超高压发电机失磁过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压发电机采用高压交联聚乙烯(XLPE)电缆作为定子绕组,这种革新结构使其能够输出高电压,从而可以直接并网。超高压电机的这种结构与特性的改变,必然导致其运行特征不同于传统发电机的运行特征,因此,对超高压发电机的运行进行系统地研究是极为必要的。由于超高压发电机发生失磁故障后,可能造成定子电流增大,转子过电压,异步转矩大,定子绕组发热,转子表面温度和阻尼条温度过高等等一些原因限制其异步运行。本文从失磁过程中定、转子各电气量的变化规律、失磁稳态异步运行时的磁场和失磁后定转子温度场等多方面对超高压发电机失磁过程进行了研究。
     本文建立了超高压发电机变参数模型,模型中考虑并计算了励磁绕组和直轴阻尼绕组间的互感漏抗,得出超高压发电机暂态分析时不能忽略此值的结论。经验公式表明,转子的涡流与转差密切相关,而失磁运行时,转差又随时间变化而变化,因此本文采用考虑了励磁绕组和直轴阻尼绕组间互感漏抗和转子涡流的二阶模型对超高压发电机失磁过程进行研究。超高压发电机从失磁到失步的过程会影响系统的静态稳定性,通过数值计算,确定了超高压发电机的功率特性及静态稳定极限角和极限功率,得出了超高压发电机的静态稳定裕度较大的结论。另外,超高压发电机失磁后,定子回路参数一定发生变化,为此研究了机端的阻抗特性,为超高压发电机的失磁保护中的阻抗继电器整定提供基础数据。
     建立了超高压发电机的失磁变参数模型,运用动态仿真的方法分析了超高压发电机的失磁过程,通过实验机组验证,确定了超高压发电机失磁故障仿真模型和仿真方法的正确性。分析了在系统运行的超高压发电机发生失磁故障后对较近和较远处机组的影响。
     建立了超高压发电机二维物理模型。求解过程中采用了有限元自适应网格剖分,可在保持精度的情况下减少剖分单元数。在处理定子和转子的运动耦合问题时,采用运动边界插值法,将电机在气隙中线处分割为定子与转子两部分,然后将定转子节点方程通过气隙中心线上运动边界处的节点进行插值耦合,进而得到运动有限元模型。通过分析超高压发电机同步运行和稳态异步运行时的磁场分布,得出超高压发电机失磁后稳态异步运行与同步运行时的气隙磁密基波幅值一致,而谐波磁密的幅值较大的结论。并且得出随着超高压发电机失磁前所带负荷的减少,气隙磁密谐波分量也逐渐减小,气隙磁密逐渐接近正弦波的结论。
     建立了超高压发电机三维温度场模型,分析了超高压发电机同步运行时的温度场分布。通过定、转子各部分温升的计算值与温升实验数据的对比,验证了模型的准确性。在此基础上分析了超高压发电机失磁后,定、转子电流最大时定、转子极限温度场的分布。
An innovational structure of the EHV (extra high voltage) generator, that XLPE (cross-linked polyethylene) cable is used as stator windings, enables the generator to generate extra high voltage and to be connected to the power grid directly. So, it is necessary to investigate the operation of EHV generator systematically. For EHV generator, when the loss of field failure occurs, the stator current increases, temperature rise of stator windings gets higher, rotor over voltage occurs, asynchronous torque becomes larger, temperature rise of rotor surface and damping winding will also become too high to asynchronous operation. All of these reasons make asynchronous operation of EHV generators impossible. This paper studies the performance of EHV generator under loss of field, including characteristics of electrical quantities, utmost temperature and electromagnetic field.
     Varying parameter model of EHV generator, considering mutual leakage reactance between field winding and direct-axis damping windings, is established. After calculation of the mutual leakage reactance with the varying parameter model, it can be derived that this mutual leakage reactance cannot be ignored in transient analysis of EHV generator. According to empirical formula, eddy current of solid rotor is related with rotor slip. The slip varies with time during the process of loss of field. So this paper adopts a second-order model considering the mutual leakage reactance between field winding and direct-axis damping winding and eddy current of rotor.
     The loss of field of EHV generator can affect system static stability. In this paper, power characteristic and static stability limiting angle is calculated by numerical method. It is proved that stability margin of EHV generator is large. Under loss of field,circuit lump parameter of EHV generator must be different from that of rated operation. So terminal impedance is studied here and it can provide basic date for impedance relay for the loss of field protection of EHV generator.
     A loss of field model with varying parameters is established, and the dynamic simulation method is used to analyze the process of EHV generator loss of filed. By comparison with the experimental units, the model and simulation method are proved to be correct. And the impact on the near and the far units is analyzed after the loss of field faults of EHV generator.
     A two-dimension physical model of EHV generator is established, and adaptive mesh generation method is adopted to mesh the solution region, which is smarter in meshing so as to reduce the number of finite elements without sacrificing calculation accuracy. For the model consists moving part and stationary part, which will be separated by a circular arc on the middle position of the air gap, by coupling node equations on the nodes locating on the moving interface between the moving and the stationary part, finite element model considering motion can be set up. By analyzing and comparing the field distributions during synchronous operation and steady asynchronous operation, it can be concluded that the amplitudes of fundamental flux densities are the same, but the amplitudes of the harmonic flux densities are much different. Besides, it can also be concluded that the less load before the loss of field, the less harmonic flux density there is, and the air gap flux density is closer to sinusoid.
     The model of a two-dimensional magnetic field EHV generator is established. Magnetic distribution of the stator core and air-gap of EHV generator, during steady-state asynchronous operation, is quantitatively analyzed. And it can provide basic data for solutions to the temperature field. Based on these analyses, a three-dimensional temperature field model of EHV generator is created, which is used for analyzing temperature distribution of EHV generator under synchronous operation. By comparing the iron losses calculated in two different methods, stator segment flux density and average flux density, it can be found that difference between the two methods for iron losses calculation is small. The three-dimensional temperature model is proved to be accurate by comparing the calculated temperature rise with experimental data. The model is used to calculate the utmost temperature of stator and rotor of EHV generator under loss of field.
引文
[1]戈宝军,梁艳萍,周垂有等.Powerformer—21世纪的新型发电装置.电力系统自动化[J],2004,28(7):1-4.
    [2]李翠翠.能量变换器失磁异步运行的研究[D].哈尔滨理工大学,2009,7-8.
    [3]周德贵.发电机失磁异步运行的问题分析[J].四川电力技术,2000,(1):1-4.
    [4] MATS Leijon , etc . PowerformerTM - a Radically New Rotating Machine[J].ABB Review.1998, (2):21-26.
    [5]戴庆忠.当代水电设备技术进展述评[J].东方电气评论,2002,16(3):129-145.
    [6]黄春阳,黄顺礼.ABB公司的高压发电机[J].电机技术,2001(4):46-48.
    [7]张宇,黄华,周建国.电力新技术介绍与展望[J].华东电力,2002,(6):71-76.
    [8]邱毓昌,夏明通.电缆绕组在发电机和变压器中的应用[J].电线电缆,2002,(1):8-10.
    [9]沈梁伟.超高压发电机Powerformer[J].电力设备,2004,5(9):79-81.
    [10]汪伟.大型高压电机的开和应用[J].上海大中型电机.2005,(4):17-20.
    [11] LLOYD G J,YIP T H,LIN X,LINDAHL G.Evolution of Numerical Generator Protection for Application to a Powerformer[J]. The Institution of Electrical Engineers,2004:555-559.
    [12]张春辉.大型风电设备发展的新方向—_定子超高压转子永磁化[J].电器工业,2007,(7):48-50.
    [13]李连贯.不用齿轮箱和变压器的大型风电机组—ABB公司开发的高压发电机可直接并网[J].电器工业,2001,17:27.
    [14]邓隐北.超高电压的发电机和电动机[J].电工技术,2004(1):60-62.
    [15] GORAM Eriksson.直接与高压电网电网连接的新型电动机[J].水利水电快报,2002,23(2):16-17.
    [16] MATS Leijon , OWMAN F . Powerformer TM—the Prototype and Beyond.Power Engineering Society Winter Meeting[J], IEEE,2000,(1):139-144.
    [17]邓隐北.新型高压发电机及其特点[J].国际电力,2005,9(5):29-31.
    [18]沈梁伟.国外发电机的新发展及与我们的差距[J].大型透平发电机学术交流会论文,2001,8:11-20.
    [19] ROGER Dettmer.The Heart of a New Machine:Powerformer is a Radically New Generator Design that Could Herald a New Era in a High Voltage Generation[J].IEE Review with IEE News.1998,44(6):255-258.
    [20] STEFAN Alfredson,HERNNAS Bo,BERGSTROM Hans.Assembly of Generators with Rated Voltage Higher than 100kV[C].IEEE-PES / CSEE International Conference on Power System Technology.The University of Western Australia,Perth,2000,189-193.
    [21] MATS Leijon ,JOHANSSON S G. PowerformerTM—Experience from the Application of Extruded Solid Dielectric Cables in the Stator Winding of Rotating Machines[C].Power Engineering Society Winter Meeting,2000,IEEE,2000,(1):736-744.
    [22] MATS Leijon.Concept in High Voltage Generation: PowerformerTM. In: Proceedings of Eleventh International Symposium on High Voltage Engineering [C].London (UK),1999,5:379-382.
    [23] MATS Leijon,FREDRIK Owman.Powerformer: A Giant Step in Power Plant Engineering[C] . In Proceedings of International Conference IEMD’99.Seattle Seattle(USA),1999:830-832.
    [24] STURE Lindahl.Improved Control of Field Current Heating for Voltage Stability Machine Design-PowerformerTM[C] . In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference (Winter Meeting).Atlanta(USA),2001:209-214.
    [25] DARVENIZA M , SAHA T K , BERGGREN B , MATS Leijon ,WRIGHT P O.A Research Project to Investigate the Impact of Electricity System Requirements on the Design and Optimal Application of the PowerformerTM[C] . Transmission and Distribution Conference andExposition,2001 IEEE/PES,2001:504-509.
    [26] HOLMBERG P,MAT Leijon.Wide-Band Lumped Circuit Model of the Terminal and Internal Electromagnetic Response of a Coil with A Coaxial Insulation System[J] . IEE proc-Electr . Power Application , 2002 ,149(6):459-464.
    [27] PAR Holmgerg,MATS Leijon,TORBJORN W.A Wide Band Lumped Circuit Model of Eddy Current Losses in a Coil with a Coaxial Insulation System and a Stranded Conductor[J] . IEEE Transaction on Power Delivery,2003,18(1):50-60.
    [28] CRAIG Anthony Aumuller , TAPAN Kumar Saha . Investigating the Impact of Powerformer on Voltage Stability by Dynamic Simulation[J].IEEE Transactions on Power Systems,2003,18(3):1142-1148.
    [29] STEFAN G J , BERTIL Larsson . Short-Circuit Tests on a High-Voltage,Cable-Wound Hydropower Generator[J].IEEE Transactions on Energy Conversion,2004,19(1):28-33.
    [30] MARGUERITE Touma-Holmberg . KAILASH Srivastava . Double Winding, High-Voltage Cable Wound Generator Steady-State and Fault Analysis[J].IEEE Transaction on Energy Conversion,2004,19(2):245-250.
    [31]戈宝军,梁艳萍,周垂有,宋福川,王志敏,李发海.Powerformer-21世纪新兴的发电装置[J].电力系统自动化.2004,28(7):1-3.
    [32]王志敏,戈宝军.电力发生器空载电势波形的分析[J].大电机技术,2003,9:8-10.
    [33]戈宝军,张大魁,梁艳萍.能量变换器及其最新发展[J].电工技术学报,2005,20(1):26-30.
    [34]王志敏,戈宝军.电力发生器空载电势波形的分析[J].大电机技术.2003,(5):8-10.
    [35]周垂有,戈宝军,王志敏,等.Powerformer定子槽漏抗推导[J].大电机技术,2003,(4):11-14.
    [36]刘裕娟,梁艳萍.阻尼绕组分布对Powerformer气隙磁场和参数的影响[J].哈尔滨理工大学学报,2004,9(2):10-12.
    [37]张大魁,戈宝军,关星,等.电力发生器定子端部磁场与漏抗计算[J].哈尔滨理工大学学报,2004,9(4):104-107.
    [38]宋福川,戈宝军,张大魁.基于ANSYS的Powerformer定子端部模型的建立[J].大电机技术,2004,(1):21-23.
    [39]戈宝军,张大魁,梁艳萍等.能量变换器定子漏抗的分析与计算[J].电网技术,2005,29(3):15-17.
    [40]戈宝军,于涌源,梁艳萍,李发海.不对称阻尼绕组凸极同步电机瞬态及超瞬态参数的分析与计算[J].中国电机工程学报.2005,25(3):78-83.
    [41]苏国霞,戈宝军,陶大军,等.能量变换器内部单相接地故障建模与分析[J].电机与控制学报,2007,11(6):584-588.
    [42]戈宝军,王晓文,陶大军.能量变换器样机的研制[J].电机与控制学报,2008,12(4):370-373.
    [43]戈宝军,苏国霞.能量变换器内部故障仿真[J].电工技术学报,2008,23(12) 2-47.
    [44]戈宝军,关星,陶大军等.考虑阻尼绕组约束能量变换器空载电动势波形的分析[J].电工技术学报,2009,24(1):42-46.
    [45]戈宝军,谷凤玲.能量变换器进相运行时的建模与仿真[J].电机与控制学报,2009,13(1):17-21.
    [46] GE Baojun,TAO Dajun.Study on the Static Stability of a High Voltage Cable-wound Generator[C] . 2009 Asia-Pacific Power and Energy Engineering Conference,2009.
    [47] GE Baojun,GUAN Xing.Analysis and Calculation of No-load EFM Waveform for Powerformer[C].2009 Asia-Pacific Power and Energy Engineering Conference,2009.
    [48]林湘宁,田庆.Powerformer一次系统设计及运行实例简介[J].电力系统自动化,2005,29(5):1-5.
    [49]林湘宁,田庆.Powerformer继电保护系统研究动态[J].电力系统自动化,2005,29(8):5-9.
    [50]田庆,林湘宁,刘沛.高压发电机内部故障仿真研究[J].中国电机工程学报,2006,26(5):26-31.
    [51]田庆,林湘宁,刘沛.高压发电定子电容电流自适应补偿差动保护方案[J].电力系统自动化,2006,30(24):62-68.
    [52]高艳,林湘宁,刘沛.Powerformer非全相运行保护[J].电力系统自动化,2007,31(6):48-51.
    [53]高艳,林湘宁,刘沛. Powerformer定子单相接地保护研究保护[J].电力系统自动化,2008,32(7):63-68.
    [54] RANA R D,SCHUL Z,HEYECK M,BORER T R.Generator Loss of Field Study for AEP’s Rockport Plant[J].IEEE Computer Applications in power.1990,2(3):44-49.
    [55] MOORE P J , STANGENBERG A . An Investigation into The Impedance Characteristics of Asynchronous Generator under Loss of Field on condition[C]. Proceedings of EMPD '98 International Conference on Energy Management and Power Delivery.1998,(2):619-624.
    [56] FLEISSNER J M,A Method for Determining the Response of a System to Loss of Excitation [J].Power Apparatus and Systems on Transactions of the American Institute of Electrical Engineers.1960, 3(79):955-960.
    [57] RODRIGUEZ O,Stability Analysis of the Synchronous Machine Under Unbalance and loss of excitation condition[C].IEEE Xplore,2003.
    [58]侯小全,周光厚,李冬梅.大型汽轮发电机失磁异步运行分析计算[J].东方电气评论,2005,19(3).
    [59] LIU Tao,ZHOU Qian,WANG Xiangheng,SU Pengsheng,WANG Weijian.Dynamic Performance for Turbo Generator under Low Excitation and Loss of Field[C] . Electrical Machines and Systems , 2001 Proceedings of the Fifth International Conference onVolume 1,18-20 Aug, 2001,1:436-439.
    [60] XU S,KUMAR R,JIANG S,RAMESH S.A Simulation Condition for Forrect Asynchronous Implementation of Synchronous design[C].American Control Conference,2008,11-13 June ,2008:1728-1733 .
    [61] ZHANG Kanjun , YIN Xianggen , ChEN Deshu , WEI zhezhang.Simulation Analysis of Dynamic Performance for Hydro under Loss-of Excitation Condition. HuaZhong University of Science and Technology,P.R.China.
    [62]周茜,苏鹏声,王祥衍.水轮发电机失磁的动态过程分析[J].电力自动化设备. 2002,22(6):9-11.
    [63]钟慧荣,周云海.水轮发电机和汽轮发电机失磁和自励磁仿真[J].继电器,2006,(34):9-15.
    [64]马波涛,姚缨英.汽轮发电机失磁过程分析[J].机电工程,2008,(25):21-24.
    [65]汪象侃,姚晴林,李炳珠.滑差在新型发电机失磁保护中的应用[J].
    [66] CANAY I M.Causes of Discrepancies on Calculation of Rotor Quantities and Exact Equivalent Diagrams of the Synchronous Machine[J].IEEE:TRANSACTIONS ON POWER APPARATUS AND SYSTEMS,1969 88(7):1114-1120.
    [67] CANAY I M . Equivalent Circuit of Synchronous Machines for Calculating Quantities of the Rotor during Transient Processes and Asynchronous Starting[J] . Part I . Turbogenerators . B B Review ,1969,56:129-130.
    [68] CANAY I M.Extended Synchronous Machine Model for the Calculation of Transient Processes and Stability. Electr Mach & Electromech,1977,(1):87-90.
    [69] HAMMONS T J,CANAY I M.Effect of Damper Modelling and the Fault Clearing Process on Response Torque and Stressing of Turbinegenerator Shafts.IEEE Transactions on Energy Conversion,1986,1(3):113-120.
    [70]郭可忠,赵军.汽轮发电机失磁异步运行数学模型的比较[J].电网技术,1999,(23):13-16.
    [71]赵军,郭可忠,叶雷.汽轮发电机失磁异步运行数学模型及数值仿真[J].汽轮机技术,1999,(41):237-240.
    [72]郭可忠凸极同步发电机的Canay模型和单相接地的计算[J].大电机技术. 1997,5:9-15.
    [73]梁艳萍,陆永平,朱宽宁,戈宝军.汽轮发电机失磁异步运行时转子端部漏磁参数与涡流损耗的分析计算[J].中国电机工程学报,2004,(24):112-115.
    [74]刘立军.大型汽轮发电机失磁过程及定子温度场计算与分析[D].哈尔滨理工大学,2007:32-41.
    [75]王建辉,黄放.汽轮发电机失磁异步运行转子三维涡流场分析及其参数计算方法[J].上海交通大学学报,1999,33(12):1498-1501.
    [76]曹志彤,候秉鑫,琚立祥.凸极同步发电机失磁动特性的有限元仿真与动态参数的研究[J].中国电机工程学报,1989,9(5):48-55.
    [77]任震,黄群古等.4种新的小波变换及其在发电机故障信号分析中的应用[J].电力系统自动化,2001,23(1):50-54.
    [78]朱洪波,王玉和,杨艳.小波变换在发电机失磁保护中的应用研究[J].高压电器,2003,39(5):55-60.
    [79]汤蕴璆.交流电机动态分析[M].北京:机械工业出版社.2005,91-95.
    [80]陶大军.能量变换器小值振荡与稳定性的基础研究[D].硕士学位论文.哈尔滨理工大学,2008.
    [81]梁艳萍.凸极能量变换器的电磁理论与数值计算研究[D].博士学位论文.哈尔滨工业大学,2005.
    [82]李基成.现代同步发电机励磁系统设计及应用[M].北京:中国电力出版社.2002.
    [83]胡敏强,黄学良等编著.电机运行性能数值计算方法及其应用.南京:东南大学出版社,2003,170-177.
    [84]许伯强,王祥珩,毕大强等.同步发电机多回路有限元耦合数学模型及其应用[J].电力系统及其自动化,2005,29(7):33-37.
    [85]梁振光,唐任远.大型变压器三维瞬态涡流场场路耦合模型[J].电工技术学报,2003 18(5):17-22.
    [86]孙宇光,王珩衍,桂林.场路耦合法计算同步发电机定子绕组内部故障的暂态过程[J].中国电机工程学报,2004,24(1):136-141.
    [87] DAVAT B,Ren Z,LAJOIE-MAZENC M. The Movement in Field Modeling[J]. IEEE Transactions on Magnetics, 1985, 21(6): 2296-2298.
    [88] DEMENKO J,A Movement Simulation in Finite Element Analysis of Electric Machine Dynamics[J].IEEE Transactions on Magnetics,1996,32(3):1553-1556.
    [89]阎秀恪.开关磁阻电机性能的场-路-运动耦合分析[D].博士论文,沈阳:沈阳工业大学,2005.
    [90]江健中,傅为农.斜槽异步电机的多截面有限元法分析.电工技术学报,1997,12(5):11-17.
    [91] HO S L,LI H L,FU W N,WONG H C.A Novel Approach to Circuit-field-torque Coupled Time Stepping Finite Element Modeling of Electric Machines[J] . IEEE Transactions on Magnetic , 2000 , 36(4) : 1886-1889.
    [92] DOUGHERTY J W,MINNICH S H. Finite Element Modeling of Large Turbine Generators-calcul-ations Versus Load Test Data . IEEE Transactions on Power A pparatus and Systems,1981,Vol.PAS-100:3921-3929.
    [93]李志强.自起动永磁电机动态过程的有限元分析与实验研究[D],博士学位论文.北京:华北电力大学,2009.
    [94]姚若萍,饶芳权.蒸发冷却水轮发电机定子温度场研究[J].中国电机工程学报,2003,23(6):87-90.
    [95]李伟力,周封,侯云鹏,程树康.大型电机转子温度场的有限元计算及相关因素的分析[J].中国电机工程学报,2002,22(10):85-90.
    [96]钟声玉,王克光.流体力学和热工理论基础[M].北京:机械工业出版社,1980:189-205.
    [97]魏永田,孟大伟,温嘉斌.电机内热交换[M].北京:机械工业出版社,1998:332-335.
    [98]白延年.水轮发电机设计与计算[M].北京:机械工业出版社,1982:167-169.
    [99]李伟力,侯云鹏,周封,等.大型水轮发电机定子股线导热的数值分析[J].中国电机工程学报,2001,21(7):115-119.
    [100]李伟力,靳慧勇,丁树业,等.大型同步发电机定子多元流场与表面散热系数数值计算与分析[J].中国电机工程学报,2005,25(23):138-143.
    [101]丁舜年.大型电机的发热和冷却[M].北京:科学出版社,1992:56-186.
    [102]付敏,李伟力,张东.水轮发电机气隙内磁场和转子温度场计算[J].哈尔滨工业大学学报,2003,35(9):1131-1134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700