现场装配式小型水窖结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在我国雨水集蓄中多以胶泥、水泥砂浆抹面或混凝土防渗来修建水窖或蓄水池等作为雨水存储设施。针对现有水窖建设周期长、费用高,且较深的水窖或蓄水池施工危险、成窖过程技术要求高,大规模施工质量难以保证,成窖后水窖易渗漏,水质得不到保证等现状,研究开发快速成窖集雨蓄水技术是发展雨水利用技术的迫切要求。本研究通过实地调研、理论分析、结构计算,设计出现场成型水窖,取得如下研究结果:
     (1)研究了一种新型竹塑复合材料装配式水窖。首先利用有限元分析软件ANSYS对六边形和八边形水窖进行结构应力分析,分析结果表明:在相同厚度下,八边形装配式水窖承受应力状况要优于六边形设计,两种形式水窖,最大拉、压应力均发生在板件相接处与窖底。以水窖耗材量最小为目标函数,以材料许用应力和应变为约束条件,在满足水窖强度和刚度的条件下,对八边形水窖结构尺寸进行优化设计,提出加单围箍装配式水窖、局部加厚装配式水窖、加双围箍装配式水窖以及局部加厚且加单围箍装配式水窖等不同装配方案。优化分析结果表明:局部加厚及加单围箍的八边形竹塑复合材料装配式水窖耗材料少,空载情况下的窖壁最小厚度为7.2 mm,满载情况下的窖壁最小厚度为6.3 mm,以此为基础,可以制作新型竹塑复合材料装配式水窖
     (2)研究了一种中空PVC-U板材缠绕式水窖。首先利用有限元分析软件ANSYS对不同宽深比(1/2、1/1、和2/1)、不同壁厚(12、16、21、27、31和36 mm)的中空PVC-U板材缠绕式水窖进行空间结构应力分析,然后对容积为10m3、宽深比为1的水窖进行优化设计,结果表明:圆柱形水窖的拉压应力集中在水窖底部,空载为最不利工况,容积为10 m3,水窖壁厚为31 mm和36 mm、宽深比为2时,水窖在最不利工况下受到的应力满足要求。经水窖优化设计得出,窖壁厚度为12 mm,其底部加厚度为27 mm,高度为0.382 m的围箍,符合强度与刚度要求且造价最低。根据此计算结果,可现场制作PVC-U板材缠绕式水窖。
     (3)开发了水窖结构有限元计算模型。采用有限元分析法构建水窖结构有限元分析模型,利用其内置参数化语言APDL建立了新型水窖的有限元分析命令流,在此基础上利用UIDL界面设计语言,将新型水窖的计算过程制作成菜单和功能对话框,添加在有限元分析软件ANSYS的界面中去。
     (4)评价了新型水窖的适用性。对竹塑复合材料装配式水窖和PVC-U缠绕式水窖与混凝土水窖和砖水窖相比较,结构表明两种新型水窖具有造价低、经济效益好、材料运输方便、施工简单、施工量小、施工期短的优点;与柔性环保橡塑水窖比较,造价相对较高,但是其具有直立性能,更易应用推广。初步分析认为新型水窖具有很好的适用性。
At present, China harvesting rainwater mostly used the clay, cement mortar or concrete spread plate the building of water tanks and cisterns surface to impermeableness, as storage facilities. For current water tank has too long building time, high investment, deeper water tanks or cisterns have construction risk and need the technically demanding, difficult to ensure the construction quality of large-scale, easily leak after build the water tank and the water quality can not be guaranteed, the quickly build water harvesting technology is the urgent requirement of developing technology of rainwater utilization. Through field research, theoretical analysis, structural calculation and so on, we studied out spot assembled water and obtained the following conclusion:
     (1) This paper developed a new multiunit material with bamboo and plastic water tank, by solving the problems of tank construction——difficulty to construction, high costs and lack of structure and size theoretical basis. Firstly, this paper had calculated the stress distribution of two water tanks with the same wall though analyzing the water tank structure by ANSYS software. The results showed: the ability of octagon assembled water tank suffering from stress is superior to the ability of hexagon assembled water tank; the pulling and crushing stress consisted in the panel joints and the bottom of two kinds of water tanks. Then, this paper carried on the structure and size optimization design of octagon water tank, with the minimum of water tank materials used as the objective function and allowable stress of the material as the constrain condition, satisfying the intensity and rigidity conditions of water tank, there were five difference assembly programs, respectively assembled octagon water tank, adjunction a enclose hoop assembled water tank, partially-thick assembled water tank, adjunction two enclose hoops assembled water tank and adjunction a enclose hoop partially-thick assembled water tank. The results showed: partially-thick octagon assembled water tank of the multiunit material with bamboo and plastic need less material; the least thickness of wall is 7.2 mm under unload, the least thickness of wall was 6.3 mm under full-load. So the new assembled water tank of multiunit material with bamboo and plastic could be built.
     (2) This paper invented a new hollow PVC-U plates intertwined water tank. This paper analyzed the structural stress of the different breadth depth ratio (1/2, 1/1, 2/1) and different thickness(12, 16, 21, 27, 31, and 36 mm) hollow PVC-U plates intertwined water tank by ANSYS software. The results showed: the stress consisted in the bottom of cylindrical water tank. No-load is the most unfavorable conditions. Water tank has a capacity of 10 m3 the breadth depth ratio is 2/1, which stress satisfied the specification under the no-load when the wall of water tank is 31 mm and 36 mm. This paper optimized design with the lowest cost for objective function in order to reduce the cost of the tank. The results showed: the water tank has the lowest cost and satisfied strength and rigidity requirement when 1.17 m in radius, 2.43 m in height, 12 mm thickness of tank wall, and has a the 27 mm in thickness and 0.382 m in height of enclose hoop. Based on this, hollow PVC-U plates intertwined water tank could be built.
     (3) Developed ANSYS calculate model of new assembled water tank. This research solved new type water tank structure calculation problem, through ANSYS analysis to creation water tank ANSYS model, used its built-in parameters of language APDL to creation ANSYS order flow, on this basis use UIDL interface to design language, make these calculation system to menu and function dialog box, add to ANSYS interface, this way not only reduce the workload, but also improve efficiency.
     (4) Evaluated the applicability of the new water tank. Through evaluated the applicability of difference material water tank, and compared with concrete and brick water tank, multiunit material with bamboo and plastic water tank and PVC-U winding water tank had low cost, economic efficiency, lighter transport, easier to installation, saved construction work hours and short construction period advantages. Compare with soft green rubber water tank, they were high cost and low economic benefits, but they had better vertical performance and easy to promotion. Preliminary think spot assembled water tank has a good applicability.
引文
北京燕山滴灌技术开发研究所.1996.水窑(窖)蓄水滴灌技术.节水灌溉,3: 50-51
    博弈工作室.2004. APDL参数化有限元分析及其应用实例.北京:水利水电出版社,178- 217.
    曹光荣,张祥艳.2002.装配式水窖在饮水解困工程中的应用.中国水利,9:67-69
    陈维杰.2006.井式水窖在豫西砂丘区的应用.中国农村水利水电,3: 63-65.
    陈国良,徐学选,程积民,等.1996.窑窖农业是干旱山区发展高效农业的一条新路.水土保持研究,1:45-46
    陈精一,蔡国忠.2001.电脑辅助工程分析—ANSYS使用指南.北京:中国铁道出版社,25-42
    陈国良,徐学选.1995.黄土高原雨水利用技术与发展---窑窖节水农业是缺水山区高效农业的出路.水土保持通报,5:6-9
    段进,倪栋,王国业.2006.ANSYS10.0结构分析从入门到精通.北京:兵器工业出版社, 23-121.
    董龙梅,杨涛,孙显.2008基于ANSYS对压力容器的应力分析与结构优化.机械设计与制造,6:99-100
    丁昌,汪荣顺. 2007.ANSYS在低温压力容器应力分析与优化设计中的应用.低温与超导, 35(6):455-462
    丁占稳.2007.集雨水窖结构和材料优化研究[硕士论文].华北水利水电学院,40-47
    方朝阳,王海波,刘炜.2004.装配式薄壁混凝土水窖研究.中国农村水利水电,12:77-81
    范钦珊,施燮琴,1989.孙汝劼.工程力学.北京:高等教育出版社,273-301
    郭增强,赵玉成,王海亮.2004.土中球形爆破衬砌承载力的研究.铁道建筑,4:34-36
    高建恩.2005.一种柔性环保橡塑水窖及其制备方法, 200510096014.9
    何振国,吴兴亚,何光耀.1997.塑料棚膜防渗储水窖在旱地集雨节灌工程中的应用初探.甘肃农业科技,7:15-16
    何世玉.2001.混凝土薄壳球形水窖的结构与建设效果.中国水土保持,3: 19-20
    黄牧村,蔡明涛,徐强.2004.基于有限单元法的地下埋管结构的受力分析.广东水利电力,8:4-5
    江刚.2003.世界人均水资源日趋短缺.中国环境科学, 14,1657
    贾宏骥,郭新禧.2003.机械化塑衬水窖施工工艺的应用.中国农村水利水电, 04:40-41
    阚前华,谭长建,张娟,等.2006.ANSYS高级工程应用实例分析与二次开发.北京:电子工业出版社: 28-26.
    李云岚,李沛润.1999.试论辽西利用水窖保水抗早的可行性田.水土保持科学.2002年第二期[11]青海省水利厅.青海省东部干早山区集雨节灌工程技术指导手册.西宁:青海人民出版社,17-19.
    李红,任村.2008.窑窖集雨容积计算.陕西农业科学,1:220-222
    李志刚,冯勇,王峰,等.2005.基于参数优化理论的某薄壁压力容器设计.弹箭与制导学报, 25(4):443-445
    李新城.2000.材料成形学.机械工业出版社,112-115
    蔺艳琴,揣成智.1999.天然植物纤维增强热塑性塑料.塑料, 28(5):35-38.
    娄奕红,刘喜元,彭俊生.2005.地下结构与周围介质相互作用的计算分析闭.中南公路工程.30(3):99-101.
    娄宗科,党进谦,许永功,等. 2001.黄土地区水窑窖设计参数与施工技术研究.水土保持通报,3:14-19
    刘元勋,邓抒豪.2005.地下厂房围岩稳定分析探讨.人民珠江,1:40~42
    刘昌明,瞿好辉. 1998.中国雨水利用研究文集.北京:中国矿业大学出版社,156-161
    陆吾华,侯作启.2005.橡胶坝设计与管理.中国水利水电出版社,132-138
    路炳军,温美丽,路文学.2004.黄土高原西部雨养农业区集雨水窖的主要类型及其效益分析.干旱区资源与环境,2: 71-75
    冒建华,姚春梅,雷廷武.2003.窑窖滴灌系统输水管路的优化布置.农业工程学报,4:70-73
    糜嘉平.1999.我国新型模板的发展动向.建筑技术, 30(8):546-549.
    钱焕延.1988.计算方法.上海交通大学出版社,3.
    裘民洲.1980.具有蓄水池的大型水塔自动控制.江苏冶金,1:6
    任朝阳.2002.南方山区水窖建设技术要点.中国水土保持,12:35-36
    沈红膺,贺永生.2000.浅谈内蒙古干早半干早山丘区雨水利用技术.内蒙古水利,4:18-20
    苏德荣,冯会胜,陈垣.2004.埃塞俄比亚的集水技术.中国农村水利水电,8:101-104
    史慧珍,徐学选,张世彪.2001.黄土高原窑窖集水工程技术探讨.水土保持通报,2:45-47
    王克勤,孟著玲.1996.国内外农林业集水技术的研究进展.干旱地区农业研究,14(4): 109-117
    王国铭.1986.建设旱水窖提高生物成活率.中国水土保持,9:56
    王让学. 2008.提高陕西黄土高原窑窖蓄水效益.水利与建筑工程学报, 1:76-78
    王志堂,张文英,曹海霞.2002.海东地区球形水窖的设计与施工要点介绍.青海大学学报(自然科学版).12:22-23
    王富强,芮执元,魏兴春.2006.基于APDL语言的结构优化设计.科学技术与工程,6(12):3405-3408
    王俊杰,柴贺军.2008.车辆荷载下饱和路基挡墙主动土压力计算.岩土工程学报,30(3):372-378.
    王键,朱兴平. 1996半干早区降水资源高效利用技术研究.中国水土保持,37-41.
    吴普特,黄占斌,高建恩,等.2002.人工汇集雨水利用技术研究.黄河水利出版社,115-118
    吴自强,唐四丁等.2002.废旧聚丙烯回收利用技术的现状及发展趋势.再生资源研究, 1:25-27.
    吴明舒.2003.管窖结合开发山涧溪流的探讨.水资源保护,2: 56-57
    吴尚贤.1982.水窖—解决干旱地区人畜饮水的途径.中国农村水利水电, 2:5-6
    吴科如,张雄.1999.建筑材料.同济大学出版社,212-216
    吴英彪,周志刚等. 2006.采用PVC-U缠绕管非开挖修复排水管道.中国给水排水, 22(24): 101- 103.
    肖加余.2000.高性能天然纤维复合材料及其制品研究与开发现状.玻璃钢/复合材料, 2:38-43.
    肖克飚,高建恩,吴普特.2005.新型拼装式集雨水窖研发可行性探讨.灌溉排水学报,12: 176-178.
    肖克飚.2006.一种拼装式集雨水窖结构优化设计[硕士论文].杨凌:西北农林科技大学:8-13
    杨建北,周孚明.1992.混凝土薄壳水窖.中国水土保持,10: 19-21
    杨连海.1996.窑窖集水微灌技术的应用效果和推广价值.固原师专学报,6:19-20
    严云. 2004.基于ANSYS参数化设计语言的结构优化设计.华东交通大学报, 21(4): 52-55
    于丽萍.2003.水窖节灌配套技术.西北水资源与水工程, 2:13
    张光辉,陈致汉.1997.雨水集流用水窖的主要类型及其效益.水土保持通报,12: 57-60.
    张祖新,龚时宏,王晓玲,等.2000.雨水集蓄工程技术.中国水利水电出版社:35-42
    张仕华,朱德兰,高建恩,等.2009.混凝土薄壳球形水窖结构的优化设计.西北农林科技大学学报(自然科学版),9:214-218
    张连江.1993.塑料棚顶水窖贮藏黄瓜效果好.中国蔬菜,6:20-22
    张仕华,朱德兰,高建恩.2009.圆拱直墙式水窖应力分析与结构优化.人民黄河,7.84-86
    赵安赤.1990.发展新型塑料建筑模壳前景广阔.塑料, 19(4):38-40.
    赵义平,刘敏江等.2001.热塑性树脂/植物纤维复合材料的纤维改性方法.中国塑料,15(12):19-20.
    朱强,李元红.1998.论雨水集蓄利用技术.中国雨水利用研究文集.北京:中国矿业大学出版社,196-201.
    邹蓝.1992.巨人的跋足:中国西部贫困地区发展研究.哈尔滨:黑龙江人民出版社,117-121
    中交公路规划设计院有限公司.2004.JTGD60—2004公路桥涵设计通用规范.北京:人民交通出版社,12-15
    赵松年,佟杰新.1999.现代设计方法.北京:机械工业出版社,210-212
    河南省水利厅.2006年河南省水资源公报.
    ANSYS UIDL Programmer's Guide. ANSYS Inc [Z],2002Ali, PatnaikU, Prakash. 2001.Drought analysis using rainfall data at Koraput for sustained agriculture. Journal of the Institution of Engineers (India): Agricultural Engineering Division, (12), V 82:41-45.
    Erdogan Madenci, Ibrahim Guven.2007.The Finite Element Method and Applications in Engineering Using Ansys .Springer US:248-249.
    FAO.1987. Soil and water conservation in semi-arid areas. Soil bulletin No. 57.FAO, Rom. Janice, Trautner, Richard et al.1992.A Systems Reliability Approach to the Safety of Stee1Connections, Probabilistic Mechanics and Structural and Geotrch Nical Reliabity ,U.S.A. July 8-10:495-498.
    Nega, Kimeu.2002. Low-cost methods of water harvesting. Nairobi.2002.
    Zhai Haohui. 2004.Ensuring Safe Drinking Water for Rural Areas Under A Sustainable & Human-Oriented Policy. Address at the High-Level International Conference on Millennium Development Goals, 8:6.
    Kjellson, Lena. 1984.Decision Model for Problems in Connection With Cellar Flooding. Chalmers Univ of Technology:715-722.
    Li Xiaoyan, Gong Jiudong,GaoQianzhao.2000.Rainfall harvesting and sustainable agriculture development in the Loess Plateau of China. China Desert,20(2):150-153.
    MDjoudi, Bahai. 2003.A shallow shell finite element for the linear and non-linear analysis of cylin-drical shells. Engineering Structures, 16(2):150-153
    Macan,John, Maqill.1977.Sea-floor Cellar Used in Shallow Folating drilling. Oil and Gas Journal,10(5): 120-122,127-130.
    Nissen-Petersen. 1998.Ten water tanks for roof and ground catch-ments. ASAL Consultants, Nairobi. Nissen-Petersen, Lee.1990.water tanks with guttering and hand pump. ASAL Consultants, Nairobi.. Honarmand, Abbaspour, el tal.2007. Processor Description in APDL for Design Space Exploration of Embedded Processors.Ieee Ewdts,Yerevan, 9:405-410.
    Zienkiewicz, Robert.2005.The Finite Element Method: Its Basisand Fundamentals. Butterworth Heinemann Publications,518-520.
    Rekaitis, Ragsdell.1983. Engineering Optimization-Methods and Applications, New York, John Wiley and Sons,
    Sandi ,Caulfield,Rowelll .1994.Plastie Engineering,April,27.
    Segrlind. 1984.Aoolied Finite Element Analysis , 2D ed., New York:John Wiley and Sons, Fan, Luah. 1995 Free Vibration Analysis of Arbitrary Thin Shell Structures by Using Spline Finite Element. Journal of Sound and Vibration
    Hedia,Abdel-Shafi, Fouda. 2002.Shape optimization of metal backing for cemented acetabular cup. Bio-Medical Materials and Engineering, 10(2): 73-82.
    Stone. 1978.Installation of a Deep-water, Subsea Completion System. Journal of Petroleum Technology, 10:1392-1402.
    T.YTong,RJ.Yang.1993.Robust Structural System Design Using A System Reliability-Based Design, Probabilistrc Structural Mechanics,USA June 7-10:534-549.
    TephenLGarvm,CarolynSHayles.1999.TFIE chemical compatibility of cement-bentonite cutof wall material.Construction and Materials. 13:329 -341.
    Zienkiewicz. 1977.The Finite Element Method. New York, McGraw-Hill,P112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700