竹材Co~(60)γ射线辐照效应及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用γ射线辐照处理竹材,研究竹材的理化性质,具有重要的理论意义和应用价值。本文以毛竹(Phyllostachys pubescens Mazel ex H de Lehaie)为研究对象,将竹材进行γ射线辐照处理,辐照剂量设置为:10KGy、20KGy、30KGy、50KGy、100KGy、300KGy、500KGy、1000KGy。通过对不同辐照剂量处理的竹材微观构造、物理力学和化学性质等的变化规律,初步揭示了竹材γ射线辐照效应、机理。并在此基础上,开展γ射线辐照技术在竹材防霉中的应用研究。研究结果为γ射线辐照技术在竹材功能性改良领域中的应用奠定了重要的理论基础。该方法有望成为竹材功能性改良的新手段,并对包括木材在内的其它天然生物质材料功能性改良具有良好的借鉴意义。
     论文主要结论如下:
     (1)分别利用场发射环境扫描电镜、X射线衍射仪对竹材横切面和微纤丝角进行表征,发现γ射线对竹材的维管系统、基本组织等没有明显损伤,对微纤丝角的影响也不明显,辐照过程中竹材细胞壁未发现有皱缩、断裂等现象。竹材的微观构造和微纤丝角均不是影响辐照过程中竹材物理、力学性能变化的主要因子。
     (2)利用核磁共振波谱仪、X射线衍射仪以及传统的竹材化学成分含量测试手段,对竹材细胞壁主要化学组分的结构和性质进行检测。结果表明,在辐照初期,竹材内半纤维素发生降解,并且其部分降解产物与纤维素、木质素等发生聚合反应,致使半纤维素含量降低,纤维素、木质素含量有所升高,竹材的相对结晶度升高。当辐照剂量升高至100KGy左右时,竹材主要化学组分的降解反应加剧,纤维素、半纤维素和木质素的含量均呈现降低趋势,竹材相对结晶度也有所降低,并且降低的幅度随着辐照剂量的增加而增大。
     (3)γ射线辐照竹材以后,使竹材细胞壁的主要化学组分发生反应,产生氢键、羰基、羧基和酚类物质等,降低了竹材的吸湿性能。而木质素的降解则导致竹材表面颜色变暗,但同时也提高了竹材表面颜色的光稳定性。竹材吸湿性能和表面颜色特性的变化幅度随辐照剂量的增加而不断增大。
     (4)γ射线辐照初期,纤维素、木质素等发生聚合反应,使竹材的弦向抗弯强度、顺纹抗拉强度有所升高。半纤维素的降解则导致竹材顺纹抗压强度降低。直至辐照剂量达到100KGy时,纤维素、半纤维素和木质素的降解反应加剧,竹材的弦向抗弯强度、顺纹抗拉强度呈现降低趋势。但因竹材发生了炭化,使得竹材的顺纹抗压强度升高。整个辐照过程中,竹材的弹性模量呈现波动升高趋势,可见γ射线辐照使竹材刚性、脆性变强。
     (5)利用动态力学热分析仪,测试竹材的动态粘弹性。测定的温度范围为40℃~300℃,频率为3Hz。在起始温度点,即温度为40℃时,辐照后竹材的存储模量大于普通竹材,说明辐照使得竹材的刚性增强。但在升温过程中,辐照后竹材的存储模量降低幅度更加显著,说明竹材细胞壁主要组分的分子链被切断,升温过程中链段反应加剧,因而竹材存储模量降低幅度加剧。另外,辐照使竹材玻璃化转变温度点也发生改变,当辐照剂量低于100KGy时,竹材在105℃、220℃附近的玻璃化转变温度,因纤维素、木质素的聚合,呈现波动上升的趋势。而当辐照剂量达到300KGy、500KGy和1000KGy时,竹材的两个玻璃化温度转变点则因细胞壁三种主要组分的剧烈降解,而均呈现下降趋势。
     (6)在研究竹材γ射线辐照效应的基础上,开展了γ射线辐照技术在提高竹材防霉性能中的应用研究。结果表明,竹材经γ射线辐照以后,竹材防霉性能提高,而且随着辐照剂量增加,防霉效果更佳。但由于γ射线对竹材有一定的劣化作用,因此在利用γ射线辐照对竹材进行防霉处理时,应根据材料的用途,设计合理的辐照工艺。
It has very significant theory and application meaning to research on physical and chemical properties of bamboo irradiated by gamma ray. The Moso bamboo (Phyllostachys pubescens Mazel ex H de Lehaie) was used as experimental materials in this dissertation. it was treated with gamma rays at differerent irradiation dose, such as 10KGy、20KGy, 30KGy, 50KGy, 100KGy, 300KGy, 500KGy, 1000KGy. Through studying Moso bamboo’s microstructure and its physical, chemical and mechanical proterties during the process of irradiation, this study initially reveals the irradiation effects mechanism on bamboo treated with gamma rays. Based on which, the applications of gamma ray irradiation on the mildew proof of bamboo have also been researched. And the result could establish an important theoretical foundation for the functional improvement on bamboo with gamma rays. This method was expected to be a new way for bamboo functional improvement, and had some reference meaning for the functional improvement of wood and other biologic materials.
     Main results were concluded as following:
     (1) The cross section and microfibril angle of bamboo were characterized by field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). it can been found that the vascular tissue system and fundamental tissue system were not be injured by gamma rays, the influence on microfibril angle were not obvious, and the cell wall of bamboo were not found shrink and fracture during the process of irradiation. So both microstructure and microfibril angle were not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.
     (2) The structure and quality of main chemical composition in cell walls of bamboo were tested by nuclear magnetic resonance spectrometer (NMR), X-ray diffraction (XRD) and traditional means in testing chemical composition content of bamboo. The result indicated that at the beginning of irradiation process, hemicellulose degraded and partial degrading substances polymerized with cellulose, lignin and so on. Which result in hemicelluloses content decreasing, the cellulose and lignin contents increasing, and the bamboo crystallinity also increased. As the irradiation dose was raised to about 100KGy, the main composition in bamboo degraded more quickly, so that the main chemical composition contents and crystallinity in bamboo reduced, and the more irradiation dose, the more reduction.
     (3)The gamma rays radiation reduced adsorption of bamboo materials through making chemical composition in cell wall interaction, which produced the hydrogen, carbonyl, carboxyl, phenolic etc. The appearance color of the bamboo became darker for lignin degradation, but improved the light stability of color on bamboo surface, and the change rates of them increased with radiation dose growed.
     (4) At the beginning of irradiation process,the gamma rays radiation enhanced both tangential compressive strength and tensile strength parallel to grain of bamboo, owing to oligomerization of lignin and cellulose. And the degradation of hemicellulose reduced compressive strength parallel to grain of bamboo. As the irradiation dose rose to about 100KGy, both tangential compressive strength and tensile strength parallel to grain of bamboo reduced with degradation reaction comintensifying of main compositions in bamboo. Yet, carbonization of bamboo material enhanced compressive strength parallel to grain of bamboo. In the whole process, modulus of elasticity of bamboo material fluctuated rising tendency. So, the gamma rays radiation intensified stiffness and brashness of bamboo.
     (5) The dynamic viscoelastic properties of bamboo were tested by dynamic mechanics analyzer (DMA), and the measurements were done in the temperature range of 40℃to 300℃at frequencies of 3Hz. In the initial temperature, temperature of 40℃, the irradiated bamboo had more storage modulus than ordinary bamboo, but with the increase of irradiation dose , the decrease of storage modulus with increasing temperature became more dramatically, because the chain of main components in the cell walls have been cut off, and chain made drasticer reaction during heating process. In addition, irradiation made bamboo glass transition temperature changes. As the irradiation doses was less than 100KGy, the glass transition temperature at 105℃and 220℃fluctuated rising tendency for the oligomerization of lignin and cellulose. And when the radiation dose reached 300KGy, 500KGy and 1000KGy, both glass transition temperatures decreased for the degradation of three main compositions.
     (6) on the base of study about gamma ray irradiation, the technology of improving the application of bamboo mould-proof performance was researched. The results showed that the mildew proof of bamboo was enhanced after irradiation. Furthermore, the effect was better and better with the irradiation doses increased. At the same time, gamma ray has a side-effect, so the reasonable irradiation technology should be counted on the usefulness of bamboo material.
引文
[1]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社, 2002
    [2] Burmester A. Einfluβvon Gamma-Strahlung auf chemische, morphlogische, physikalische und mechanische Eigenschaften von Kiefern- und Buchenholz. Materialpruf, 1966, 8:205
    [3]石黑哲一,平井信之,竹村富男等. The changes of fine structure and physical properties of wood treated by means of radiant ray.木材工业, 1973 ,28(12):559-563
    [4] Goto T, Harada H, Saiki H. Fine structure of gamma-irradiated tracheid wall in pice abies. Bull Kyoto Univ Forest, 1974, 46:153
    [5]今村博之,冈本一,俊藤辉男等.木材利用の化学.日本:共立出版株式会社, 1983
    [6] Tsutomu Aoki, Misato Norimoto, Tadashi Yamada. Some physical properties of wood and cellulose irradiated with Gamma rays. Wood Research, 1977, 62:19-28
    [7]王洁瑛.热处理及γ射线辐射杉木压缩木材的固定.北京林业大学博士论文, 2000
    [8] Misato Norimoto, Tadashi Yamada. Dielectric properties of wood irradiated withγ-rays. Mokuzai Gakkaishi, 1975, 21(12): 645-653
    [9]俊藤辉男.放射线と木材.木材工业, 1972 , 5: 228-232
    [10] Burmester A. Veranderung der druck-und zugfestigkeit sowie der sorption von holz durch gamma-strahlung. Materialpruf, 1964, 6: 95
    [11] Kenaga D L, Cowling E B. Effect of gamma radiation on Ponderosa pine: hygroscopicity, swelling and decay susceptibility. Forest Products Journal, 1959, 9: 112-116
    [12] Roland Gertjejansen. Longitudinal water permeability of gamma irradiated Sitka spruce heartwood. Wood Science, 1970 , 2 (3) : 168-170
    [13] Lhoneux B De , Antoine R , Cote W A. Ultrastructural implications of gamma irradiation of wood. Wood Sci. Technol., 1984 , 18 : 161-176
    [14] Ifju G. Tensile strength behavior as a function of cellulose in wood. Forest Prod., 1964 , 6 : 95
    [15] Wesley E Loos. Effect of gamma radiation on the toughness of wood. Forest Products Journal , 1962 , 12 : 261-264
    [16] Saeman J F, Millett M A , Lawton E J . Effect of high energy cathode rays on cellulose. Ind Eng Chem, 1952 , 44 : 2 848
    [17] Siau J F, Meyer J A. Comparison of the properties of heat and radiation cured wood-polymer combinations. Forest Products Journal , 1966 , 16 : 47
    [18] Hirai N, Date M, Fukada E. Studies on piezoelectric effect of woodⅡ. Momuzai Gakkaishi , 1968 , 14 : 252
    [19] Aoki T , Yamada T. Creep of wood during decrystallization and of decrystallized wood. Momuzai Gakkaishi , 1977 , 23 : 10
    [20]程贤楚,陈云平,吴耿云,等化工进展, 2006, 25(2)147-151
    [21]蒋挺大.木质素.北京:化学工业出版, 2001, 1-57
    [22]蔡玉婷,程贤廷.射线对木质素的辐射效应研究.辐射研究与辐射工艺学报, 2008, 26(5): 275-279
    [23] Hachihama Y, Takamuku S. The effect of ionizing radiation on lignin and wood. J Chem Soc Japan , 1960 ,63 : 1 043
    [24] Blouin F A , Arthur J C. The effects of gamma radiation on cotton. Part1 : Some of the properties of purified cotton irradiated in oxygen and nitrogen atmosphere. Text Res J , 1958 , 28 : 198~204
    [25] Seifert K. Zur chemie gammabestrahlten holzes. Holz als Roh-und Werkstoff, 1964, 22 : 267
    [26] Lawniczak M, Raczkowski J. The influence of extractives on the radiation stability of wood. Wood Science and Technology , 1970 , 4 : 45-49
    [27] Sugimatsu A, Senda S ,Harada Y. Degradation of cellulose with gamma irradiation. J. Chem. Soc , Japan , 1959 , 62 : 90
    [28]王洁瑛,赵广杰.γ射线辐射对木材构造和材性的影响.北京林业大学学报, 2000, 23(5): 52-56
    [29]方桂珍.木材功能性改良.北京:化学工业出版社, 2008
    [30]赵津,高振镛,陶安华.用辐射法制备木塑复合材料的研究.化学工业与工程, 1992, (4): 15-18
    [31]史建君,方崇荣,傅羧杰,沈伟桥,卢红霞.木材辐射接枝MMA改性研究.辐射研究与辐射工艺学报,2000, 18(1): 30-34
    [32]史建君,傅羧杰,沈伟桥,卢红霞.木材辐射接枝甲基丙烯酸甲酯的效果.浙江大学学报(农业与生命科学版), 1999, 25(5): 536-538,
    [33]王清文,王伟宏.木塑复合材料与制品.北京:化学工业出版社, 2006
    [34]孔行权.中华人民共和国纺织工业部部颁标准, FJ517-82, 1985
    [35] Silva Arene A, Laver Murry L. Technical Association of the Pulp and Paper Industry Journal, 1997, 8(6): 173-180
    [36] Jerosch H, Lavedrine B, Cherton J C. J Chromatography A, 2001, 927(1): 31-38
    [37]杨革生,魏孟媛,邵惠丽,胡学超.γ射线辐照对竹纤维素分子量及分子量分布的影响.辐射研究与辐射工艺学报, 2007, 25(3): 141-145
    [38]杨革生,邵惠丽,胡学超.辐照对竹纤维素聚合度及其结晶结构的影响.功能高分子学报, 2007, 19-20(2): 143-147
    [39]郁金南.材料辐照效应.北京:化学工业出版社, 2007
    [40]梁金昆.射线定义探究.无损检测, 2007, 29 (9): 554-555
    [41]李文彬,赵广杰,殷宁.林业工程研究进展.北京:中国环境科学出版社, 2003
    [42]马灵飞,马乃训.丛生竹材纤维形态与主要理化性能,浙江林学院学报, 1994, 11(3): 274-280
    [43]江泽慧,邹惠渝,阮锡根.应用X射线衍射技术研究竹材超微结构I.竹材纤丝角.林业科学, 2000, 36(3): 122-125
    [44]余雁,王戈,覃道春,张波. X射线衍射法研究毛竹微纤丝角的变异规律.东北林业大学学报, 2007, 35(8): 28, 29, 51
    [45]徐有明.木材学.北京:中国林业出版社, 2006
    [46]周海鸥,傅俊杰.药用淀粉的辐照灭菌效果.核农学报, 2005, 19(1): 52-54
    [47]郭雄彬,刘亚建,傅俊杰,章月红,金祚献,谭瑗瑗,袁京群.利用淀粉粘滞性谱快速检测稻米辐照研究.辐射研究与辐射工艺学报, 2008, 26(4): 242-245
    [48]刘亚建,傅俊杰,章月红,金祚献,谭瑗瑗,袁京群.辐照对稻米主要品质的影响.辐射研究与辐射工艺学报, 2008, 26(2): 93-97
    [49]高汉宾,张振芳.核磁共振原理与实验方法.武汉:武汉大学出版社, 2008: 598-593
    [50]桑鸿,汪汉卿.固体高分辨核磁共振方法在表面化学研究中的应用.化学通报, 1994, (1), 11-1
    [51] Lahaye M, Rondeau-Mouro C, Deniaud E. Solid-state C13 -NMR spectroscopy studies of xylans in the cell wall of Palmaria palmate [J].Carbohyd. Res, 2003, 338(15): 1559
    [52] Xie Y M, Yasuda S, Wu H. Analysis of the structure of lignincarbohydrate complexes by the specific C-13 tracer method [J]. Wood Sci., 2000, 46(2): 130
    [53]毛希安. NMR前沿领域的若干新进展[J].化学通报, 1997(2):13
    [54]林浩,甄卫军.浅议固体高分辨率13C-NMR技术及其在固态高聚物研究中的应用[J].新疆石油学院学报, 2000, 12(4): 32
    [55]方桂珍,李坚,崔永志.固体核磁CP/MAS 13C- NMR在木材科学中的应用[J].四川农业大学学报, 1998, 16(1):170
    [56] Bardet M, Foray M F, Tran Q K. High-resolution solid-state CP/MAS 13C-NMR study of archaeological woods [J ] . Anal Chem., 2002 , 74 :4386
    [57] Chang S T, Chang H T. Comparisons of the photostability of esterified wood [J]. Polym. Degrad Stabil, 2001, 71:261
    [58] Gilardi G, Abis L , Cass A E G. Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation [J ] . Enzyme Microb Tech, 1995, 17:268
    [59] Love G D, Snape C E , Jarvis M C. Comparison of leaf and stem cell wall components in barley straw by solid-state 13C NMR [J ] . Phytochemistry, 1998 , 49 :1191
    [60] Jarvis M C , McCann M C. Macromolecular biophysics of the plant cell wall : concepts and methodology [J ] . Plant Physiol Bioch, 2000, 38 (2) : 1
    [61] Sun X F, Sun R C , Sun J X. A convenient acetylation of sugarcane bagasse using NBS as a catalyst for the preparation of oilsorption-active materials [J ] . J Mater Sci, 2003, 38:3915
    [62]方桂珍,李坚,孔漫.多元羧酸与木材酯化反应的固体核磁共振谱CP/MAS-13CNMR的表征[J].林业科学, 2001, 37(2): 108
    [63] Davis M F, Schroeder H A, Maciel G E. Solid-state C13 Nuclear-Mag-netic-Resonance studies of wood decay. 2. white-rot decay of paper birch[J] . Holzforschung, 1994, 48 (3): 186
    [64] Maunu S L. NMR studies of wood and wood products [J]. Prog Nucl Mag Res. Sp, 2002, 40: 151
    [65] Newman R H, Hemmingson J A. Determination of the degree of cellulosecrystallinity in wood by C-13 Nuclear-Magnetic-Resonance spectroscopy [J] . Holzforschung , 1990 , 44 (5) :351
    [66] Maunu S, Liitia T, Kauliomaki S. CPMAS 13C- NMR investigations of cellulose polymorphs in different pulps [J]. Cellulose, 2000, 7(2): 147
    [67] Hult E L, Larsson P T, Iversen T. A comparative CP/MAS 13C-NMR study of cellulose structure inspruce wood and kraft pulp [J]. Cellulose, 2000, 7(1): 35
    [68] Newman R H. Estimation of the relative proportions of cellulose I alpha and I beta in wood by carbon-13 NMR spectroscopy [J]. Holzforschung, 1999, 53(4): 335
    [69]顾瑞军,谢益民,曾绍琼.稻秆木素侧链13C同位素示踪及固体13C NMR分析[J].高等学校化学学报, 2002, 23(6): 1073
    [70]刘传富,孙润仓,叶君.固体核磁CP/ MAS 13C-NMR在植物纤维原料研究中的应用.中国造纸学报. 120(2), 2005: 184-188
    [71]李坚.木材波谱学.北京:科学出版社, 2003: 151-159
    [72]刘力.竹材化学与利用.杭州:浙江大学出版社, 2006
    [73]何曼君,陈维笑,董西侠.高分子物理[M] .上海:复旦大学出版社, 2000
    [74] Back E L, Salmen N L. Glass transition of wood component shold implications for molding and pulping processes [ J ] . Tappi Journal, 1982, 65(7): 107-110
    [75] Liese W, Kumar S. Bamboo preservation compendium [M]. Published by CIBART, ABS, INBAR, 2003,41-46.
    [76] Müller U, R?tzsch M, Schwanninger M. Yellowing and IR-changes of spruce wood as a result of UV-irradiation[J]. Journal of Photochemistry Photobiology B, 2003, 69: 97–105.
    [77] Pandey K K. Study of the effect of photo-irradiation on the surface chemistry of wood [J]. Polymer Degradation and Stability, 2005, 90: 9-20.
    [78] Hill Callum A S. Wood Modification: Chemical, thermal and other processes [M]. John Wiley§Sons, Ltd. 2006.
    [79] Fu Junjie, Guo Liping, Zhang Shimin, Bao JinSong, Yu XueJun, Yu MengHong. The identification of foods treated with gamma irradiation by the use of a luminescence technique: a case study of milk powder. International journal of food science and technology, 2005, 40:783-788
    [80] Irving B S. Microscopic observation during logitudinal compression loading of single pulp fibers [J]. Tappi, 1986, 69(7) :98
    [81] Shaler S M, Groom L, Mott L. Microscopic analysis of wood fibers using ESEM and confocal microscopy[C]. Proceeding of the Wood-fiber-Plastic Composites. Madison: Forest Product Society, 1996
    [82] Eichhorn S J, Sirichchaisit J, Young R J. Deformation mechanisms in cellulose fibers, paper and wood[J ]. Journal of Materials Science, 2001,36(13): 3129
    [83] Stone J E , Clayton D W. The use of microtome sections for measuring the change in strength of spruce fibers due to pulping [J ]. Pulp and Paper Magazine of Canada , 1960 :475
    [84]费本华,张波,余雁,赵荣军.马尾松纤维的力学性能研究.中国造纸学报,2006,21(4):1-
    [85]余雁,费本华,张波.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度.北京林业大学学报, 2006, 28(5): 114-118
    [86]余雁.人工林杉木管胞的纵向力学性质及其主要影响因子研究.中国林业科学研究院博士学位论文, 2003.
    [87]黄艳辉,费本华,余雁,王戈,赵荣军.毛竹单根纤维的力学性质研究.中国造纸, 2009, 28(8): 10-12
    [88]张泰华,杨业敏.纳米硬度计及其在微机电系统中的应用.现代科学仪器, 2002a, (1) :32-37
    [89]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展, 2002b , 32 (3) :349– 364
    [90] Wimmer R, Lucas B N, Tsui T Y et al. Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique[J]. Wood Science and Technology, 1997, 31 (2): 131-141
    [91] Gindl W, Gupta A H S. Lignifications of spruce tracheids secondary cell wall related to longitiudinal Hardness and modulus of elasticity using nano-indentation[J]. Canadian Journal of Botany, 2002, 80: 1029-1033
    [92] Gindl W, Schoberl T. The significance of the elastic modulus of wood cell walls by nanoindentation measurements[J]. Composities: Part A, 2004 , 35: 1345-1349
    [93] Gindl W, Gupa H S, Schoberl T et al. Mechanical properties of spruce woodcell walls by nanoindentation[J]. Applied Physics A, 2004, 79: 2069-2073
    [94]江泽慧,余雁,费本华.纳米压痕技术测量管胞细胞壁S2层的纵向弹性模量和硬度[J].林业科学. 2004, 40 (2):113-8-118
    [95]余雁,江泽慧,费本华等.管胞细胞壁力学研究进展评述[J].林业科学, 2003, 39(5): 133-139
    [96]李坚.木塑复合材料.现代化工, 1983, (6)15-18
    [97]乔英杰.木塑复合材料的研究.林业科技, 1992, (1): 19-23
    [98]赵津,江昌和.辐射法制备木塑复合材料的应用开发.天津科技, 1996, (5):23-26
    [99]李波安,秦建华.我国生物质能发展现状与发展前景.科技广场, 2009, 6: 94-96
    [100]陈静萍,王克勤,熊兴耀,李文革,彭玲. 60Coγ辐照对稻草纤维组织及酶解效果的影响.核农学报, 2008, 22(3): 304-309
    [101]陈静萍,王克勤,彭伟正,熊兴耀. 60Co-γ射线处理稻草秸秆对其纤维质酶解效果的影响.激光生物学报. 2008, 17(1): 38-42
    [102]杨春平,沈志强,喻国策,王建龙.γ射线辐照预处理对麦秸纤维素酶水解产糖的影响,原子能科学技术, 2009,43(1): 36-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700