铝合金电阻点焊分形接触电阻及对质量影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触电阻是铝合金电阻点焊焊接质量不稳定、电极烧损严重寿命短等问题的重要影响因素。现有的接触电阻模型难以准确反映出焊接表面状况、焊接材料的物性参数和点焊参数对接触电阻的影响,因此本文以接触电阻为核心进行了一系列研究。主要研究内容如下。
     首先,采用改进了的Weierstrass-Mandelbrot分形函数对电极和工件表面形貌进行了表征,根据分形理论建立了点焊前期的弹塑性接触模型,分析了点焊前期的微观接触行为,考察了各种物性参数对接触行为的影响。分析结果显示:分形维数表征了不同加工和处理过程产生的工件和电极的表面状态;点焊中所使用的铝合金板和电极表面都具有多重分形特征;对于给定的载荷和界面,当分形维数从1.30增大到1.90时,接触率在分形维数D = 1.50时达到最小;对于铝合金来说,电极/工件间接触率小于工件/工件间接触率。
     其次,在接触分析的基础上,构建了无氧化膜时接触电阻网络。将康托分形模型应用于氧化膜的开裂,建立了氧化膜存在时接触载荷作用下铝合金接触电阻分形模型,推导出氧化膜存在情况下的接触电阻公式。采用单板法和双板法对建立的分形接触电阻模型进行了实验验证。验证结果显示:建立的模型反映了实际电阻随接触压力的负指数变化,与实验测量的电阻曲线吻合。深入分析发现,该模型是前人建立的二级和三级电阻模型的一般情况,具有一定的普遍意义。结合接触分析和建立的氧化膜条件下接触电阻模型分析了点焊的形核过程,结果发现点焊熔核的起始形核具有离散性。
     最后,采用有限元方法模拟了计算所得接触电阻条件下直流点焊熔核的温度场和尺寸变化,并利用人工神经网络研究了焊接参数、熔核尺寸与熔核拉剪性能之间的非线性关系。研究结果说明:点焊熔核在形核时首先在径向方向增长,然后在厚度方向增大;样条插值拟合方法不能揭示出焊接参数、熔核尺寸与接头拉剪强度之间的非线性关系;BP神经网络是描述焊接参数、熔核尺寸和拉剪强度三者之间关系的有力工具,采用两个三层BP神经网络对熔核的拉剪强度进行了预测,预测误差在8%左右,预测结果可信。
Contact resistance is one of the main factors which influence the quality of weldment, the burning loss degree and life of electrode, etc. The models of contact resistance built as yet are difficult to describe the effect of surface morphology of workpiece and electrode, the physical properties of welding materials and the welding parameters on the contact resistance. To build a contact resistance model including the factors mentioned above, a series of studies around the contact resistance are performed. The main results obtained in this thesis are listed as follows.
     At first, the revised Weierstrass-Mandelbrot fractal function is utilized to characterize the surface morphology of electrode and workpiece, according to the fractal theory, the elastoplastic contact model at the early stage of resistance spot welding of aluminum alloy is setup, based on which the microcontact behaviors at the early stage of resistance spot welding of aluminum are analysized, but also the influences of all kinds of material physical parameters on the microcontact behavior are studied. It is found that the parameters of fractal dimension and fractal characteristic length characterized the surface morphologies of workpiece and electrode produced by different processing methods. The surfaces of electrode and workpieces are multifractal. For given load and interface, when fractal dimension changes from 1.30 to 1.90, the contact rate reaches the least value at 1.50. For aluminum alloy, the contact rate of Electrode/Workpiece is less than that of Workpiece / Workpiece.
     Secondly, based on the results of contact analysis, the network of contact resistance without oxide film on the surface is constructed, the Cantor set is applied to the crack of oxide film, the Cantor crack model of oxide film is presented, the fractal contact resistance model of aluminum under the contact load in which the effect of oxide film is considered is setup, the contact resistance formula with the oxide film is derived. The fractal contact resistance model is verified with the mono-plate and bi-plate methods, the results show that the resistance curve of this model agrees well with that of the experiment, and it reflects the negative exponent relationship between contact resistance and contact load. After detailed analysis, it is found that the model is the general case of two-level and three-level contact models built before, the model reflects a general law. The electrical contact resistance built combined with the contact analysis are utilized to describe the formation of nugget, it is found that the nugget initializes on many contact spots at the same.
     Finally, with the contact resistance caculated, the temperature field and the size of nugget are simulated using finite element method, the relationships between welding parameters, nugget size and the tension-shear strength are studied by artifical neural network. The results show that the nugget grows radially at first, and then expands in the direction of thickness. The spline fitting method can’t reflect the nonlinear relationship between the welding parameters, size of nugget and the tension-shear strength of nugget, but the BP artifical neural network can. The tension-shear strength is predicted using two BP neural networks with three-layers, the predictive error is about 8%, it means that the predictive result is reasonable, and the BP network can be used to predict the tension-shear strength and the size of the spot nugget.
引文
[1]黄佩贤.轻质材料铝合金在汽车上的应用[J].上海汽车, 2002, (1): 37~38.
    [2]欧阳明高.我国节能与新能源汽车技术发展战略与对策[J].中国科技产业, 2006, (2): 8~13.
    [3]郭志璜.生物柴油—绿色环保汽车燃料[J].精细石油化工进展, 2002,3(11): 13~20.
    [4]王柏龄.全铝车身的研究及发展[J].汽车工业研究, 2000, (6): 31~33.
    [5]曲晓锋.轻质材料在汽车上的应用[J].汽车与社会, 2001, (6): 41~43.
    [6]毛麒瑞.汽车轻量化与铝合金[J].金属世界, 2002, (6): 16~17.
    [7]许珞萍,邵光杰,李麟,等.汽车轻量化用金属材料及其发展动态[J].上海金属, 2002, 24(3): 1~7.
    [8]陈钊,兰琳.汽车用轻质材料的现状及展望[J].江汉大学学报, 2001, 18(3): 85~87.
    [9]邓泽英.汽车材料应用发展趋势[J].中国机电工业, 2002, (9): 29~31.
    [10]陆刚.铝、镁、钛合金与汽车[J].有色金属再生与利用, 2005, (4): 15~17.
    [11]邱竹贤.泥土中的铝—科技腾飞的使者[M]. ,北京,广州:清华大学出版社,暨南大学出版社, 2000.
    [12]姜银方,杨继昌,陈炜.铝拼焊板在车身覆盖件冲压成形中的应用研究[J].江苏大学学报:自然科学版, 2003, 24(2): 28~32.
    [13]钟涛.铝合金材料让汽车实现轻装上路的梦想[J].轻型汽车技术, 2002, (6): 74~74.
    [14]肖永清.铝合金是现代汽车轻量化的首选材料[J].铝加工, 2005, (5): 36~39.
    [15]张士林,任颂赞.简明铝合金手册[M]. ,上海:上海科学技术文献出版社, 2000.
    [16]朱正行,严向明,王敏.电阻焊技术[M]. ,北京:机械工业出版社, 2000.
    [17]罗震.铝合金电阻点焊过程质量检测及控制方法的研究[D].天津:天津大学, 2002.
    [18]程方杰.铝合金点焊中的接触电阻与电极烧损问题的研究[D].天津:天津大学, 2001.
    [19]毕惠琴.焊接方法及设备(第二分册电阻焊)[M].,北京:机械工业出版社, 1981.
    [20] Whitehouse D. J., Archard J. F. The properties of random surfaces of significance in their contact[J]. Proc. Roy. Soc. Lond., 1970, A316: 97~121.
    [21] Bush A. W., Gibson R. D. Strongly anisotropic rough surfaces[J]. ASME paper, 1978, : 78-Lub-16.
    [22] Nayak P. R. Random process model of rough surfaces[J]. Trans. ASME: J. Lub. Tech., 1971, 93F: 398~407.
    [23] Sayles R. S., Thomas T. R. The spatial representation of surface roughness by means of the structure function: a practical alternative to correlation[J]. Wear, 1977, 42: 263~276.
    [24] Sayles R. S., Thomas T. R. Surface topography as a nonstationary random process[J]. nature, 1978, 271: 431~434.
    [25] Thomas T. R. Defining the microtopography of surfaces in thermal contact[J]. Wear, 1982, 79: 73~82.
    [26] Bhushan B., Wyant J. C., Meiling J. A new three-dimensional non-contact digital optical profiler[J]. Wear, 1988, 122: 301~312.
    [27] Mandelbrot B. B. How long is the coast of Britain? Statistical self-simility and fractional dimension[J]. Science, 1967, 156(3775): 636~638.
    [28]伯努瓦B曼德布罗特(著),陈守吉,凌复华(译).大自然的分形几何学[M]. ,上海:上海远东出版社, 1998.
    [29] Mandelbrot B. B., de Passloja, Paulley A. J. Nature, 1984, (308): 721.
    [30] Majumdar A., Tien C. L. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, (136): 313~327.
    [31] Majumdar A., Bhushan B. Role of fractal goemetry in roughness characterization and contact mechanics of surfaces[J]. Transactions of the ASME: Journal of tribology, 1990, 112: 205~216.
    [32] Yan W., Komvopoulos K. contact analysis of elastic-plastic fractal surface[J]. Journal of applied physics, 1998, 84(7): 3617~3624.
    [33] Bhushan B., Majumdar A. Elastic-plastic contact model for bifractal surfaces[J]. Wear, 1992, (153): 53~64.
    [34] Russ J. C. Fractal surfaces[A]. Plenum[C]. New York: 1994.
    [35] Thomas T. R., RosénB-G, Amini N. fractal characterisation of the anisotropy of rough surfaces[J]. Wear, 1999, (232): 41~50.
    [36] EVidalVázquez, J. G. Vivas Miranda, APazGonzález. Characterizing anisotropy and heterogeneity of soil surface microtopography using fractalmodels[J]. Ecological modelling, 2005, (182): 337~353.
    [37]贺林,张长军,彭晓春.金属加工表面的分形特性[J].西安公路交通大学学报, 1996, 16(2): 117~120.
    [38]李成贵,董申,张国雄.表面粗糙度评定参数的分形表征[J].宇航计测技术, 1998, 18(4): 33~40.
    [39]苑寅秋,王珉,左敦稳.磨合匹配表面形貌的分形特性研究[J].机械工程学报, 2000, 36(12): 39~42.
    [40]周新聪,严新平,萧汉梁.磨损表面的分形特性研究[J].武汉理工大学学报(交通科学与工程版), 2003, 27(4): 433~435.
    [41]王炳成,褚祥志,任立义.磨损表面形貌分析中的小波变换和分形方法[J].控制与检测, 2005, (1): 69~71.
    [42]孙霞,吴自勤.规则表面形貌的分形和多重分形表述[J].物理学报, 2001, 50(11): 2126~2131.
    [43]王海容,蒋庄德,尹燕玲.切削加工表面分形机理的研究[J].机械科学与技术, 2002, 21(1): 13~15.
    [44] Thornton P. H., Krause A. R., Davies R. G. Contact resistance in spot welding[J]. Welding journal, 1996, 75(12): 402~412.
    [45] Crinon E., Evans J. T. The effect of surface roughness,oxide film thickness and interfacial sliding on the electrical contact resistance of aluminum[J]. Materials science and engineering A, 1998, 242: 121~128.
    [46] Na S. -J, Park S. -W. A theoretical study on electrical and thermal response in resistance spot welding[J]. Welding journal, 1996, 75(8): 233~241.
    [47] Greenwood J. A., Williamson J. B. P. Contact of nominally flat surfaces[J]. Proc.Roy.Soc. Lond., 1966, A295: 300~319.
    [48] Nayak P. R. Random process model of rough surfaces in plastic contact[J]. Wear, 1973, (26): 305~333.
    [49] Majumdar A., Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of tribology, 1991, 113: 1~11.
    [50] Komvopoulos K., Ye N. Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies[J]. Transactions of the ASME:Journal of tribology, 2001, 123(632-640):.
    [51]朱育权,马保吉,姜凌彦.粗糙表面接触的弹性、弹塑性、塑性分形模型[J].西安工业学院学报, 2001, 21(2): 150~157.
    [52]孟凡明,赵荣珍,张优云.多重分形表面的弹塑性接触模型研究[J].西安交通大学学报, 2002, 36(11): 1159~1162.
    [53] Cheng Fangjie, Shan Ping, Lian Jinrui,等. A mathematical model of rough surface contact characterization in spot welding[J]. China welding, 2001, 10(2): 81~87.
    [54]李宝清.铝合金电阻点焊过程的数值模拟及能量分析研究[D].天津:天津大学, 2002.
    [55] Xu Lijun. Proceedings of the ASME summer heat transfer conference[A]. Proceedings of the 2003 ASME summer heat transfer conference[C]. Las Vegas: American society of mechanical engineerings, 2003. 303~312.
    [56]梁彩平,李永兵,林忠钦.管板单边电阻点焊过程预压接触分析[J].焊接学报, 2006, 27(7): 29~33.
    [57] Savage W. F., Nippes E. D., Wassell F. A. Static contact resistance of series spot welds[J]. Welding journal, 1956, (11): 365~370.
    [58] Kaiser J. G., Dunn G. J., Eager T. W. The effect of resistance on nugget formation during spot welding[J]. Welding journal, 1961, (6): 167~174.
    [59] Greenwood J. A. Constriction resistance and the real area of contact[J]. Applied physics, 1966, 17: 1621~1632.
    [60] Lee A., Nagel G. L. Basic phenomena in resistance spot welding[J]. SAE.Trans., 1988, : 516~533.
    [61] Vogler M., Sheppard S. Electrical contact resistance under high loads and elevated temperature[J]. Welding journal, 1993, (6): 231~238.
    [62] Chihoski R. A. Variation in aluminum spot welds[J]. Welding journal, 1970, (December): 567~578.
    [63] Dorsey G. A., Gibbs F. E. Aluminum pretreatment to improve resistance spot weld tiplife[J]. SAE Technical paper, 1977, :.
    [64] Browne D. G., Chandler H. W., Evans J. T. Computer simulation of resistance spot welding in aluminum: part II[J]. Welding journal, 1995, 74(12): 417~422.
    [65] Thornton P. H., Krausel A. R., Davies R. G. contact resistance of aluminum[J]. Welding journal, 1997, (8): 331~341.
    [66] James P. S., Chandler H. W., Evans J. T.,等. The effect of mechanical loading on the contact resistance of coated aluminum[J]. Materials science and engineering A, 1997, 230: 194~201.
    [67] Li M. V., Dong P., Kimchi M. A contact resistance model for resistance spotwelding process: theory and implementation[A]. ICAWT97:highproductivity joining processes[C]. Columbus,Ohio: 1997. 357~369.
    [68] Chang B. H., Li M. V., Zhou Y. Comparative study of small scale and 'large scale' resistance spot welding[J]. Science and technology of welding and joining, 2001, 6(5): 1~8.
    [69] A. Majumdar, C.L. Tien. Fractal network model for contact conductance[J]. Transactions of the ASME: Journal of heat transfer, 1991, 113: 516~525.
    [70] Michael T. Singer, Kristopher Kshonze. Electrical resistance of random rough contacting surfaces using fractal surface modeling[A]. Proceedings of the thirty-seventh IEEE Holm conference on electrical contacts[C]. Chicago, Illinois, USA: Illinois inst of technology, 1991. 73~82.
    [71] L Kogut, K Komvopoulos. Electrical contact resistance theory for conductive rough surfaces[J]. Journal of applied physics, 2003, 94(5): 3153~3162.
    [72] L. Kogut, K. Komvopoulos. Electrical contact resistance theory for conductive rough surface separated by a thin insulating film[J]. Journal of applied physics, 2004, 95(2): 576~585.
    [73] J.A. Greenwood. Temperature in spot welding[J]. British welding journal, 1961, 8(6): 316~322.
    [74] J.G. Kaiser, J.G. Dunn, T.W. Eager. The effect of resistance on nugget formation during spot welding[J]. Welding journal, 1961, (6): 167~174.
    [75] W. Rice. Analytical investigation of temperature distribution during resistance welding[J]. Welding journal, 1967, 46(4): 175~186.
    [76] T. Yamamoto. Finite difference analysis of resistance spot welding[J]. Welding in the world, 1972, 9(7/8): 234~255.
    [77] J.E. Gould. An examination of nugget development during spot welding using both experiment and analytical technique[J]. Welding journal, 1987, 66(1): 1~10.
    [78] H.S. Cho, Y.J. Cho. A study of thermal behavior in resistance spot welds[J]. Welding journal, 1989, 68(6): 236~244.
    [79] Z. Han, J. Orozco, J.E. Indacochea,等. Resistance spot welding: A heat transfer study[J]. Welding journal, 1989, 68(9): 363~371.
    [80] P.S. Wei, C.Y. Ho. Axisymmetric nugget growth during resistance spot welding[J]. Transactions of the ASME: Journal of heat transfer, 1990, 112(2): 309~316.
    [81] P.S. Wei, C.Y. Yeh. Factors affecting nugget growth with mushy-zone phase change during resistance spot welding[J]. Transactions of the ASME: Journal of heat transfer, 1991, 113(8): 643~649.
    [82] K. Nishiguchi, K. Matsuyama. Influence of current wave form on nugget formation phenomena when spot welding thin steel sheet[J]. Welding in the world, 1987, 25(11/12): 222~244.
    [83] A.H. Nied. The finite element modeling of the resistance spot welding process[J]. Welding journal, 1984, 63(4): 123~132.
    [84] C.L. Tsai, O.A. Jammal. Modeling of resistance spot weld nugget growth[J]. Welding journal, 1992, 71(2): 47~54.
    [85] De Amitava. Numerical modeling of resistance spot welding using FEM[J]. M. Tech. thesis. I.I.T.Kharagpur, 1990, :.
    [86] O.P. Gupta, De Amitava. An improved numerical for resistance spot welding process and its experimental verification[J]. Transactions of the ASME: Journal of manufacturin science and engineering, 1998, 120(2): 2465-251.
    [87] H. Huh, W.J. Kang. Electrothermal analysis of electric resistance spot welding processes by a 3-D finite element method[J]. Journal of materials processing technology, 1997, 63: 672~677.
    [88] L. Xu, J.A. Khan. Nugget growth model for aluminum alloys during resistance spot welding[J]. Welding journal, 1999, 78(11): 367~372.
    [89] Jamil A. Khan, Kirk Broach, A.A.S. Arefin Kabir. Numerical thermal model of resistance spot welding in aluminum[J]. Journal of thermophysics and heat transfer, 2000, 14(1): 88~95.
    [90] W.V. Alcini. Experimental measurement of liquid nugget heat convection in spot welding[J]. Welding journal, 1990, 69(4): 177~180.
    [91] de A., M.P. Thaddeus, L. Dorn. Numerical modeling of resistance spot welding of aluminum alloy[J]. ISIJ international, 2003, 43(2): 238~244.
    [92] X. Sun, M.A. Khaleel. Resistance spot welding of aluminum alloy to steel with transition material-part II: finite element analyses of nugget growth[J]. Welding journal, 2004, 83(7): 197~202.
    [93]曹彪.点焊熔核过程的有限元模拟及热膨胀法实时控制[D].哈尔滨:哈尔滨工业大学, 1991.
    [94]曹彪,姜以宏,王建一.点焊熔核形成过程的有限元模拟[J].机械工程学报, 1995, 31(2): 99~104.
    [95]王春生,赵熹华,殷世强.异质金属Fe-Ni电阻熔核形成过程三维数值模拟[J].中国机械工程, 2000, 11(4): 449~451.
    [96]龙昕,汪建华.电阻点焊温度场分布的数值模拟[J].上海交通大学学报, 2001, 35(3): 416~419.
    [97]林忠钦,胡敏.轿车白车身点焊装配过程有限元分析[J].焊接学报, 2001, 22(1): 36~40.
    [98]程方杰,单平,廉金瑞,等.铝合金点焊前期温度场特性的研究[J].机械工程学报, 2002, 38(10): 95~99.
    [99]程方杰,单平,廉金瑞,等.铝合金电阻点焊的形核特点[J].焊接学报, 2003, 24(2): 35~3843.
    [100]常保华,都东, Zhou Y.铝合金电阻点焊过程的有限元模拟[J].焊接学报, 2004, 25(2): 19~22.
    [101] Wang Chunsheng, Chen Yong, Han Fengwu,等. Numerical simulation on temperature field for resistance spot welding of non-equal thickness stainless steel[J]. Welding research abroad, 2004, 50(3): 35~39.
    [102]吴志生,杨新华,单平,等.铝合金点焊电极端面温度数值模拟[J].焊接学报, 2004, 25(6): 15~1826.
    [103]雷鸣,王敏,殷美庆.镀锌钢板点焊过程的有限元模拟[J].上海交通大学学报, 2005, 39(7): 1033~1037.
    [104] Hou Zhigang, Wang Yuanxun, Li Chunzhi, etc. An analysis of resistance spot welding[J]. Welding journal, 2006, 85(3): 36~40.
    [105] Mandelbrot B. B. Fractal: form, chance and dimension[M]. San Francisco:Freeman, 1977.
    [106] Mandelbrot B. B.The fractal geometry of nature[M]. San Francisco:Freeman, 1982.
    [107]张济忠.分形[M].北京:清华出版社, 1995.
    [108]李厚强,程光钺.分形与分维[M].成都:四川教育出版社, 1990.
    [109]孙霞,吴自勤,黄畇.分形原理及应用[M].合肥:中国科学技术大学出版社, 2003.
    [110]陈颙,陈凌.分形几何学[M].北京:地震出版社, 1998.
    [111] Berry M. V., Lewis Z. V. On the Weierstrass-Mandelbrot fractal function[J]. Proc. R. Soc. London, Ser.A, 1980, 370: 459~484.
    [112] A. Majumdar, C.L. Tien. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, 136: 313~327.
    [113]贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报, 1996, 16(4): 375~384.
    [114]赵兰萍.低温固体界面间接触传热的研究[D].上海:上海交通大学, 2000.
    [115] KLJohnson(著),徐秉业,罗学富等(译).北京:高等教育出版社, 1992.
    [116]谢友柏,陈国定.用测量接触电阻研究实际接触面积的变化[J].摩擦磨损, 1986, 2: 40~44.
    [117] B. Bhushan. The real area of contact in polymeric magnetic media II: experimental data analysis[J]. ASLE Transaction, 1985, 28: 181-197.
    [118]程礼椿.电接触理论及应用[M].北京:机械工业出版社, 1985.
    [119]刘向军,费鸿俊.电接触的接触电阻研究进展[J].上海电器技术. 1999(3): 3-7.
    [120]全仲余.接触电阻分布形式的讨论[J].上海电器技术. 1991(4): 10-12.
    [121]程礼椿,李震彪.接触电阻模型发展与应用[J].低压电器. 1993(5): 10-14.
    [122]程礼椿.论接触电阻模型与应用问题[J].高压电器. 1993(2): 34-40.
    [123] Kui Li. The approach to predication of contact reliability for relay[C]. xi'an, P.R.China: 1997.
    [124]程礼椿.电接触电阻及应用[M].北京:机械工业出版社, 1988.
    [125] Holm R. Electric contacts theory and application[M]. Berlin/Heidelberg/New York: Springer-Verlag, 1967.
    [126] [民主德国]H霍夫特, HG施奈德.电接触[M].北京:机械工业出版社, 1988.
    [127] Williamson J.B.P. The microworld of the contact spot[C]. Chicago: 1981.
    [128] Malucci R.D. Multispot model of contacts based on surface features[C]. Montreal: 1990.
    [129]林晶,张冠生.接触电阻数学模型研究[J].电工技术学报. 1995(4): 60-6345.
    [130] Majumdar A., Tien C.L. Fractal network model for contact conductance[J]. Transactions of the ASME:Journal of heat transfer. 1991, 113: 516-525.
    [131] T. F. Page P.M.Ramsey, H.W.Chandler. Modelling the contact response of coated systems[J]. Surface and coatings technology. 1991, 49(3): 504-509.
    [132] M. R. McGurk, H. W. Chandler, P. C. Twigg, et al. Modelling the hardness response of coated systems: the plate bending approach[J]. Surface and coatings technology. 1994, 68/69: 576-581.
    [133] Gerberich W.W., A. Strojny, K. Yoder, et al. Hard protective overlayers onviscoelastic-plastic substrates[J]. Journal of materials research. 1999, 14: 2211-.
    [134] N. G. Chechenin, J. Bottiger, J. P. Krog. Nanoindentation of amorphous aluminum oxide films II. Critical parameters for the breakthrough and a membrane effect in thin hard films on soft substrates[J]. Thin solid films. 1995, 261: 228-235.
    [135] E. Weppelmann, M. V. Swain. Investigation of the stresses and stress intensity factors responsible for fracture of thin protective films during ultra-micro indentation tests with spherical indenters[J]. Thin solid films. 1996, 286: 111-121.
    [136] M. Pang, D. F. Bahr. Tin-film fracture during nanoindentation of a titanium oxide film-titanium system[J]. Journal of materials research. 2001, 6(9): 2634-2643.
    [137] D. F. Bahr, C. L. Woodcock, M. Pang, et al. Indentation induced film fracture in hard film-soft substrate systems[J]. International journal of fracture. 2003, 119/120: 339-349.
    [138] D. R. Milner, G. W. Rowe. Fundamentals of solid-phase welding[J]. Metallurg. rev. 1962, 7(28): 433-480.
    [139] J. Ball, J. A. Treverton, M. C. Thornton. Evaluation of the effects of stresses in hot rolling mills on oxide films on aluminum[J]. Lubr.Eng. 1994, 50: 89-93.
    [140] H. R. Le, M. P. F. Sutcliffe, P. Z. Wang, et al. Surface oxide fracture in cold aluminum rolling[J]. Acta materialia. 2004, 52: 911-920.
    [141]吴万春,等.电磁场理论[M].北京:电子工业出版社. 1985.
    [142]孔祥谦.有限元法在传热学中的应用(第三版)[M].北京:科学出版社, 1998.
    [143]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社, 1988.
    [144]赵祖德,等.铜及铜合金材料手册[M].北京:科学出版社, 1993.
    [145]武恭,等.铝及铝合金材料手册[M].北京:科学出版社, 1984.
    [146]田荣璋,王祝堂.铝合金及其加工手册[M].长沙:中南工业大学出版社, 2000.
    [147]中国航空材料手册编辑委员会.中国航空材料手册:铜合金[M].北京:中国标准出版社, 1984.
    [148]中国航空材料手册编辑委员会.中国航空材料手册:铝、镁、钛合金[M].北京:中国标准出版社, 1984.
    [149]轻金属材料加工手册编写组.轻金属材料加工手册[M].北京:冶金工业出版社, 1980.
    [150]重有色金属材料加工手册编写组.重有色金属材料加工手册[M].北京:冶金工业出版社, 1980.
    [151]美国ANSYS公司. ANSYS热分析指南[Z].北京:美国ANSYS公司北京办事处, 2001.
    [152]杨世铭.传热学[M].北京:高等教育出版社, 1980.
    [153]物理学大辞典编辑组.物理学大辞典[M].香港:中外出版社, 1979.
    [154] (美) L. F.蒙多尔福(著),王祝堂等(译).铝合金的组织与性能[M].北京:冶金工业出版社, 1988.
    [155] Pollock, Daniel. D. Thermoelectricity: theory, thermometry, tool[M]. Philadelphia, PA: ASTM, 1958.
    [156]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社, 2001.
    [157]韦巍.智能控制技术[M].北京:机械工业出版社, 2003.
    [158]朱旭红.利用BP神经网络进行跳高专项成绩预测[J].山西体育科技, 2004, 24(3): 30-31,29.
    [159]苏娟华,董企铭,刘平,李贺军等.基于人工神经网络的铜合金形变热处理工艺和性能[J].中国有色金属学报. 2003, 13(5): 1077-1082.
    [160]王生朝,程晓茹. BP神经网络在热轧中厚板力学性能预测中的应用[J].武汉科技大学学报(自然科学版)[J]. 2004, 27(1): 15-17.
    [161]刘佳,贾树盛,刘伟.用人工神经网络模型预测灰铸铁件的性能[J].铸造. 2004, 53(2): 126-128.
    [162]蔡安辉,刘永刚,孙国雄.基于正交实验的BP神经网络预测研究[J].中国工程科学. 2003, 5(7): 67-71.
    [163]杨志远.普通混凝土强度预测的BP神经网络模型[J].长安大学学报(自然科学版). 2003, 23(3): 50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700