发电机的温升较低,即使在超发10%工况下也可以长期安全运行。
With the technologic development of electric machine design and manufacture, the power and the power density of hydro-generators are becoming larger and larger. At the same time, the problems due to loss, temperature rise and ventilation become more and more serious. To ensure the steady operation and lifespan of large hydro-generators, it is necessary to study the ways of decreasing loss and heat and improving ventilation effect thoroughly. Focus on the key technologies of design and manufacture for large hydro-generators, the problems of stator bar transposition, no-load voltage waveform, loss and temperature rise of rotor damper system, mixed ventilation system, temperature rise of stator are researched by the methods of electric circuit, wind circuit, thermal path, electromagnetic field and temperature field in this thesis. The main studies and achievements are as follows.
     Firstly, various transposition methods of stator bars and their effects on loss reduction are researched according to the structure feature of large hydro-generators. The advantages and disadvantages of 4 different transposition methods, including 360o full transposition, 360o void transposition, deficient 360o transposition and 360o extended transposition, are analyzed respectively. To calculate the strand circulating currents and their additional losses, the simplified formulae of leakage induction e.m.f. in the strands of 4 different transposition methods are derived and presented completely. And then, an optimal design software for stator bar transposition of large hydro-generators is developed on the platform of Microsoft WINDOWS. The effects on loss reduction of 4 different transposition methods are compared and discussed for 4 hydro-generators. Furthermore, a new idea of mixed transposition and 3 methods, including deficient 360o extended transposition, deficient 360o void transposition and 360o void extended transposition, are proposed respectively. The results show that all of the improved methods can reduce the additional losses by more than 95%, among them the 360o extended transposition method is the best, comparing with the traditional Roebel bar which uses 360o full transposition method. The 3 new mixed transposition methods provide more flexible options for the stator bar transposition optimization of large hydro-generators.
     Secondly, 3 different models for the computation of electromagnetic field and rotor losses, including 2D nonlinear steady-state electromagnetic field finite element coupling with the analytic formulae of losses, 2D nonlinear time-varying moving electromagnetic field finite element and 2D nonlinear time-varying moving electromagnetic field finite element coupling with circuits, are established respectively. At the same time, a model of 3D anisotropic steady-state temperature field finite element for the computation of rotor temperature is built up. These models provide the foundations for the comprehensive analysis of electromagnetic fields and temperature field, and the calculation of rotor eddy current, losses and temperature rise. The results show that the model of 2D nonlinear time-varying moving electromagnetic field finite element coupling with circuits is more accurate by comparison with the test data.
     Thirdly, by applying the model of 2D nonlinear time-varying moving electromagnetic field finite element coupling with circuits, the effects on improving no-load voltage waveform are researched for the first time according to the asymmetric magnetic pole structure design of large hydro-generators. The results show that eccentricities of pole shoe and damper bars have obvious effects on weakening tooth harmonic, improving generator no-load voltage waveform and power quality. The asymmetric magnetic pole structure design is a good alteration of traditional methods such as skew slots of stator core, and has advantages of the simpler structure and cheaper manufacture.
     Fourthly, by combining the finite element models of 2D nonlinear time-varying moving electromagnetic field and 3D anisotropic steady-state temperature field, a series of computation and analysis are carried out for different operation conditions, different rotor structures and materials of large bulb hydro-generators. The results show that the eddy current and loss of each damp bar are different, the loss and temperature rise of the damp bar at the windward are larger than that at the lee side. The highest temperature of the rotor occurs on the damper winding at the conditions of rated operation and 12% negative sequence operation.
     Finally, axis- and radial mixed ventilation system and the second recurrent cooling system are researched according to the structure feature of large bulb hydro-generators. The models of equivalent wind circuit and stator equivalent thermal path are established respectively, and a general iterative algorithm with good convergence is deduced and proposed for the calculation of complex wind network. Furthermore, a software for ventilation and heat calculation of large hydro-generators is developed on the platform of Microsoft WINDOWS. The mixed ventilation system and the stator temperature rise are analyzed and calculated based on the new structure design of the uneven section of the generator stator core lamination. The results show that the uneven section structure design of stator core lamination has obvious effects on improving the distribution of branch wind quantity, decreasing the temperature rise and heat of stator core and winding. The temperature rise of the generator is quite low and the generator can operate continually and safely even though overloaded 10%.
引文
[1]埃米尔.墨索尼(著),陆佑楣(译).水电开发,第一卷,低水头电站[M].北京:中国电力出版社,2003,62-68.
    [2]吴敬儒,綦连斌.中国电力工业2001-2020年发展问题探讨[J].电网技术,2001,25(2):46-51.
    [3]白延年.水轮发电机设计与计算[M].北京:机械工业出版社,1982.
    [4]沈京卫.发电机定子线棒绝缘击穿原因分析及处理[J].水电站机电技术,2002,(4):51-54.
    [5]章柏寿.新安江水电厂发电机定子线棒股线换位方式的研究[J].水力发电,1989,(11):71-74.
    [6]李朝阳.贯流式机组在低水头电站的应用[J].发展,2006,(9):145-146.
    [7]郭景斌,周爱清,徐跃云.进口灯泡水轮发电机阻尼绕组和磁极损坏机理分析[J].中国电力,2001,34(5):13-16.
    [8]郭景斌.水轮发电机阻尼绕组和磁极损坏机理分析[J].大电机技术,2001,(7):63-67.
    [9]邓东,孙玉田,谭国伟,李金香,安志华.飞来峡水电站发电机的运行故障分析[J].大电机技术,2003,(6):13-17.
    [10]阴新华.飞来峡贯流式水轮发电机磁极故障的分析[J].南昌水专学报,2003,22(3):54-56.
    [11]周光厚.贯流式水轮发电机阻尼系统电磁场计算与断条故障机理分析[D].重庆大学硕士论文,2007.
    [12]王鹏宇.万家寨水电站发电机通风系统及转子磁极改造[J].电力学报,2005,20(1):68-70.
    [13]许实章.电机学(下册)[M].北京:机械工业出版社,1981.
    [14]陈世坤.电机设计.修订本[M].北京:机械工业出版社,1990.
    [15]程福秀,林金铭.现代电机设计[M].北京:机械工业出版社,1993.
    [16]冯慈璋.电磁场[M].北京:高等教育出版社,1980.
    [17]胡之光.电机电磁场的分析与计算.修订本[M].北京:机械工业出版社,1986.
    [18]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1984.
    [19] M. V. K. Chari,P. P. Silvester(著).史乃,唐任远(译).电磁场问题的有限元解法[M].北京:科学出版社,1985.
    [20]陈丕璋,严烈通,姚若萍.电机电磁场理论与计算[M].北京:科学出版社,1986.
    [21]章名涛,肖如鸿.电机的电磁场[M].北京:机械工业出版社,1988.
    [22]盛剑霓.工程电磁场数值分析[M].西安:西安交通大学出版社,1991.
    [23]谢德馨,姚缨英,白保东,李锦彪.三维涡流场的有限元分析[M].北京:机械工业出版社,2001.
    [24]胡敏强,黄学良.电机运行性能数值计算方法及其应用[M].南京:东南大学出版社,2003.
    [25]杨世铭,陶文铨.传热学.第三版[M].北京:高等教育出版社,1998.
    [26]孔祥谦.有限单元法在传热学中的应用.第二版[M].北京:科学出版社,1998.
    [27]朱一锟.流体力学基础[M].北京:北京航空航天大学出版社,1990.
    [28]哈尔滨大电机研究所.电指(DZ)29-63.大型发电机通风计算公式[S].北京:技术标准出版社,1965.
    [29]А.И.鲍里先科,B.Γ.丹科,А.И.亚科夫列夫.电机中的空气动力学与热传递[M].北京:机械工业出版社,1985.
    [30]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992.
    [31]魏永田,孟大伟,温嘉斌.电机内热交换[M].北京:机械工业出版社,1998.
    [32] N. Fukushima(著).戴庆忠(译).发电电动机通风系统的模拟研究[J].东方电机,1992:115-121.
    [33] Roebel L.Leiter für Elecktrische Maschinen,Welcher aus Zwei Oder Mehr Gruppen von Teilleigem Besteht[P].German Patent 277 012,Mar. 19,1912.
    [34]李隆年,王健生.水轮发电机定子线圈股线温升不均匀问题的研究[J].大电机技术,1985,(2):21-27.
    [35] Ringland W L,Rosenberg.A New Stator Coil Transposition for Large Machines[J].AIEE Trans.,1959:743-747.
    [36]潘勇.水轮发电机定子线棒股线端部换位[D].西安交通大学硕士论文,l993.
    [37] Bernard J. Bennington,W. C. Brenner.Transpositions in Turbogenerator Coil Sides Short Circuited at Each End[J].IEEE Trans. on PAS,1970,89(8):1915-1921.
    [38]蒋同海,宋文谦.大型交流电机定子0o/360o/0o线棒空换位的分析[J].电工技术学报,1989,(4):23-29.
    [39]蒋同海,宋文谦.大型交流电机定子0o/540o/0o线棒空换位的分析[J].大电机技术,1987,(5):7-11.
    [40]宋文谦.大容量交流电机定子线棒股线间的环流损耗[C].交流电机定子绕组的股线环流损耗研究论文集,1989:1-18.
    [41]许承千,罗荣杰.大型水轮发电机定子线棒中的环流、温升与换位方式[J].大电机技术,1985,(2):1-8.
    [42]刘立.水轮发电机定子线棒换位方案探讨[J].重水技术,1993,(3):27-32.
    [43]李隆年,姚若萍,王健生.水轮发电机定子线棒空换位及小于360度换位的对比分析[J].大电机技术,1986,(1):1-6.
    [44]唐群一.新安江水力发电厂发电机定子线棒延长360o换位方式的研制和应用[J].大电机技术,1996,(2):1-7.
    [45]佐藤征规等.相换位型电枢线圈股线电流分布的检测[J].电气学会回转机研究会资料,RM-86,1986.
    [46]宋文谦,蒋同海,张日强,张汉英.大型交流电机定子线圈的新换位联接[J].大电机技术,1986,(5):5-9.
    [47]宋文谦,蒋同海.大型交流电机定子0o/360o/0o线棒的新换位联接[J].西安交通大学学报,1987,21(2):79-87.
    [48]宋文谦,蒋同海.大型交流电机定子0o/540o/0o线棒的新换位联接[C].交流电机定子绕组的股线环流损耗研究论文集,1989,35-41.
    [49]张日强,宋文谦.大型交流电机定子0o/360o/0o线棒一端分组联接的环流损耗[J].电工电能新技术,2000,(2):69-72.
    [50] Kazuhiko Takahashi,Miyoshi Takahashi,Masaki Sato.Calculation Method for Strand Current Distributions in Armature Winding of a Turbine Generator[J].Electrical Engineering in Japan,2003,143(2):50-58.
    [51] Johann Haldemann.Transpositions in Stator Bars of Large Turbogenerators[J].IEEE Trans. on Energy Conversion,2004,119(3):553-560.
    [52]罗荣杰,许承千.大型发电机定子线棒中的环流和换位方式[J].大电机技术,1986,(3):15-23.
    [53]许善椿,吴祚潭.大型发电机定子线棒中的新型换位技术[J].大电机技术,1992,(1):1-5,16;(2):1-5.
    [54]郭有光,王雪帆,朱建国.大型汽轮发电机定子线棒股线间环流分析[J].华中理工大学学报,2000,28(4):83-86.
    [55]郭有光,王雪帆,朱建国.电机定子线棒股线间环流的简化计算模型[J].华中理工大学学报,2000,28(5):86-88.
    [56]周光厚.大型水轮发电机定子线棒换位方式研究[J].东方电机,2004,(2):27-30.
    [57]宋文谦,许寅彪,蒋同海等.大型交流电机定子线棒的优化设计[C].交流电机定子绕组的股线环流损耗研究论文集,1989:67-75.
    [58]姜可薰,韩力.田坝弃水电站水轮发电机定子线棒换位的分析计算[J].东方电机,1995,(2):23-30.
    [59]郭宁,韩力,石小坤.水轮发电机定子线棒四种不同换位方法的分析与比较[J].重庆大学学报(自然科学版),2007,30(2):42-45.
    [60] Tang Renyuan,Xu Guangren,Tian Lijian,Zhao Danqun,Xu Yi.Calculation of End Region Magnetic Field and Circulating Losses for Turbo-Generator Using a Coupled Field and Circuit Equations Method[J].IEEE Trans. on Magnetics,1999,26(2):497-500.
    [61] Neidhoefer G.Roebel bar windings for large synchronous machines[J].Brown Boveri Rev,1970,57(1):4-14.
    [62]张日强.交流电机定子绕组环流损耗的理论解析式验证[C].交流电机定子绕组的股线环流损耗研究论文集,1989:59-66.
    [63]郭宁.水轮发电机定子线棒环流计算与换位方案比较研究[D].重庆大学硕士论文,2006.
    [64] Gu Guobiao,Ruan Lin.The development of cooling techniques for hydrogenerators - reliability,maintenance,economic performance[C].Sixth International Conference on Electrical Machines and Systems,2003:XXII-XXVIII.
    [65]刘公直,付元初.全空冷巨型水轮发电机[J].大电机技术,2007,(5):1-8.
    [66]安志华,刘双,秦光宇,杨越,韩荣娜,邢广.700MW级水轮发电机通风模型试验研究[J].大电机技术,2006,(3):4-6.
    [67]高天德.有关灯泡贯流水轮发电机通风冷却技术的初步探讨[J].大电机技术,1992,(3):1-8.
    [68]费树年.灯泡式发电机通风系统的设计特点[J].国外大电机,1998,(4):10-14.
    [69]费树年.大型灯泡贯流式水轮发电机通风冷却技术[J].东方电机,1999,(1):44-46.
    [70]张远明.灯泡贯流式水轮发电机通风冷却方式选择[J].人民珠江,2005,(5):82-83.
    [71]余恪三.论灯泡贯流发电机定子铁心的特殊结构[J].水电站机电技术,1994,(4):15-17,22.
    [72]蒲艳军.流滩坝水电站灯泡式水轮发电机通风系统研究[J].东方电机,1995,(2):18-22.
    [73]刘长陆.马骝滩灯泡贯流式水轮发电机设计综述[J].大电机技术,1996,(4):6-12.
    [74]叶凡,刘大为.江口电站灯泡贯流式水轮发电机设计[J].大电机技术,2001,(2):1-4.
    [75]曾明富,钱昌燕,孙媛媛.桐子壕电站40MVA灯泡贯流式水轮发电机组的研制[J].东方电气评论,2005,19(3):113-116,122.
    [76]徐立佳.洪江水电站灯泡式发电机选型设计[J].珠江现代建设,2003,(1):18-21.
    [77]唐群一.新安江水电厂发电机通风系统改造[J].大电机技术,1997,(6):6-11,19.
    [78]钱昌燕.东电大型灯泡贯流式水轮发电机之特点[J].东方电机,2003,31(3):171-175.
    [79]廖毅刚.大型灯泡贯流式水轮发电机通风系统研究[J].东方电气评论,2003,17,(1):42-46.
    [80]廖毅刚.大型灯泡贯流式水轮发电机通风系统模拟试验研究[J].东方电机,2003,31(3):182-188.
    [81] W. H. Tang,Q. H. Wu,Z. J. Richardson.Equivalent heat circuit based power transformerthermal model[J].IEE Proceedings-Electric Power Applications,2002,149(2):87-92.
    [82]李德基,白亚民.用热路法计算汽轮发电机定子槽部三维温度场[J].中国电机工程学报,1986,6(6):36-45.
    [83]李德基,白亚民,曹国宣.发电机暂态三维温度场的计算[J].中国电机工程学报,1989,9(5):56-63.
    [84]曹国宣.水内冷汽轮发电机转子温度场计算[J].电工技术学报.1993,(1):18-21,17.
    [85]曹国宣.氢内冷汽轮发电机转子局部风路堵塞时温度场计算[J].中国电机工程学报,1995,15(2):130-136.
    [86]方日杰,赖烈恩,陈季平等.用热网络法计算大型水轮发电机定子温度场[J].大电机技术,1989,(1):25-29.
    [87]马辉.大容量灯泡式水轮发电机的热分析与计算[D].重庆大学硕士论文,1998.
    [88]张新波,许承千.灯泡贯流式水轮发电机通风的研究和计算[J].电工电能新技术,1997,(3):39-43.
    [89]张新波,许承千.灯泡贯流式水轮发电机通风结构的优化[J].电工技术杂志,1998,(4):23-26.
    [90]迟速,李春廷,李梦启,郎国丽.水轮发电机通风系统的网络计算方法[J].黑龙江电力技术,1999,21(3):10-12.
    [91]韩力,李辉,马辉,严欣平.大型灯泡贯流式水轮发电机的通风与温升[J].大电机技,2000,(5):1-5.
    [92]孟大伟,温嘉斌,魏永田,侯文斌.双层筒结构灯泡式水轮发电机热交换与肋优化计算[J].电工技术学报,1998,13(1):18-22.
    [93] P. Silvester,M. V. K. Chair.Finite element solution of saturable magnetic field problems [J].IEEE Trans. on PAS,1970,89(7):1642-1651.
    [94] B. Davat,Z. Ren,M. Lajoie-Mazenc.The Movement in Field Modeling[J].IEEE Trans. on Magnetics,1985,21(6):2296-2298.
    [95] D. Rodger,H. C. Lai,P. J. Leonard.Coupled elements for problems involving movement [J].IEEE Trans. on Magnetics,1990,26(2):548-550.
    [96] Francis Piriou,Adel Razek.Finite Element Analysis in Electromagnetic Systems Accounting for Electric Circuits[J].IEEE Trans. on Magnetics,l993,29(2):1669-1675.
    [97]严登俊,刘瑞芳,胡敏强,韩敬东.处理电磁场有限元运动问题的新方法[J].中国电机工程学报,2003,23(8):163-167.
    [98] Slivio Ikuyo Nabeta,Albert Foggia,Jean-Louis,Gilbert Reyne.A Non-Linear Time-stepped Finite-Element Simulation of a Symmetrical Short-Circuit in a Synchronous Machine [J].IEEE Trans. on Magnetics,1995,31(3):2040-2043.
    [99] H. C. Karmaker.Broken Damper Bar Detection Studies Using Flux Probe Measurements and Time-Stepping Finite Element Analysis for Salient-Pole Synchronous Machines [C].Symposium on Diagnostics for Electric Machines,Power Electronics and Drives,2003:193-197.
    [100] Stephanie Richard,Jean-Pierre Ducreux,Albert Foggia.A three dimensional finite element analysis of the magnetic field in the end region of a synchronous generator[J].Electric Machines and Drives Conference Record,IEEE International,1997:WC2/4.1-WC2/4.3.
    [101]李书芳,高筱纲,姚若萍.大型水轮发电机端部磁场计算的新模型[J].北京邮电大学学报,1998,21(3):10-13.
    [102]李书芳,姚若萍,高景德.水轮发电机端部各向异性涡流磁场及损耗的有限元分析[J].清华大学学报(自然科学版),1998,38(3):20-23.
    [103]姚若萍,侯小全,饶芳权.大型水轮发电机在各种工况下的端部磁场计算[J].上海交通大学学报,2002,36(2):234-236,242.
    [104] A. F. Armor,M. V. K. Chari.Heat Flow in the Stator Core of Large Turbine Generators by the Method of Three-Dimensional Finite Elements[J].IEEE Trans. on PAS.,1976,95(5):1648-1668.
    [105] A. F. Armor.Transient,three-dimensional,finite-element analysis of heat flow in turbine- generator rotors[J].IEEE Trans. on PAS.,1980,99(3):934-946.
    [106] G. K. M. Khan,G. W. Buckley,R. B. Bennett,N. Brooks.An Integrated Approach for the Calculation of Losses and Temperatures in the End-region of Large Turbine Generators [J].IEEE Trans. on Energy Conversion,1990,5(1):183-194.
    [107] D. Sarkar,P. K. Mukherjee,S. K. Sen.Use of 3-dimensional finite elements for computation of temperature distribution in the stator of an induction motor[J].IEE Proceedings-B,1991,138(2):75-86.
    [108]李伟力,付敏,周封,魏永田,程树康,黄东洙.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J].中国电机工程学报,2000,20(5):14-21.
    [109]李广德,付刚,何文秀.大型水轮发电机定子三维温度场计算[J].大电机技,2000,(2):1-6.
    [110]侯云鹏,李伟力,周封,程树康.大型水轮发电机定子三维温度场的等参元计算[J].大电机技术,2000,(6):14-19.
    [111]付敏,孔祥春.水轮发电机定子三维温度场的有限元计算[J].电机与控制学报,2000,4(4):193-197.
    [112]李伟力,侯云鹏,周封,程树康.大型水轮发电机定子股线导热的数值分析[J].中国电机工程学报,2001,21(7):115-119.
    [113]李伟力,赵志海,侯云鹏.大型同步发电机定子同相槽和异相槽的温度场计算[J].电工技术学报,2002,17(3):1-6,92.
    [114]李伟力,周封,侯云鹏,程树康.大型水轮发电机转子温度场的有限元计算及相关因素的分析[J].中国电机工程学报,2002,22(10):85-90.
    [115]姚若萍,饶芳权.蒸发冷却水轮发电机定子温度场研究[J].中国电机工程学报,2003,26(6):87-90,101.
    [116]杜炎森,黄学良,刘磊,胡敏强.大型汽轮发电机端部三维温度场研究[J].中国电机工程学报,1996,16(2):95-101.
    [117]李伟力,周封,候云鹏,Я.Б.Данилевич,程树康.汽轮发电机径切两向空冷系统转子温度场的计算方法[J].中国电机工程学报,2000,20(8):74-78.
    [118]黄学良,胡敏强,周鹗.电机三维温度场新的有限元计算模型[J].中国电机工程学报,1998,18(2):78-82.
    [119]鲁涤强,黄学良,胡敏强.汽轮发电机端部三维温度场的有限元计算[J].中国电机工程学报,2001,21(3):82-85.
    [120]迟速,刘彤彦,刘双,梁彬,李净.大型水轮发电机通风系统二维流场数值计算[J].黑龙江电力,2000,22(1):16-21,59.
    [121]徐旭,薛飞.灯泡贯流式水轮发电机通风系统的有限元计算[J].中国计量学院学报,2004,15(1):35-39.
    [122]范镇南.基于电磁场与温度场计算的贯流式水轮发电机阻尼系统损耗发热研究[D].重庆大学硕士论文,2007.
    [123]温嘉斌,孟大伟,鲁长滨.大型水轮发电机通风发热综合计算[J].中国电机工程学报,2000,20(11):6-9.
    [124]温嘉斌,孟大伟,周美兰,鲁长滨.大型水轮发电机通风发热场模型研究及通风结构优化计算[J].电工技术学报,2000,15(6):1-4,64.
    [125]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):129-134.
    [126]李哲生.改善凸极同步发电机空载电势波形的措施[J].哈尔滨电工学院学报,1983,6(3):1-16.
    [127] K. Ide,M. Takahashi,M. Stato,E. Tsuji,H. Nishizawa.High Harmonics Calculation of Synchronous Generators on the Basis of Magnetic Field Analysis Considering Rotor Movement[J].IEEE Trans. on Magnetics,1992,28(2):1359-1362.
    [128]王毓东,李兴根.带阻尼绕组整数槽凸极同步发电机空载时的齿谐波电势[J].浙江大学学报,1985,19(6):12-25.
    [129] Chang Eob Kim,J. K. Sykulski .Harmonic Analysis of Output Voltage in SynchronousGenerator Using Finite-Element Method Taking Account of the Movement[J].IEEE Trans. on Magnetics,2002,38(2):1249-1252.
    [130]李槐树,李朗如,让余奇.阻尼绕组对凸极同步发电机空载电势波形的影响[J].电机与控制学报,2003,7(4):267-271.
    [131] Stefan Keller,Mai Tu Xuan,Jean-Jacques Simond.Computation of the No-Load Voltage Waveform of Laminated Salient-Pole Synchronous Generators[J].IEEE Trans. on Industry Applications,2006,42(3):681-687.
    [132] Wang Shanming,Wang Xiangheng,Li Yixiang,Su Pengsheng,Ma Weiming,Zhang Gaifan.Steady-State Performance of Synchronous Generators With ac and dc Stator Connections Considering Saturation[J].IEEE Trans. on Energy Conversion,2002,17(2):176-182.
    [133]丁树业,李伟力,张东.电网电压偏差对水轮发电机转子温度场的影响[J].哈尔滨工业大学学报,2004,36(6):783-786.
    [134]南日山,张东,李伟力.凸极同步发电机空载下的气隙磁场波形特征系数及转子温度场的数值计算[J].大电机技术,2003,(4):23-26.
    [135] CEDRAT.User's Guide for FULX 2D 9.3[M].France,2005.
    [136]忻尚君(译).电机制造工艺对铁耗的影响[J].中小型电机,2002,29(6):56-59.
    [137]富立新等.GB/T 1029-2005.三相同步电机试验方法[S].北京:中国标准出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700