竹材液化、树脂化反应动力学及其生成物的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质材料液化是近年来能源和林业领域重点研究的一项技术,竹材作为生长快、生物量的生物质材料,对其进行液化研究具有明显特色,它通过化学转化可以形成反应性的液化物,用作合成高分子树脂化原料,可来替代化石原料合成的苯酚等化工原料。本论文从竹材的竹种、化学成分、结构特点出发,在苯酚介质进行液化比较,得出优选的竹材液化原料-毛竹,运用新的液化催化技术,选择碳酸钾经过对竹粉的处理,分析催化剂、反应温度、反应时间、苯酚与竹材的投料液比,对液化效果影响。利用IR、13C-NMR、1H-NMR等分析技术比较了竹粉碳酸钾处理前后的化学变化;研究了竹材液化反应动力学,竹材液化物的流变学,竹材的液化及成胶机理,竹材液化物酚醛树脂胶固化特征及其动力学;研究了竹材液化胶纸塑复合材料燃烧动力学和燃烧性能,复合材料热降解行为。得出如下结论:
     1、比较三种竹材的木素含量,毛竹(Phyllostachys edulis)最多,雷竹(Phyllostachys praecox)其次,孝顺竹(Bambusa multiplex)最少;结晶度分析,毛竹最小;比较三种竹子的灰分含量,毛竹最低,孝顺竹最高,灰分含量高,液化成胶后会使树脂胶产生团聚。毛竹是一种适合液化的材质。
     2、毛竹材在苯酚液中的液化受酸催化剂添加量、液化温度及其酚竹比的影响,实验表明,催化剂添加量5%,液化温度115-125℃,酚竹质量比(2:1-1:1)之间可实现液化,并能得到流动度较好的液化液。
     3、毛竹材液化产物红外IR分析表明:用碳酸钾作催化剂,随着液化温度的升高波数在2935 cm-1处饱和亚甲基吸收峰,明显增强,吸收带变宽,说明液化过程中饱和键增多。
     4、毛竹材液化产物13C-NMR、1H-NMR图的特征分析表明,不论是否加入碳酸钾催化剂,它们的13C-NMR图的特征基本一致,温度越高,则液化程度越剧烈。有碳酸钾催化剂时,100℃下的液化的其产物的质子数明显的多,反应剧烈。
     5、毛竹材液化反应属1级反应。随着升温速率的增加,特征液化温度峰值温度Tp向高温方向移动。不同催化剂(碳酸钾、氯化钾、无催化剂)条件毛竹材液化的表观活化能依次是:45.95 KJ/mol、59.99 KJ/mol、58.0 KJ/mol。结合外推法,得出竹材液化反应的最佳工艺为:碳酸钾为催化剂,初始液化温度为69.1℃,液化峰高温度为97.25℃,液化峰终温度111.85℃。
     6、在苯酚和竹粉重量比为3:1情况下,对不同液化温度下,未添加碳酸钾催化剂与添加碳酸钾催化剂的液化竹材的稳态与动态流变行为分析表明,碳酸钾催化剂的加入有利于高分子组分的降解与体系内结合酚的生成。液化温度的升高,体系中的结合酚含量会达到饱和,对于未添加碳酸钾催化剂体系,饱和液化温度为150℃,添加催化剂体系的饱和液化温度在130℃左右。动态流变测试表明,随着液化温度的上升,体系内的复杂网络结构逐渐被破坏,但在实验所选用的液化温度范围,液化物中仍存在网络结构。
     7、通过对毛竹材在苯酚液中酚竹比、酸催化剂、液化温度等因素对液化的系统研究得出,当用HCl或BF3作催化剂、添加量5%、酚竹比2-1:1、115℃下达到竹材完全液化。用IR对BL、BLF和PF树脂分析,BL和BLF存在大量的羟基和芳香族醚键,分析表明是竹材中木质素和纤维素在酚液中裂解成大量碎片,并与苯酚结合所致;BLF在IR出现的几个特征峰与PF基本相似。
     8、竹材液化物(liquefied bamboo即LB)与甲醛的树脂化反应,当液化物中苯酚与甲醛摩尔比1:1.6~2.0条件下,制得室外级竹材液化物树脂胶(liquefied bamboo formaldehyde adhesive即BLF)。通过TG-DSC分析固化行为表明,竹材液化物树脂胶比酚醛树脂胶(PF)有更低的固化温度;竹材液化树脂胶与酚醛树脂胶出现基本一致的IR特征峰。
     9、运用DSC对竹材液化物树脂胶的固化动力学分析得到:随着F/P摩尔比的提高(P/F=1:1.3、1:1.6、1:1.8),竹材液化胶的固化过程表观活化能逐渐减小,分别为64.60KJ/mol、58.36 KJ/mol、57.12 KJ/mol。竹材液化胶固化反应吸收的热量逐渐降低。并且随着F/P的摩尔比的提高,利用外推法得出的静态(β=0℃/min)的特征固化温度Ti、Tp和Tf均逐渐降低,与竹材液化胶固化反应的表观活化能的大小顺序一致。
     10、通过对竹材液化物树脂纸塑复合材料MLBPF-PPC,三聚氰胺-苯酚-甲醛树脂纸塑复合材料MPF-PPC与酚醛树脂纸塑复合材料PF-PPC,在锥形量热仪上其质量损失率a(0-60%)和时间t的单方程模型与g(a)=[-1n(1-a)]1/2]化学动力学方程拟合。燃烧反应表观活化能Ea是MLBPF-PPC材料为14.18 kJ/mol, PF-PPC材料为27.10kJ/mol和MPF-PPC材料为26.47 kJ/mol,对液化竹材MLBPF-PPC材料相对小。MPF树脂PPC与PF树脂PPC材料表观活化能相当,为竹材液化树脂PPC材料表观活化能2倍左右多,阻燃性能竹材液化树脂PPC材料相对要弱。燃烧动力学活化能的理论推导和对不同PPC材料的各项燃烧性能测定,得到相同结论,当热辐射功率为50kW·m-2燃烧温度733℃时。三种材料的阻燃效果是:MLBPF-PPC     11、三种MLBPF-PPC, MPF-PPC与PF-PPC浸渍纸塑复合材料,经过热降解动力学行为考察。发现不同的浸渍树脂胶黏剂没有改变纸塑复合材料的第一个失重阶段,热失重曲线基本重合。但是,不同的酚醛浸渍树脂胶黏剂对于热失重的第二个阶段有明显的影响,三聚氰胺的加入提高了纸塑复合材料第二阶段的热失重温度与燃烧活化能,MLBPF-PPC具有最高的热失重温度与燃烧活化能,表明竹材液化物树脂胶能提高纸塑复合材料阻燃性。
Biomass liquefaction has attracted a lot of interests in the area of energy and wood products. The liquefied products derived by chemical-conversion method could be used in the production of resins, such as, replacing petroleum based phenol in the production of phenolic resins. In this work, the bamboo species selection were first studied through liquefaction in phenol according to their chemical compositions and structure. The Moso bamboo(Phyllostachys edulis) was found to be the best species for liquefaction. In order to obtain better liquefaction conditions of moso bamboo, the effect of catalysts, reaction temperatures, reaction times, and ratios of phenol to bamboo on moso bamboo liquefaction were investigated. And the difference before and after treatment of potassium carbonate were characterized with techniques of IR,13C-NMR, and 1H-NMR. This paper also studied the kinetics of bamboo liquefaction, the rheology of bamboo liquefied products, the mechanisms of bamboo liquefaction and resinification of bamboo liquefied products, curing characteristics and curing kinetics of bamboo-based phenolic resol resins, the combustion kinetics, combustion properties, and behavior of thermal decomposition of paper-plastic composites (PPC) prepared with bio-based phenolic resol resins. The results mentioned above are summarized as follows.
     1. Moso bamboo contained the highest amount of lignin compared to Phyllostachys praecox and Bambusa multiplex. Bambusa multiplex, and included the lowest content of lignin. According to the crystallinity of moso bamboo was the lowest among these three kinds of bamboo. Meanwhile, there was the lowest content of ash in moso bamboo, and Bambusa multiplex had the highest content of ash. The high content of ash in liquefied products could lead to the clustering phenomenon during the process of resin synthesis. The above results indicated that moso bamboo is most suitable for liquefaction.
     2. The moso bamboo could be liquefied completely with 5% of acid catalyst. Meanwhile, the results also showed that moso bamboo could be easily liquefied at temperature in the range of 115 to 125℃with weight ratio of phenol to bamboo between 2:1 and 1:1. And the liquefied liquid products presented good fluidity.
     3. The IR profiles of liquefied products from the liquefaction of moso bamboo with catalyst of potassium carbonate presented a marked absorption peak at 2935 cm-1. Moreover, with temperature increasing, the absorption peak of methylene group became stronger and wider. These results suggested that the saturated bond increased during the process of liquefaction.
     4. The addition of potassium carbonate did not produce a significant effect on the chemical structure of liquefied products from different temperatures (100,120 and 150℃) according to their analyses of 13C-NMR and 1H-NMR. And the liquefaction temperature had a marked effect on bamboo liquefaction. High temperature could help the liquefaction of bamboo. However, there were more protons in the liquefied products from liquefaction under 100℃using potassium carbonate compared to that from liquefaction above 100℃without using potassium carbonate. These results showed that the addition of potassium carbonate could accelerate the liquefaction of bamboo.
     5. The liquefaction reaction of moso bamboo is one-order reaction. The temperature of curing peak (Tp) was transferred to higher temperature with heating flow increasing. The activation energies of liquefaction reaction using different catalysts (potassium carbonate, potassium chloride and blank reference) were 45.95,59.99, and 58.00 KJ/mol, respectively. The curing characteristic temperatures (Ti, Tp and Tf, at 0℃/min) which were calculated based on linear regression were 69.1,97.25 and 111.85℃, respectively.
     6. The effects of catalyst of potassium carbonate on the steady-state and dynamic rheology behavior of bamboo liquefaction under different temperatures with weight ratio of phenol to bamboo of 3:1 were also investigated. The results showed that the addition of potassium carbonate could help the depolymerization of bamboo and the forming of combined phenol. The amount of combined phenol would become saturated with liquefaction temperature increasing. The saturation state required the liquefaction temperature of 150℃without using any catalyst. However, the saturation temperature can be decreased to 130℃with catalyst. According to the analysis of dynamic rheology, the complex network of bamboo was decomposed gradually with temperature increasing. But the network structure could still be observed in liquefied products for all the liquefaction temperatures used in this research.
     7. The effects of weight ratio of phenol to moso bamboo, acid catalysts and liquefaction temperatures on bamboo liquefaction were also detected. The results displayed that the bamboo could be completely liquefied using 5 wt% of HC1 or BF3 with weight ratio of phenol to bamboo of 2~1:1 under 115℃. According to the IR profiles of LB (liquefied bamboo products), BLF (liquefied bamboo products formaldehyde adhesive) and PF (phenol formaldehyde resin), there was a large amount of hydroxyl groups and aryl-ether bonds in BL and BLF. It could be caused by the combination of phenol with the small fragments derived from the decomposition of lignin and cellulose in bamboo. The IR spectrum of BLF performed several similar characteristic peaks with that of PF resin.
     8. The BLFs were synthesized using LB and formaldehyde with molar ratio of phenol to formaldehyde betweenl:1.6~2.0. In accordance with the TG-DSC analyses of BLF and PF resins, BLF showed lower curing temperatures than those of PF resin. Moreover, BLF displayed similar IR profile with that of PF resin.
     9. The curing kinetics of BLFs was obtained according to the DSC analyses of BLFs. The results showed that the activation energy of curing reactions of BLFs decreased with the increasing of molar ratio of F/P (1.3:1,1.6:1, and 1.8:1). The activation energies of them were 64.60,58.36 and 57.12 kJ/mol, respectively. These results indicated that the energy for curing reaction of BLF decreased gradually with the increasing of molar ratio of F/P. Meanwhile, similarly, the characteristic curing temperatures (Ti, Tp and Tf) at heating flow of 0℃/min also decreased with the increasing of molar ratio of F/P.
     10. The combustion behavior of three kinds of paper-plastic composite materials MLBPF-PPC (Melamine modified bamboo Phenol Formaldehyde-Paper Plastic Composite), MPF-PPC (Melamine modified Phenol Formaldehyde-Paper Plastic Composite) and PF-PPC (Phenol Formaldehyde-Paper Plastic Composite) were studied by using a cone calorimeter. The single equation rate model of mass loss rate (0~60%) and time was simulated by using a chemical kinetic method (g(a)=[-ln(1-a)]1/2]). The average activation energy Ea calculated based on the above equation of MLBPF-PPC, MPF-PPC and PF-PPC were 14.18,27.1 and 26.47 kJ/mol, respectively. The Ea of MPF-PPC and PF-PPC were almost two times than that of MLBPF-PPC. The similar results were also obtained from the analyses of combustion properties under temperature of 733℃(radiation power of 50 kW-m-2), such as mass loss rate, total heat released, heat release rate, total smoke released and yields of CO and CO2. In summary, the flame-retardant properties of three kinds of materials were MLBPF-PPC< PF-PPC< MPF-PPC.
     11. According to the analyses of TG-DTG of MLBPF-PPC, MPF-PPC and PF-PPC, all PPCs represented two major thermal events. For the first thermal event, all PPCs showed similar thermal decomposition profiles. The second thermal event of all PPCs, however, wasmarkedly different. The possible reason could be that the addition of melamine into phenolic resins transferred the decomposition temperature of PPCs to higher temperature, and improved the combustion activation energy. Both of the decomposition temperatures and activation energies of MLBPF-PPC were the highest compared to those of MPF-PPC and PF-PPC. These results suggested that the utilization of MLBPF in PPC materials could improve the flame-retardant properties of PPC materials.
引文
1.白雪双,王述洋,刘世锋.生物质液化燃油代用燃料的应用及展望[J].林业劳动安全,2006,19(1):34-36.
    2.白鲁刚,颜涌捷,李庭琛,等.煤与生物质共液化的催化反应[J].化工冶金,2000,21(2):198-203.
    3.陈甘棠.化学反应工程[M].北京:化学工业出版社,1984,06:51-100.
    4.陈森.生物质热解特性及热解动力学研究[D].南京:南京理工大学.2005.
    5.陈纪忠,邓天晟,蒋斌波.竹材热解动力学的研究[J].林产化学与工业,2005,25(2):11-15.
    6.谌凡更,涂宾,卢卓敏.麦草催化热化学液化产物的组分分析[J].林产化学与工业,2003,23(1):78-79.
    7.程书娜.MPF共缩聚树脂的合成与性能研究[D].杭州:浙江林学院,2008.
    8.蔡继业,蔡忆昔.生物质液化燃油的可利用性及转化技术[J].农机化研究,2004(4):221-224.
    9.杜瑛.毛竹材的主要成分分析及催化热解研究[D].四川:四川大学,2005.
    10.邓天异.毛竹热解过程的研究[D].杭州:浙江大学.2004.
    11.傅深渊,马灵飞,李文珠.竹材液化及竹材液化树脂胶性能研究[J].林产化学与工业,2004,24(3):42-46.
    12.傅深渊.竹木高压水热液化方法[P].中国专利:ZL200610003945.4.2008.5.14
    13.傅深渊,马灵飞,俞友明.三聚氰胺和竹木酚液化物改性酚醛树脂生产方法[P].中国专利:ZL200610003946.9.2008.7.16
    14.傅深渊,刘力,程书娜.竹液化物酚醛胶生产方法[P].中国专利:ZL200610052421.4.2008.11.12
    15.傅深渊,刘力,俞友明,等.竹酚液化物生产方法[P].中国专利:ZL200610052422.9.2008.7.16
    16.傅深渊;金永明;卢凤珠.催化生物质液化反应的方法[P].中国专利:200810061482.6.2008.5.5
    17.高月静,李郁忠,寇晓康,等.高固体含量酚醛树脂的固化特征及动力学研究[J].高分子材料科学与工程,1999,15(3):45-47.
    18.郭艳,王垚,魏飞,等.生物质快速裂解液化技术的研究进展[J].化工进展,2001(8):13-17.
    19.郭贵全,魏文,王红娟.蔗渣液化中铁系催化剂作用的研究[J].林产化学与工业,2005,25(3):47-49.
    20.郭贵全,王红娟,谌凡更.蔗渣在四氢化萘中的液化反应[J].林产化学与工业,2004,24(3):52-56.
    21.何江,吴书泓.木材的液化及其在高分子材料中的应用[J].木材工业,2002,2(16):9-12.
    22.胡福昌,陈顺伟.日本竹材热解研究的现状[J].林业科技开发,2001,15(13):8-9.
    23.胡云楚,陈茜文,周培疆,等.木材热分解动力学的研究[J].林产化学与工业,1995,15(4):45-49.
    24.季庆娟,刘胜平.酚醛树脂固化动力学研究[J].热固性树脂,2006,21(5):10-12.
    25.蒋剑春,邓先伦,张燕萍,等.竹材热解特性研究[J].林产化学与工业,2005,25:15-18.
    26.揭淑俊,张求慧,赵广杰.木材溶剂液化技术及其在制备高分子材料中的应用[J].林产化工通讯,2005,39(6):43-48.
    27.揭淑俊,张求慧,李建章.杉木苯酚液化物合成热固型酚醛树脂的研究[J].生物质化学工程,2007,41(5):9-12.
    28.李坚.木材波谱学[M].北京:科学出版社,2003:66-121.
    29.李志合,易维明.生物质能源利用及发展[J].山东工程学院学报,2000,14(4):34-38.
    30.李改云.褐腐预处理木材苯酚液化及其产物的树脂化研究[D].北京:中国林科院,2007.
    31.李文昭.溶解相思树树皮制造木材胶合剂的研究[J].林产工业(台湾),1998,17(4):681-696.
    32.刘荣厚.生物质热裂解特性及闪速热裂解试验研究[D].沈阳:沈阳农业大学,1997.
    33.刘江燕,武书彬,郭伊丽.制浆黑液固形物与工业木质素热解液化产物分析[J].林产化学与工业,2008(28):65-70.
    34.刘玉环,高龙兰,罗爱香,等.毛竹屑与玉米淀粉共液化产物制备聚氨酯泡沫研究[J].高分子学报,2008,6:545-549.
    35.罗朝晖,朱家琪,黄泽恩.木材/金属复合材料的研究[J].木材工业,2000,14(6):25-27.
    36.罗蓓,秦特夫,李改云.木材的液化及其利用[J].木材工业,2004,18(5):5-7.
    37.罗蓓.人工林杉木、杨木的苯酚液化及其产物的树脂化研究[J].北京:中国林业科学研究院,2004.
    38.赖艳华,吕明新,马春元,等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    39.梁爱云,惠世恩,徐通模,等.几种生物质的TG-DTG分析及其燃烧动力学特性研究[J].可再生能源,2008,26(4):56-61.
    40.栾复友,傅深渊,金永明.竹材碳酸钾催化液化的研究[C].第二届中国林业学术大会——Sll木材及生物质资源高效增值利用与木材安全论文集.南宁:中国林学会,2009.11.
    41.马晓军,赵广杰.木材苯酚碳素纤维材料的研究[J].林产工业,2006,33(3):13-14.
    42.马晓军.木材苯酚液化物碳素纤维化材料的制备及结构性能表征[D].北京:北京林业大学,2007.
    43.马晓军,赵广杰.木材苯酚液化物的纳米纤维制备工艺[J].西北林学院学报,2007,22(5):155-158.
    44.缪晓玲;吴庆余.微藻生物质可再生能源的开发利用[J].可再生能源,2003,(2):13-16.
    45.缪晓玲;吴庆余.微藻油脂制备生物柴油的研究[J].太阳能学报,2007,28(2):219-222
    46.庞浩,柳雨生,廖兵,等.甘蔗渣多元醇制备聚氨酯泡沫的研究[J].林产化学与工业,2006,26(2):57-60.
    47.彭卫民,吴庆余.生物质热解燃料的生产[J].新能源,2000,3(11):13-15.
    48.曲先锋,彭辉,毕继诚,等.生物质在超临界水中热解行为的初步研究[J].燃料化学学报,2003,31(3):230-233.
    49.秦特夫,李改云.液化木酚醛胶粘剂的制备方法[P].中国专利:200310124185.9.2003.12.23
    50.孙丰文,黄慧,李小科,等.竹材苯酚液化物及其甲醛树脂的FT-IR分析[J].林产化学与工业,2008,28(6):11-14.
    51.孙绍晖,臧哲学,孙培勤等.泡桐直接催化液化产物的红外光谱分析[J].河南化工,2008(25):25-28.
    52.沈德魁,余春江,方梦祥,等.热辐射下常用木材热解的动力学与燃烧特性[J].燃烧科学与技 术,2008,14(5):446-452
    53.邵千钧,彭锦星,徐群芳,等.竹质材料热解失重行为及其动力学研究[J],太阳能学报,2006,27(7):671-676.
    54.邵千钧,彭锦星,修树东,等.竹子在超临界甲醇中的热解油产物分析[J],太阳能学报,2007,27(7):984-987.
    55.唐仕荣,周磊,郑宇宣等.玉米秆超临界醇解产物高效液相分析[J].可再生能源,2008(26):24-26.
    56.谭洪,王树荣,骆仲泱,等.金属盐对生物质热解特性影响试验研究[J].工程热物理学报,2005,26(5):742-744.
    57.王富丽,黄世勇,宋清滨,等.生物质快速热解液化技术的研究进展[J].广西科学院学报,2008,24(3):225-230.
    58.王高升,张吉宏,陈夫山,等.玉米秸秆多羟基醇液化研究[J].生物质化学工程,2007,41(1):14-18.
    59.王丽丽.化学镀铜工艺[J].电镀与精饰,2002,24(2):42-43.
    60.王树荣,廖艳芬,骆仲泱,等.氯化钾催化纤维素热裂解动力学研究[J].太阳能学报,2005,26(4):452-457.
    61.王树荣,骆仲泱,董良杰,等.几种农林废弃物热裂解制取生物油的研究[J].农业工程学报,2004,3,20(2):741-745.
    62.文丽华,王树荣,施海云,等.木材热解特性和动力学研究[J].消防科学与技术,2004,23(1):2-5.
    63.伍学高.化学镀技术[M].成都:四川科学技术出版社,1985.
    64.徐保江,李美玲,曾忠.生物质热解液化技术的应用前景[J].能源研究与信息,1999,15(2):19-24.
    65.徐保江.生物质热解机理及产物特性分析的研究[D].沈阳:沈阳农业大学,1998.
    66.徐有明,郝培应,刘清平.竹材性质及其资源开发利用的研究进展[J].东北林业大学学报,2003,31(5):71-77.
    67.徐明.毛竹材的热解及液化特性研究[D].杭州:浙江林学院,2007
    68.修双宁,易维明,李保明.秸秆类生物质闪速热解规律[J].太阳能学报,2005,26(4)
    69.谢涛,谌凡更,詹怀宇.木材液化及其在高分子材料中的应用[J].纤维素科学与技术,2004,12(2):47-52.
    70.谢涛,谌凡更.蔗渣在碳酸乙烯酯中的快速液化[J].林产化学与工业,2005,25(4):86-90.
    71.阎昊鹏,陆熙娴,秦特夫.热重法研究木材热解反应动力学[J].木材工业,1997,11(2):14-18.
    72.佚名.生物质热解液化制取液体燃料[J].技术与市场,2004,(10):24-25.
    73.尹思慈.木材学[M].北京:中国林业出版社,1996.
    74.易维明,柏雪源,何芳,等.利用热等离子体进行生物质液化技术的研究[J].山东工程学院学报,2000,14(1):9-12.
    75.姚建中,陈洪章,张均荣,等.玉米秸秆快速热解[J].化工冶金,2000,10,21(4):434-437.
    76.姚福生,易维明,柏雪源,等.生物质快速热解液化技术[J].中国工程科学,2001,3(4):63-65.
    77.杨守生,段楠.木材热解特性研究[J].消防科学与技术,2004,5(3):9-11.
    78.杨敏,宋晓锐,邓鹏飞,等.生物质的裂解及液化[J].林产化学与工业,2000,20(4):79-80.
    79.腰希申,梁景森,马乃训,等.中国主要竹材微观构造[M].大连:大连出版社,1992,13-37.
    80.腰希申.中国竹材结构图谱.北京:科学出版社,2002.10:87-89.
    81.颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报,1999,20(1):55-58.
    82.左承基,钱夜剑,何建辉,等.木质生物质直接液化产物的红外光谱分析[J].研究与试验,2006:10-16.
    83.赵卫娟,张佐光,孙志杰,等.非等温法研究TGDDM/DDS体系固化反应动力学[J].高分子学报,2006,4:564-567.
    84.赵明,吴文全,卢玫,等.稻草热裂解动力学研究[J].农业工程学报,2002,18(1):107-110.
    85.郑志锋,张宏健,顾继友.木质生物原料液化研究进展[C],中国林学会木材科学分会第九次学术研讨会论文集.哈尔滨:中国林学会木材科学分会,2003,606-612.
    86.郑志锋,邹局春,张宏健,等.核桃壳苯酚液化及其产物树脂化制备木材胶黏剂的研究[J].林产化学与工业,2007,27(4).
    87.郑志锋.核桃壳树脂化基础研究[D].哈尔滨:东北林业大学,2006
    88.张晨霞.杨木、沙柳和柠条苯酚液化及其产物的树脂化研究[D].内蒙古农业大学,2006.
    89.张天,张求慧.豆渣苯酚液化物合成热固性酚醛树脂的研究[J].中国胶粘剂,2009,18(1):30-34.
    90.张求慧.木材的苯酚液化及其生成物的树脂化[D].北京:北京林业大学,2005.
    91.张求慧,赵广杰.木材液化技术研究现状及产业化发展[J].木材工业,2005,19(3):5-8.
    92.张世润,王岩.木材液化[J].东北林业大学学报,2000,28(6):95-98.
    93.张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化[J].南京林业大学学报,2002,26(2):7—10.
    94.张齐生.重视竹材化学利用,开发竹炭应用技术[J].竹子研究汇刊,2001,20(3):34-35.
    95.张文标,李文珠,张宏,等.竹炭竹醋液的生产与应用[M].北京:中国林业出版社,2006.1-2.
    96. AlmaM H, YoshiokaM, ShiraishiN. New Novolak-resin typemolding materials from phenolated wood using hydrochloric acid catalyst[J]. Holz als Roh-und Werkstoff,1994,52 (1):38.
    97. AlmaM H. The Use ofWheat Straw-Phenol Condensation Products as Molded Materials[J], Journal of Polymer Engineering,1997,17 (4):311-322.
    98.AlmaM H, Yoshioka M, Yao Y G, et a.l Preparation of sulfuric acid-catalyzed phenolated wood resin [J]. Wood Science and Technology,1998,32 (4):297-308.
    99. Auiri M. Effect of catalyst addition on co-liquefaction process of coal and biomass in supercritical water[J].Sekitan Kagak Kaigi Happyo Ronbunshu,1997,4(34):69-72.
    100. Antal M. Hydrogen production from high-moisture content biomass in supercritical water[C]. Proc.Hydrogen Program Rev.,1996,2(1):499-511.
    lOl.Appell H R, Fu Y C, Frideman S, et al. Converting organic wastes to oil[J]. Agri Eng,1972,53 (3):17-19.
    102.Bilbo R. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere[J].J.Anal.Appl.Pyrol.,1997,39:53-64.
    103.Brown M E, Galwey A K. The distinguishability of selected kinetic models for isothermal solid -state reactions[J]. Thereto Acta,1979,29:129-146.
    104.Bryden K M. Modeling thermally thick pyrolysis of wood[J].Biomass and Bioenergy,2002,22: 41-53.
    105.Calimli A,Oleay A.Supercritical gas extraction of spruce wood[J].Holzforschung,1978,32(1):7-9.
    106.Cordero T.A kinetic study of holm oak wood pyrolysis from dynamic and isothermal TG experiments[J].Thermochimica ACTA,1989,149:225-237.
    107.Cordero T.On the kinetics of thermal decomposition of wood and wood components[J]. Thermo-chimica ACTA,1990,164:135-144.
    108.Cordero T.Thermal decomposition of wood in oxidizing atmosphere[J].Thermochimica ACTA, 1991,191:161-178.
    109. Colomba D B. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels[J]. Journal of Analytical and Applied Pyrolysis,1998,47:43-64.
    110. Coleman M D, Eason R C, Bailey C J. The therapeutic use of lipoic acid in diabetes:a current perspective[J]. Environmental Toxicol Pharmacol,2001,2(10):167-172.
    111. Crane.L.W, Dynes P J, Kaelble D H. Analysis of curing kinetics in polymer compodites [J]. Polym Sci, Polym Lett Ed,1973,11:533-538.
    112. Crane.L.W. Analysis of curing kinetics in polymer composites [J]. Journal of Polymer Science, 1972,12:120-131.
    113.Demi Rbas A. Effect of lignin content on aqueous liquefaction products of biomass [J]. Energy Conversion& Management,2000, (41):1601-1607.
    114. Eliton S De, Medeiros, Joseamagnelli. Kuruvilla Joseph.Curing behavior of a novolac-type phenolic resin analyzed by differ-ential scanning calorimetry [J]. Journal of Applied Polymer Science, 2003,90:1678-1682.
    115. Graham R G, Freel B A. Biomass processing[M]. Newbury, UK:CPL Press,1992:52-63.
    116. G Carotenuto, Lnicolais. Kinetic study of phenolic resin cured by IR spectroscopy [J]. Journal of Applied Polymer Science,1999,74:2703-2715.
    117. Guangbo He, Bernard Riedl. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates [J]. Wood Science and Technology,2004,38 (1):69-81.
    118. Hayes R D. Biomass pyrolysis technology and products[M]. Newyork:American Chemical Society,1988,2(8):15-17.
    119.J mlaza, J Lvilas, M Rodriguezl. Analysisof the crosslinking process of a phenolic resin by thermal scanning rheometry [J]. Journal of Applied Polymer Science,2002,83:57-65
    120. K. Siimerl, T. Kaljuvee, P. Christjanson, et al. Effect of alkylresorcinols on curing behaviour of phenol-formaldehyde resol resin [J]. Journal of Thermal Analysis and Calorimetry,2008,91(2): 365-373.
    121.Karagoz, Selhan, Bhaskar, et al. Low-temperature hydrothermal treatment of biomass:Effect of reaction parameters on products and boiling point distributi ons[J]. Energy and Fuels,2004,18 (1): 234-241.
    122. Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry,1957,29: 1702-1706.
    123. Klaus N. GC-MS studies on pine kraft black liquors Part Ⅴ.Identification of catechol compounds [J].Holzforschung,1989,43(2):99-103.
    124. Koll P,Metzger J O.Thermal decomposition of cellulose and chim in overcritical acetone[J]. Angew.Chem.,1978,90(10):802-803.
    125. Labreque R,Kalliaguine S,Grandmaison J L.Supercritical pyrolysis of wood[J].Ind.Eng .Chem.Prod.Res.Dev.,1984,23:177-182.
    126. Lee S H,YoshiokaM, ShiraishiN. Preparation and properties of phenolated corn bran (CB) /phenol/formaldehyde cocondensed resin[J]. JournalofApplied PolymerScience,2000,77(13): 2901-2907.
    127.Lee S H, YoshiokaM, ShiraishiN.Liquefaction and product identification of corn bran(CB) in phenol[J]. Journal of Applied Polymer Science,2000,78(2):311-318.
    128. Lee. S H., Teramoto. Y, Shiraish.i N.Acid-catalyzed liquefaction of waste paper in the presence ofphenol and its application toNovolak-type phenolic resin[J]. Journal ofApplied Polymer Science, 2002,83:1473-1481.
    129.Lee S H,Yoshioka M,Shiraishi N.Liquefaction of corn bran(CB) in the presence of alcobols and preparation of polyurethane foam from its liquefied polyol[J].J Appl Polym sei,2000,3(78):319-325.
    130.Lin L Z, Yao YG, Yoshioka M, et a.l Preparation and properties of phenolated wood /phenol/formaldehyde cocondensed resin[J]. Journal of Applied PolymerScience,1995,58:1297-1304.
    131. Lin L Z, Yao Y G,Mariko Y,et al.Molecular weights and weight distributions of Liquefied wood obtained by acid-catalyzed phenolysis[J]. Journal of Applied Polymer Science,1997,64(2):351-357.
    132.Lin L Z, Yao Y, Shiraishi N.Liquefaction Mechanism of B-O-4 Lignin Model Compound in the Presence of Phenol under Acid Catalysis[J]. Holzforschung,2001 (55):617-624.
    133. Liu N A. Kinetic modeling of thermal decomposition of natural cellusic materials in air atmosphere[J]. Journal of Analytical and Applied Pyrolysis,2002,63:303-325.
    134.LIU Yu-huan, RUAN R, et a.l Preparation of biopolymers from liquefied corn stover[J]. Transactions of the Chinese Society of AgriculturalEngineering,2005,21(12):116-120.
    135.M. V. Alonsol, M. Oliet, J. Garcia, et al. Transformation of dynamic DSC results into isothermal data for the curing kinetics study of the resol resins [J]. Journal of Thermal Analysis and Calorimetry, 2006,86(3):797-802.
    136.Maldas D, Shiraishi N. Liquedfaction ofwood in the presence of phenol using sodium hydroxide as a catalyst and some of its characterization[J]. Polymer Plastic Technol Eng,1996,35 (6):917-933.
    137. MaldasD, ShiraishiN, HaradaY. Phenolic resol resin adhesives prepared from alkali-catalyzed liquefied phenolated wood and used to bond hardwood [J]. J. Adhesion Sc.i Techno.I,1997,11(3): 305-316.
    138.MaldasD, ShiraishiN. Liquefaction ofbiomass in the presence of phenoland H2O using alkalies and salts as the catalyst [J]. Biomass and Bioenergy,1997,12 (4):273-279.
    139. Mehmet Hakk Alma,Mehmet Altay Basturk. Liquefaction of grapevine cane waste and its application to Phenol-formaldehyde type adhesive.J.Industrial Crops and Products,2006,24:171-176.
    140. Meier D, Faix O. State of the art or applied pyrolysis of lignocellulosic materials:a review [J]. Bioresource Technology,1999,3(68):71-77.
    141. Mitsunaga T, Kondo O, Abe I. The phenonlations of bark extracts in the presence ofboron trifluoride and the reactivities of the products with formaldehyde[J].Mokuzai Gakkaish,i 1995,41(2): 200-205.
    142. Minowa, Tomoaki,Kondo, et al. Thermochemical liquefaction of Indonesian bi omass residues [J]. Biomass and Bioenergy,1998,14 (5-6):517-524.
    143. Nagamatsu M,Nikknder K K,Schmelzer J D,et al.Lipoic acid improves nerve blood flow,reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy [J]. Diabetes Care,1995,5(18):1160-1167.
    144. Orfao J M. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model[J]. Fuel,1999,78:349-358.
    145.O:zbayN, Pu tun A E, U zun BB, et al. Biocrude from bio2mass:pyrolysis of cott on seed Cake [J]. Renewable Energy,2001,24:615-625.
    146. Ozawa T. Kinetic analysis of derivative curves in themal analysis [J]. Journal of Thermal Analysis, 1970, (2):301-324.
    147. Paterson M,Raimo A,Anja O,et al. Thermochemical conversion of black liquor organics into an oil product I.Formation of the major product fractions[J]. Holzforsc-hung,1990,44(6):445-448.
    148. Poirier M G,Ahmed A,Grandmaison J L,et al. Supercritical gas extraction of wood with methanol in a tubular reactor[J].Ind.Eng.Chem.Res.,1987,26:1738-1743.
    149.Pu S, ShiraishiN. Liquefaction ofWood without a Catalyst I:Time course of wood liquefaction with. phenols and effects of wood/phenol ratios [J]. Mokuzai Gakkaish,i 1993,39(4):446-452.
    150.Pu S, ShiraishiN. Liquefaction of Wood without a Catalyst II:Weight loss by gasification during wood liquefaction and effects of temperature and water [J]. Mokuzai Gakkaish,I 1993,39(4):453-458.
    151.Pu S, ShiraishiN. Liquefaction of Wood without a Catalyst Ⅳ:Effectof additives, such as acid, salt, and neutralorganic solvent[J]. MokuzaiGakkaish,i 1994,40 (8):824-829.
    152. Raimo A,Anja O.Thermochemical Conversion of Hydroxy Carboxylic Acids in the liquid Phase[J]. Holzforschung,1989,43(3):155-158.
    153. Raimo A. Thermochemical conversion of black liquor organics into an oil product II.Low-molecular-weight compounds in the aqueous-phase[J]. Holzforschung,1991,45(2):127-130.
    154. Raveendran K.Pyrolysis characteristics of biomass and biornass components[J].Fuel, 1996,75:987-998.
    155. Reina J. Kinetic study of the pyrolysis of waste wood[J].Ind.Eng.Chem.Res.,1998,37:4290-4295.
    156. Savge, Phillipe, Gopalan, et al. Reacti ons at supercritical conditi ons:app licati ons and fundamentals [J].A I ChE Journal,1995,41 (7):1723-1778.
    157.Shinya Y, Tomoko O, Katsuy A K, et al. Process for lique-fying cellulose-containing biomass [P]. US patent:4935-567,1990.06.19.
    158. ShiraishiN, Onodera S, OhtaniM, et al. Dissolution of Etheritled or Esterified Wood into Polyhydric Alcohols or BisphenolA and Their Application in Preparing Wooden Polymeric Materials[J]. Mokuai Gakkaish,i 1985,31(5):418-420.
    159. Slobod, Ankamarkovic. Mechanical analysis study of the curing of phenol-formaldehyde ovolac resins [J]. Journal of Applied Polymer Science,2001,81:1902-1913.
    160. Sutton D,Kelleher B,Ross J H. Review of literature on catalysts for biomass gasification[J].Fuel Processing Technology,2001,73(3):155-173.
    161. Tshiteya M. Conversion of wood to liquid fuel[J].Energy,1985,10(5):581-588.
    162.Wang M., Xu C., Leitch M. Liquefaction of corn stalk for the production of phenol-formaldehyde resole resin[J]. Bioresource Technology,2009,100:2305-2307.
    163. Williams F A. Mechanisms of fire spread[C].Sixteenth Symposium(International)on Combustion, Pittsburgh:The Combustion Institute,1976:1281.
    164.Wu Y, Dollimore D.Kinetic studies of thermal degradaticn of natural cellulosic materials[J]. Thermochimica ACTA,1998,324:49-57.
    165.Xu Charles, Lad, N. Production of heavy oil with high caloric values by direct liquefaction of woody biomass in sub/near-critical water.Energy and Fuels,2008,22:635-642.
    166.Yamada T, Ono H, Ohara S, et al. Mokuzai Gakkaishi,1996,42 (11):1098.
    167. Yao Y G,Yoshioka M,Shiraishi N. Soluble properties of liquefied biomass prepared in organic solvents I. The soluble behavior of liquefied biomass in various diluents[J]. Mokuzai Gakkaishi,1994, 2(40):176-184.
    168. Yokoyama C. Themolysis of organoslow lignin in supercritical water and supercritical methanol[J]. Sekiyu Cakkaishi,1998,41(4):243-250.
    169. Yuhuan Liu,Roger Ruan,Xiangyang Lin, et al. Preparation of biopolymers from liquefied corn stover[J]农业工程学报,2005,21(12):117-120.
    170.Zhang Qi, Chang Jie, Wang Tiejun, etal. Review of bio2mass pyrolysis oil properties and upgrading research [J].Energy Conversi on andManagement,2007,48:87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700