竹束单板层积材连续成板工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究源自于林业公益性行业科研专项重大项目“大跨度竹质工程构件制造关键技术研究与示范”(201204701)。研究目标为:利用我国丰富而低廉的小径级丛生竹材资源,通过突破强度、刚度、耐久性以及设计和连接等关键技术难题,开发大跨度竹质层积材双拼梁构件,应用于房屋的建造。研究内容为:采用竹束单板整张化、板坯预压密实化和间歇压机连续热压工艺,通过解决预固化和接长问题,制造具有连续长度的竹束单板层积工程材料,开展大尺寸竹质工程构件的设计、制造和性能评价。借助于有限元分析软件,模拟不同层积结构板材的物理力学性能,降低密度、优化结构设计,为制造轻质高强的竹质工程材料提供技术基础和理论依据。
     本论文的主要研究工作与成果总结如下:
     (1)完成了竹束纤维疏解、单板整张化工艺,利用Box-Behnken Design设计法,建立了竹束单板接长工艺的响应面力学模型,该模型具有较好的精度,并利用遗传算法对响应面模型进行多目标优化,得到17个竹束单板接长工艺的Pareto解。
     (2)建立了竹束吸胶量与浸渍时间、浸渍比参数的数学模型,得到了较优的预压密实化工艺为:预压温度:5060℃,浸渍比:1:61:10,预压时间:15min30min。利用Fick’secod law和Sheldon吸水厚度模型对不同浸渍比板材的厚度膨胀系数Ksr、扩散系数D、厚度膨胀活化能E和表观活化能Ea进行了定量表征;建立了剩余弹性模量与水煮老化温度、吸水增重率的关系模型;当湿热老化温度越高、吸水增重越大时,弹性模量越小。板材弹性模量随时间的衰减规律与负指数函数趋势一致,静曲强度衰减率与吸水增重率呈线性关系;且吸水增重率的变化对静曲强度衰减程度的影响比弹性模量要大。
     (3)利用间歇式热压工艺制造出了连续长度竹束单板层积材,并采用Malthus模型对间歇式接头处的传热规律进行了定量表征,适当降低热压温度并适时通入冷却水能降低间歇式接头处的预固化程度。间歇式接头处的弹性模量和静曲强度在16GPa、150MPa以上,能达到结构单板层积材160E优等品的标准,具有良好的力学性能;水煮老化后,间歇式接头处的模量降级和强度衰减程度较相邻处要大;经28h煮-干-煮实验后,间歇式热压接头处的力学性能仍能达到结构单板层积材100E优等品的标准。
     (4)设计了八种竹束单板/杨木单板层积结构,并采用SNK法将不同层积结构的物理力学性能归类为不同的均值子集,同一子集内性能指标可相互替换;垂直加载时各层积结构板材的弹性模量、静曲强度略大于水平加载,而剪切强度值表现为水平加载略大于垂直加载;从比强度和比刚度的角度来看:层积结构(BBPBPBB)具有较优的综合性能,其中B表示竹束单板,P为杨木单板;当刚度较大的竹束单元位于层积结构的上、下表层时,板材具有有更好的强度和刚度;
     (5)利用有限元建立了八种层积预测模型,对其弹性范围和极限载荷下的不同层积结构板材的挠度、应力分布、层间应力梯度变化和冯米斯(VonMises)应力进行了模拟计算。层积预测模型具有较好的精度,计算值与实验结果及均值子集分类趋势一致;沿厚度方向上,(7B)和(7P)层积结构的应力分布呈线性,竹木复合层积结构为曲线变化。
     (6)利用连续成板工艺,制造出了竹质层积材双拼梁构件,并比较了五类双拼梁(竹束单板层积材、竹蔑层积材、竹木复合材和木质单板层积材)的抗弯性能。双拼梁的设计值是由截面刚度控制;木质双拼梁构件为跨中脆性破坏,竹质双拼梁构件为结构失稳,卸去载荷试样形状恢复,具有较好的延性。竹质双拼梁构件的截面抗弯刚度最高,竹木复合双拼梁其次,木质双拼梁最低。双拼梁横截面在高度上应变值呈线性变化,符合平面假设。
This study originated from the National Forestry Public Welfare Scientific ResearchProgram (201204701), entitled “Key manufacturing technology research and demonstration ofLarge-Span bamboo engineering components”. The research object was as follows. Large-spanbamboo-based coupled beam was exploited for the application of housing construction, whichwas based on the resource advantages of small-diameter sympodial bamboo in China and somebreak-through in technological problem concerning strength, stiffness, durability, design andconnection. The research contents were as follows. The issues of precuring and lengtheningwere solved by the use of one-piece veneer formation, veneer preprocessing densification andintermittent hotpressing technology, and the engineering material was manufactured withcontinuous laminated bamboo-bundle veneer. In addition, the design, manufacture andperformance evaluation of large-span bamboo-based engineering components was conducted.The physical and mechanical properties of boards of different laminated structures weresimulated by finite element analysis software for the optimization of structural design andboard density decrease, which contributed to the manufacture of bamboo-based engineeringcomponents with high ratio of strength to weight.
     The main research work and corresponding results of this paper are summarized asfollows.
     (1) The process of bamboo-bundle brooming and one-piece veneer formation wasaccomplished. Through Box-Behnken Design method, the response surface model of BambooBundle Laminated Veneer Lumber was established towards different lengthening process,which showed good precision. In addition, the response surface model was undermulti-objective optimization by genetic algorithm, and17Pareto solutions were obtained.
     (2) The mathematic model of resin absorption was established between resin absorptionamount of bamboo-bundle, immersion time and PF/PVAC resin mass ratio, and the optimized veneer preprocessing densification process was obtained: preprocessing temperature50-60°C,PF/PVAC resin mass ratio1:6-1:10, preprocessing time15-30min. The parameters of boardswith different resin mass ratio were characterized quantificationally by Fick’s second law andSheldon’s thickness swelling model, including swelling rate parameter KSR, diffusioncoefficient D, swelling activation energy E and diffusion activation energies Ea. The3-Dmodel was established between boiling temperature, water absorption weight gain rate andresidual elastic modulus, which indicated that the higher boiling temperature and weight gainrate, the lower elasticity modulus was obtained. The attenuation law of elasticity modulus vs.time was consistent with the trend of negative exponential function, while the attenuation rateof modulus of rupture was related linearly with weight gain rate.
     (3) The continuous bamboo-bundle laminated veneer lumber was manufactured byinterval hotpressing technology, and the heat transmission law of intermittent joints wascharacterized quantificationally by Malthus model. The results indicated that appropriatelowering hot-pressing temperature and using cooling water contributed to the decrease ofprecuring degree of intermittent joints. The MOE and MOR of intermittent joints were above16GPa and150MPa, respectively, exhibiting sound mechanical properties. After boiling aging,the degradation and intensity attenuation degree of intermittent joints were larger than that ofthe adjacent ones, and much larger as the immersion temperature increased. There was distinctbrightness variation in CT images of intermittent joints, which indicated the presence offilamentous crack.
     (4) The bamboo-based laminated coupled beam components were manufactured and thebending properties were compared between bamboo-bundle laminated veneer lumber,bamboo-strips laminated lumber, bamboo-wooden composite and laminated veneer lumber.The design value of coupled beam component was controlled by rigidity of section. Woodencoupled beam components were under brittle failure in midspan when loading, whilebamboo-based coupled beam components under structure displacement. The latter restoredafter the removal of loads, which exhibited great ductility. Bamboo-based coupled beam components performed the highest bending strength, followed by bamboo-wooden coupledbeam components and wooden ones. The strain value of coupled beam components showedlinear variation in section height, which complied with hypothesis of plane mechanism.
     (5) Eight bamboo-bundle veneer/poplar veneer laminated structures were designed, andthe physical and mechanical properties were sorted into different subsets by SNK method thatperformance index was interchangeable in the same subset. The MOE and MOR were slightlylarger under vertical load than that under parallel load, and the opposite for shearing strength.The laminated structures showed better intensity and rigidity when the bamboo-bundles withconsiderable rigidity acted as surface layers. Results indicated that the laminated structureBBPBPBB had the best overall performance in this study.
     (6) The laminated prediction model was established by finite element method, and someparameters of boards of different laminated structures were under analog computation withinelastic range and ultimate load, which included deflection, stress distribution, interlaminarstress gradient change and VonMises stress. Laminated prediction model had good precisionthat the trend of calculated value, experimental data and mean subset classification wasconsistent with each other. The stress distribution was linear along thickness direction forlaminated structure of7B and7P, while curved for bamboo-wooden laminated structure.
引文
[1]江泽慧.中国林业工程.济南出版社,2002
    [2]江泽慧.发展低碳经济建设低碳林业.世界林业研究,2010,(3):3-8
    [3] K D Flander, R Rovers. One laminated bamboo-frame house per hectare per year. Construction andBuilding Materials,2009,23:210-218
    [4] L Anil. The quest for the ultimate building block. Sustainable Building,2002,2:3-10
    [5]秦佑国,林波荣,朱颖心.中国绿色建筑评估体系研究.建筑学报,2007,03:68-71
    [6] C S Holling. Understanding the Complexity of Economic, Ecological, and Social Systems.Ecosystems,2001,(5):390-405
    [7] L W Lin, C H Chen, H C Chang, et al. Applying the grey assessment to the evaluation system ofecological green space on greening projects in Taiwan.2008,(1):129-146
    [8]国家发展改革委有关负责人就绿色建筑行动方案答记者问.宁波节能,2013,01:13-14.
    [9]Tam, W Y Vivian. The Effectiveness of the Green Building Evaluation and Labelling System.Architectural Science Review,2007,50(4):323-330
    [10] C V Schaack,T BenDor. A comparative study of green building in urban and transitioning rural NorthCarolina. Journal of Environmental Planning and Management,2011,54(8):1125-1147
    [11] M Rashid, K Spreckelmeyer, N J. Angrisano. Green buildings, environmental awareness, andorganizational image. Journal of Corporate Real Estate,2012,14(1):21-49
    [12] RC Retzlaff. Green Building Assessment Systems: A Framework and Comparison for Planners. Journalof the American Planning Association,2008,74(4):505-519
    [13]王戈,江泽慧,陈复明.我国大尺寸竹质工程材料加工现状与存在问题分析[J].林产工业,2014,41(1):48-51
    [14]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002
    [15] A K Bansal, S S Zoolagud. Bamboo composites: Material of the future. Journal of Bamboo andRattan,2002,1(2):119-130
    [16] M J Chung,S S Cheng, S T Chang. Environmentally benign methods for producing green culms of mabamboo (Dendrocalamus latiflorus) and moso bamboo (Phyllostachys pubescens). Journal of WoodScience,2009,55(3):197-202
    [17] Z H Jiang, F M Chen, G Wang, et al. The circumferential mechanical properties of bamboo withuniaxial and biaxial compression tests.Bioresources,2012,7(4),4806-4816
    [18] G Wang, Y Yu, S Q Shi, et al. Microtension test method for measuring tensile properties of individualcellulosic fibers. Wood and Fiber Science,2011,43(3),251-256
    [19] M F Li, S N Sun, F Xu, et al. Mild acetosolv process to fractionate bamboo for the biorefinery:structural and antioxidant properties of the dissolved lignin. Journal of agricultural and foodchemistry,2012,60(7):1703–1712
    [20] J Cai, P Fei, Z Y Xiong, et al. Surface acetylation of bamboo cellulose: Preparation and rheologicalproperties. Carbohydrate polymers,2012,9(21):11-18
    [21] Y Xiao, R Z Yang, B Shan. Production, environmental impact and mechanical properties ofglubam,2013,44,765-773
    [22]李燕,王静.现代竹材技术及其在建筑设计中的应用.城市建筑,2007,(08):81-82
    [23] K Alvin, R Murphy. Variations in fiber and parenchymawall thickness in culms of the bambooSinobambusa tootsik. IAWA Bull.1988,9,353-361
    [24] S Amada, T Munekata, Y Nagase, et al. The mechanical structures of bamboos in view point offunctionally gradient and composite materials. Journal of Composite Material.1996,30,800-819
    [25] U G K Wegst. Bending efficiency through property gradients in bamboo, palm, and wood basedcomposites. Journal of the mechanical behavior of biomedical materials,2011,4(5),744-755
    [26] F M Chen, Z H Jiang, G Wang, et al. Bamboo Bundle Corrugated Laminated Composites (BCLC). PartI. Three Dimensional Stability in Response to Corrugating Effect.The Journal of Adhesion,2013,89:225-238
    [27] Z H Jiang, F M Chen, G Wang, et al. Bamboo Bundle Corrugated Laminated Composites (BCLC). PartII. Damage Analysis under Low Velocity Impact Loading. Bioresources,2013,8(1):923-932
    [28]江泽慧,王正,常亮,等.建筑用竹材墙体制造技术研究.北京林业大学学报,2006,28(6):155-158
    [29] F Febrianto, Sahroni,W Hidayat, et al.Properties fo oriented strand board made from Betungbamboo(Dendrocalamus asper (Schultes.f) Backer ex Heyne).Wood Science Technology,2012,46:53-62
    [30] A N Lee, X Bai, PN Peralta.Physical and mechanical properties of strand board made from mosobamboo. Forest Product Journal,1996,46(11/12):84–88
    [31] K Matsumoto, H Yamaguchi, H Yoshida.Manufacture and properties of fiber board made from mosobamboo. Mokuzai Gakkaishi,2001,47(2):111–119
    [32] N Nugroho, N Ando. Development of structural composite product made from bamboo I: fundamentalproperties of bamboo zephyr board. Journal of Wood Science,2000,46:68–74
    [33] I Sumardi, S Suzuki, K Ono. Some important properties of strand board manufactured from bamboo.Forest Product Journal,2006,56(6):59–63
    [34] SH Kwan, FG Shin, MW Yipp. Consideration of bamboo as a natural composite material. Acta MateriaeCompositae Sinica,1987;4(4):79-83
    [35] AWC Lee, X Bai, P Bangi. Selected properties of laboratory-made laminated bamboo lumber.Holzforschung,1998;52(2):207-210
    [36] Y Xiao, B Shan, G Chen, et al. Development of a new type of glulam glubam. In: Xe Y, editor. Modernbamboo structures,2008,CRC, Changsha, China
    [37]肖岩,陈国,单波,等.竹结构轻型框架房屋的研究与应用.建筑结构报,2010,(06):195-203
    [38]吕清芳,魏洋,张齐生,等.新型竹质工程材料抗震房屋基本构件力学性能试验研究.建材技术与应用,2008,11:1-5
    [39] E J Biblis.Edgewise flexural properties and modulus of rigidity of different sizes of southern pine LVLand plywood. Forest Product Journal,2001,51(1):81-84
    [40] R H Kunesh. Micro-Lam: structural laminated veneer lumber. Forest Product Journal,1978,28(7),41-44
    [41] H Ido, H Nagao, H Kato, et al. Strength properties of laminated veneer lumber in compressionperpendicular to its grain. Journal of Wood Science,2010,5(65):422-428
    [42] B Ozarska. A review of the utilisation of hardwoods for LVL. Wood Science and Technology,1999,33(4):341-351
    [43] B L. Deam, M Fragiacomo, A H Buchanan. Connections for composite concrete slab and LVL flooringsystems. Materials and Structures,2008,41(3):495-507
    [44] P S H`ng, M T Paridah, K L Chin. Bending Properties of Laminated Veneer Lumber Produced fromKeruing (Dipterocarpus sp.) Reinforced with Low Density Wood Species. Asian Journal of ScientificResearch,2010,3(2):118-125
    [45] K Tsai, D Carradine, P Moss, et al. Charring rates for double beams made from laminated veneerlumber (LVL). Fire Material,2012,37(1):58-74
    [46] C A Eckelman. Potential uses of laminated veneer lumber in furniture. Forest Product Journal,1993,43(4):19-24
    [47] WL Hoover, C A Eckelman. Markets for hardwood LVL. Forest Product Journal,1987,37(10):57-62
    [48] S Iwakiri, J L M Matos, J A Pinto,et al. Production of laminated veneer lumber LVL using veneer ofSchizolobium amazonicum. Eucalyptus saligna and Pinus taeda,2010,16(4):557-563
    [49]鲍逸培,戴若夫.单板接长工艺研究进展及其发展前景.木材加工机械,1999,02:8-10
    [50]刘星雨,傅万四,赵章荣,等.我国指接技术研究现状与发展趋势.木材加工机械,2012,05:62-67
    [51]王传耀,杨文斌,陈刚.用间歇冷-热-冷法压制竹木复合结构长材.福建林学院学报,2006,03:197-201
    [52]隋仲义,林利民,由昌久,等.超长单板层积材生产工艺技术研究.林业机械与木工设备,2005,08:57-60
    [53] The American Society for Testing and Material. ASTM D1037Standard test methods for evaluatingproperties of wood base fiber and particle panel materials. West Conshohocken,PA,1993
    [54] The American Society for Testing and Material. ASTM D198Standard test methods of static tests oflumber in structural sizes. West Conshohocken, PA,1994
    [55] The American Society for Testing and Material. ASTM D143Standard methods of testing small clearspecimens of timber. West Conshohocken, PA,1999
    [56] The American Society for Testing and Material. ASTM D2395Standard test methods for specificgravity of wood and wood based materials. West Conshohocken, PA,2002
    [57] T Furuno, O Sawabe.Wood science course. II. Structure and properties of wood. Kaisei-sya,1994,95-98
    [58] Japan Wood Processing Technology Association. Basic wood science(in Japanese) Kaiseisy,1992,31-33
    [59]中华人民共和国国家质量监督检验检疫总局.单板层积材GB/T20241-2006.北京:中国标准出版社,2006.
    [60]陈桂华,戴甲根.两种单板接长方式对厚胶合板性能的影响.建筑人造板,2000,03:21-23
    [61]刘艳,鹿振友.指接集成材力学性能的探讨.木材加工机械,2004,04:15-17
    [62]林兰英.四种桉树人工林木材指接工艺及性能预测.内蒙古农业大学,2005
    [63]唐忠荣,周淑晔,胡孙跃,等.杨木单板斜接研究.木材工业,2006,06:23-25
    [64]郝金城.集成材制造技术.哈尔滨:东北林业大学出版社,2000
    [65] B Martin. Eucalyptus:A strategic forest tree. Eucalyptus plantations research, management anddevelopment. Proceeding of the International Symposium,2003
    [66]傅万四.竹材原态多方重组材料及其制造方法.中国:CN200710179001.72007,12,07
    [67]王炼,程瑞香.浅谈薄木(竹)指接装饰复合材料的工艺过程.中国人造板,2008,40(5):22-23
    [68]陆伟东,杨会峰,刘伟庆,岳孔,程小武.胶合木结构的发展、应用及展望.南京工业大学学报(自然科学版),2011,05:105-110
    [69]张磊,李志国,王敏杰,王俊杰.胶合木结构建筑的发展现状及前景.低温建筑技术,2011,12:28-30
    [70]龙卫国.中国木结构需要开展的研究工作.建筑结构,2010,09:159-161+86
    [69]李登华,杨学兵,王永维.胶合木结构特点评述.四川建筑科学研究,2010,05:62-66
    [70]杨连飞,焦长龙,魏贺东.竹集成材在建筑门窗领域的应用.门窗,2011,(05):28-31
    [71]赵瑞龙,冯明智,高黎,等.竹篾层积材在建筑结构中的研究及应用.木材加工机械,2012,(02):37-40+32
    [72] Y Xiao, R Z Yang, B Shan. Production, environmental impact and mechanical properties of glubam.Construction and Building Materials,2013,44:765-773
    [73]陈复明,江泽慧,王戈,等.瓦楞型竹束单板复合材(CBLC)的制备及力学性能表征.复合材料学报,2013,30(03):56-60
    [74]单炜,李玉顺.竹材在建筑结构中的应用前景分析.森林工程,2008,(02):62-65
    [75] W K Yu, K F Chung, S L Chan. Axial buckling of bamboo columns in bamboo scaffolds. EngineeringStructures,2005(27):61-73
    [76] S K Paudel, M Lobovikov. Bamboo housing: market potential for low income groups. Journal ofBamboo and Rattan,2003,2(4):381-396
    [77] I R Hunter. Bamboo solution to problems. Journal of Bamboo and Rattan,2001,1(2):101-107
    [78] S K Paudel, M Lobovikov. Bamboo housing: market potential for low income groups. Journal ofBamboo and Rattan,2003,2(4):381-396
    [79]魏洋,张齐生,蒋身学,等.现代竹质工程材料的基本性能及其在建筑结构中的应用前景.建筑技术,2011,(05):390-393.
    [80] N Nugroho, N Ando. Development of structural composite products made from bamboo I: fundamentalproperties of bamboo zephyr board. Journal of Wood Science,2000,46:68-74
    [81] N Nugroho, N Ando. Development of structural composite products made from bamboo II: fundamentalproperties of laminated bamboo lumber. Journal of Wood Science,2001,47:237-242
    [82] AWC Lee, X Bai, AP Bangi. Selected properties of laboratory-made laminated bamboo lumber.Holzforschung,1998;52:207-210
    [83]于文吉,余养伦.结构用竹基复合材料制造关键技术与应用.建设科技,2012,(03):55-57
    [84]于子绚.竹束单板层积材制造工艺及应用性能研究.中国林业科学研究院,2012
    [85]邱亚新,王戈,陈复明,等.竹束单板层积材物理力学性能均匀性研究.林产工业,2013,02:47-49
    [86] X H Chen. Bamboo based panels potential building materials. INBAR New sletter,2005,12(1):18-19
    [87] H B Singh, B Kumar, R S Singh. Bamboo resource of Manipur: an overview for management andconservation. Journal of Bamboo and Rattan,2003,2(1):43-55
    [88] P V D Lugt, A V D Dobbelsteen, R Abrahams. Bamboo as a building material alternative for WesternEurope? A study of the environmental performance, costs and bottlenecks of the use of bamboo(products) in Western Europe. Journal of Bamboo and Rattan,2003,2(3):205-223
    [89] S K Paudel, M Lobovikov. Bamboo housing: market potential for low-income groups. Journal ofBamboo and Rattan,2003,2(4):381-396
    [90] J H Lazarus, Thiocyanate in Goiter-House of Bamboo. Endocrine practice: official journal of theAmerican College of Endocrinology and the American Association of Clinical Endocrinologists,2012,27:1-4
    [91] J J Yoo, L Divita, H Y Kim. Environmental awareness on bamboo product purchase intentions: doconsumption values impact green consumption?. International Journal of Fashion Design, Technologyand Education,2013,6(1):27-34
    [92] A K Bansal, T R N Prasad. Manufacturing laminates from sympodial bamboos—an Indian experience.Journal of Bamboo and Rattan,2004,3(1):13-22
    [93] SH Li, SY Fu, BL Zhou, QY Zeng, X R Bao. Reformed bamboo and reformed bamboo aluminumcomposite. Journal of Mater Science,1994;29:5990-6000
    [94] SH Li, BL Zhou, ZT Tang, QY Zeng. Reformed bamboo and reformed bamboo/aluminium composite,part II. Impact properties. Jouranl of Mater Science Letter,1996;15:129-131
    [95] A J Bolton, and P E Humphrey. The hot pressing of dry-formed wood based composites. Part III: Predictvapour pressure and temperature variation with time, compared with experimental data for laboratoryboards. Holzforschung,1989,43:265-274
    [96] D Greubel, and M Paulitsch. Investigations on dimensional changes in the plane of particleboard. III.Effect of raw material composition and processing variables on the dimensional changes inphenolic-resin bonded particleboard. Holzforschung,1977,31(11):413-420
    [97] T Hata, S Kawai, T Ebihara, H Sasaki. Production of particleboards with a steam-injection. Press V.Effects of particle geometry on temperature behaviors in particle mats and on air permeabilities ofboards. Mokuzai Gakkaishi,1993,39(2):161-168
    [98] R LGeimer. Dimensional stability of flakeboards as affected by board specific gravity and flakealignment.Forest Product Journal,1982,32(8):44-52
    [99] R LGeimer, and J H Kwon. Flakeboard thickness swelling. Part II. Fundamental response of boardproperties to steam injection pressing. Wood Fiber Science,1999,31(1):15-27
    [100]雷亚芳.板坯含水率对刨花板热压过程中传热的影响.木材工业,2006,(06):20-22
    [101] C Dai, C Yu. Heat and mass transfer in wood composite panels during hot pressing: Part I. Aphysical-mathematical model. Wood Fiber Science,2004,36:585-597.
    [102] G Nemli, S Demirel, Relationship between the density profile and the technological properties of theparticleboard composite. Journal of Composite Material,2007,41,1793-1802
    [103] C Zhou, GD Smith, C Dai. Characterizing hydro-thermal compression behavior of aspen wood strands.Holzforschung,2009,63:609-617
    [104] C Zhou, C Dai, GD Smith. Viscoelasticity of aspen strands during hot pressing:Experimentation andmodeling. Holzforschung,2010,64:713-723
    [105] A J Bolotn,R E Humphrey. The hot pressing of dry formed wood-based composite. Part III. Predictedvapor presser and temperature variation with time,compared with experimentdata of elaborator boards.Holzforshung,1998,43(4)265-274
    [106] GB Zombori,F A Kamke,L T Watson. Simulation of the mat formation Process.Wood and FiberScience,2001,33(4):564-579
    [107]T Hata. Heat flow in particle mat and properties of particleboard under steaminjection pressing. WoodResearch,1993,80:1-47
    [108] F A Kamke,L J Casey. A Gas pressure and temperature in the mat during flake board manufacture.Forest Products Journal,1988,383:41-43
    [109] S Verlag, S Q Wang, M P Winistorfer. Consolidation of flake board mats under theoretical laboratorypressing and simulated industrial pressing. Wood and Fiber Science,2000,32(4):527-538
    [110] M P Wolcott, F A Kamke, D A Dillard. Fundamentals of flake board manufacture: viscoelastasticbehaviour of the wood component. Wood and Fiber Science,1990,22(4):345-361
    [111]于志明,吴娟,陈天全.人造板热压过程中板坯内部环境的研究进展.北京林业大学学报,2004,26(5):80-84
    [112]余养伦,于文吉,江泽慧,王天佑.单板层积材热压升温曲线数值模拟的研究.材料热处理学报,2007,28(1):130-133
    [113]王逢瑚,李鹏,陶毓博.木材单板热压导热数学模型和可视化数值解的研究.材料热处理学报,2005,26(1):90-92+105
    [114] C P Dai, and C M Yu. Heat and mass transfer in wood composite panels during hot pressing Part4.Experimental investigation and model validation. Holzforschung,1993,61:83-88
    [115]雷亚芳,樊红琴.密度对刨花板热压过程中温度场的影响.西北农林科技大学学报(自然科学版),2006,(08):155-160
    [116]林利民,由昌久,杨玲.单板类人造板热压过程传热速度的研究.林业科技,2004,(04):32-35
    [117]杜春贵,张齐生,刘志坤.杉木积成材的热压传热特性.东北林业大学学报,2009,(02):25-27
    [118]晏文亮,邱增处.板坯密度对软木板热压过程中传热的影响.西北林学院学报,2012,(05):212-216
    [119]程捷,闫红强.流变学特性在刨花板热压过程中的应用.化工时刊,2006,(06):55-58
    [120]宋孝周.棉秆重组材热压传热的研究.西北农林科技大学学报(自然科学版),2009,(07):213-217
    [121] O Ochoa, and J J Engblom. Analysis of Failure in Composites. Composites Science and Technology.1987,28:87-102
    [122]吴人杰.复合材料.天津:天津大学出版社,2000
    [123]沈观林.复合材料力学.北京:清华大学出版社,1996
    [124] Z Hashin. Failure Criteria for Unidirectional Fiber Composites. ASME Journal of Applied Mechanics.1980,47:329-334
    [125] U.S. Forestry Product Laborat ory. Wood Handbook-Wood as engineering Material. Washington. D.C:U.S. Government Printing Office,1977
    [126] Sherwood G.E., Stroh R.C. Wood frame construction. In: Agriculture handbook73,USDAForestService, Washington. D.C.,1989,38-50
    [127]王戈.毛竹/杉木层积复合材料及其性能.中国林业科学研究院,2003
    [128] C Ray, and S K Satsangi. A First Ply Failure Analysis of Composite Laminates. Journal of ReinforcedPlastics and Composites.1999,18:1061-1075
    [129] S Tolson, and N Zabaras. Finite Element Analysis of Progressive Failure in LaminatedCompositePlates. Computers and Structures.1991,38:361-376
    [130] D W Sleight. Progressive Failure Analysis Methodology for Laminated. CompositeStructures.NASA/TP, Washington DC.1999
    [131] G S Padhi, R A. Shenoi, S S J Moy, and G L Hawkins. Progressive Failure and Ultimate Collapse ofLaminated Composite Plates in Bending. Composite Structures,1998,40:277-291
    [132] Soldatos K P, X Shu. On the stress analysis of crossply lamina ted plates and shallow shell panels.Composite Structure,1999,46:333-344
    [133] S Aicher, and L Hofflin. A contribution to the analysis of glulam beams with round holes. J Otto-GrafInst,2000,11:167-188
    [134] P Pal, and C Ray. Progressive Failure Analysis of Laminated Composite Plates by Finite ElementMethod. Journal of Reinforced Plastics and Composites.2002,21:1505-1513
    [135]江泽慧,王戈,费本华,等.竹木复合材料的研究及发展.林业科学研究,2002,15(6)712-718
    [136] S Aicher. Glulam beams with internally and externally reinfo rced holes-tests, detailing and design.CIB-W18/42-12-1. Alghero,2011,1-13
    [137] F K Chang, and K Y Chang. A Progressive Damage Model for Laminated Composites ContainingStress Concentrations. Journal of Composite Materials,1987,21:834-855
    [138] S C Tan. A Progressive Failure Model for Composite Laminates Containing Openings. Journal ofComposite Materials.1991,25:556-577
    [139] K I Tserpes, P Papanikos, and T Kermanidis. A three-Dimensional Progressive Damage Model forBolted Joints in Composite Laminates Subjected to Tensile Loading. Fatigue Fract Engng MaterialStructure.2002,24:673-686
    [140] S Rinderkecht, B KroPlin. A finite element model for the delamination in composite Plates, Meehaniesof Composite Material Structures,1995,2(l):19-47
    [141] D S Bavan,G C M Kumar, R C Sun. Finite Element Analysis of a Natural Fiber (Maize) CompositeBeam[J]. Journal of Engineering,2012,20(13):1-7
    [142] J L Tsai and Y K Chi.Effect of fiber array on damping behaviors of fiber composite, Composite PartB,2008,39(7-8):1196-1204
    [143] I Balac, K Colic, M Milovancevic, P Uskokovic, and M Zrilic. Modeling of the matrix porosityinfluence on the elastic properties of particulate biocomposites,FME Transactions,2012,40:81-86
    [144] F K Chang, K Y Chang. A progressive damage model for laminatged composites containing stressconcetrations, Journal of Composite Material,1987,21:834-855
    [145] Y S N Reddy and J N Reddy.Three-dimensional finite element progressive failure analysis ofcomposite laminates under axial extension. Journal of Composite Technology andResearch,1993,15(2):73-87
    [146] T W Coats. A Progressive Damage Methodology for Residual Strength Predictions of Center-crackTension Composite Panels. Ph.D. Dissertation, Old Dominion University, August,1996,32-67
    [147]余养伦,于文吉,张方文.厚胶合板弹性模量预测模型.北京林业大学学报,2009,31(1):130-133
    [148] X N Lu, Y C Chen, Y Chen. The prediction of elastic modulus along the grain of poplar veneer.Journal of Nanjing Forestry University (Natural Sciences Edition),2002,26(3):9-13
    [149]陈旭,祝恩淳.胶合木梁中温度与湿度应力研究.工业建筑,2008,S1:862-866.
    [150]韩健.定向竹木复合板表观弹性模量预测模型的构建.南京林业大学学报(自然科学版),2009,33(1):33-36
    [151]孙丰文.竹木复合集装箱底板静曲强度的预测模型.南京林业大学学报(自然科学版),2006,30(5):10-14
    [152]王志强,卢晓宁,陈虞平.经典层合板刚度模型在胶合板中的应用.南京林业大学学报(自然科学版),2007,31(3):8-12
    [153]陈复明,江泽慧,王戈.程海涛.单向及双轴向压缩载荷下的圆竹径向力学性能.深圳大学学报(理工版),2012,29(6):527-533
    [154]喻云水,贺微粒,李立君,赵仁杰.基于响应面模型的竹胶合板模板力学性能优化.北京林业大学学报,2009,28(6):103-107
    [155]喻云水,杨峰,杨宝,彭亮.竹塑复合材主要工艺参数优化试验研究.竹子研究汇刊,2011,30(1):5-10.
    [156] N A Amenaghawon, K I Nwaru, F A Aisien, S E Ogbeide, C O Okieimen. Application of Box-BehnkenDesign for the Optimization of Citric Acid Production from Corn Starch Using Aspergillus niger.BritishBiotechnology Journal,2013,3(3):236-245
    [157] G E P Box and N R Draper. Empirical model-building and response surfaces, A Wiley Intern sciencePublication.1st ed. Canada John Wiley and Sons,1987,34-57,304-381,423-474.
    [158] Z Kocaba. An Application and interpretation of second order response surface model. Journal ofAgricultural Sciences,2001,7(2):121-128
    [159] H W Hilde, B Nigel. The optimization of solid-liquid extraction of antioxidants from appleperformance by response surface methodology. Journal of Food Eng.2010,96:134-140
    [160] Y Wang, T Wang, L Ding. Optimization of Polysaccharide Extraction from Angelica science UsingResponse Surface Methodology. Food Science.2012,33(10),146-149
    [161] A W Adamson, A P Gast. Physical chemistry of surfaces. The United States of America. Wiley-InterScience publication,1997,13-48
    [162] B Miller. R A Young. Methodology for studying the Wettability of Filaments. Textile Research Journal,1975,45(5):359-365
    [163] Y L Hsieh, B Yu. Liquid Wetting,Transport, and Retention Properties of Fiber Assemblies, Part I:Water Wetting Properties of Woven Fabrics and Their Constitute Single Fibers. Textile ResearchJouranl,1992,62(11):677-685
    [164] C V Le, N G Ly. Measuring the Contact Angles of Liquid Droplets and Determining Surface EnergyComponents.Textile Research Journal,1996,66(6):389-397
    [165] R D Laughlin. Some aspects of capillary absorption in fibrous textile wicking. Textile ResearchJournal.1961,31:904-908
    [166] Y M M Law. A study of water transport through clothing fabrics. Department of Textile Industry.University of Leeds Dissertation,1988,32-87
    [167] M Maroufi. An investigation in some physiological properties of cotton interlock weft knitted fabrics.University of Leeds Dissertation,1997,46-78
    [168]S Q Shi, D J Gardner. Hygroscopic thickness swelling rate of compression molded wood fiberboardand wood fiber/polymer composites. Composites Patr A,2004,35(4):1276-1285
    [169] S Q Shi. Diffusion model based on Fick’s second law for the moisture absorption process in woodfiber-based composites:is it suitable or not?.Wood Science Technol.2007,41(6):645-658
    [170] Q Lin, X Zhou, G Dai. Effect of hydrothermal aspects of wood as a component of thermoplasticcomposites. Jouranl Apply Polymer Science,2003,9(2):96-104
    [171] A Espert, F Vilaplana, S Karlsson. Comparison of water absorption in natural cellulosic fibers fromwood and one-year crops in polypropylene composites and its influence on their mechanical properties.Composites Part A,2004,35:1267-1276
    [172] S Tamrakar, RA Lopez-Anido. Water absorption of wood polypropylene composite sheet piles and itsinfluence on mechanical properties. Construction and Building Material,2011,25,3977–3988
    [173]陈复明,王戈,张丹.竹束单板层积材预压密实化工艺及性能研究.林产工业,2013,40(5):52-54
    [174] Y Hattori,Y Kanagawa. Non-Destructive measurement of moisture distribution in wood with a medialCT scanner. Jouranl of the Japan Wood Research Society,1985,31(12):974-976
    [175] L O Lindgren. The accuracy of medical CAT-scan images for non-destructive density measurements insmall volume elements within solid wood. Wood Science and Technology,1991,25:425-432
    [176] T C Triantafillou, N Deskovic. Prestressed FRP Sheets as External Reinforcement of Wood Members.Journal of Structural Engineering,1992,118(5):1270-1284
    [177] G P Krueger, LB Sandberg. Ultimate Strength Design of Reinforced Timber: Evaluation of DesignParameters. Wood Science,1974,6(4):316-329
    [178]邱亚新.竹束单板整张化及其层积材性能的研究.中国林业科学研究院硕士论文,2013,42-50
    [179] B Xue, Y C Hu. Mechanical Properties Analysis and Reliability Assessment of Laminated VeneerLumber(LVL)Having Different Patterns of Assembly. BioResources,2012,7(2),1617-1632,
    [180]马红霞.毛竹/杨木复合材料界面胶合性能及其影响因素研究.中国林业科学研究院博士论文,2009,74-102
    [181]殷臻.大垮度竹质桥梁构件连接构造研究.重庆交通大学硕士论文,2013,27-29
    [182] D A Tingley. The Stress-Strain Relationships in Wood and Fiber-reinforced Plastic Laminae ofreinforced glued-laminated wood beams. Oregon State University Dissertation,1997,34-78
    [183] A H Buchanan. Combined Bending and Axial Loading IN Lumber. Journal of Structural Engineering,1986,112(12):2592-2609
    [184]孙训方,方孝淑,关来泰.材料力学(第三版).北京:高等教育出版社,1994,10-32
    [185]吕志涛.高性能材料FRP应用与结构工程创新.建筑科学与工程学报,2005,22(1):1-5
    [186]于清.FRP的特点及其在土木工程中的应用.哈尔滨建筑大学学报,2000,33(6):26-30
    [187]《木结构设计规范》编辑委员会.木结构设计规范(GB50005-2003).北京:中国建筑工业出版社,2004,8-12
    [188]杨会峰.速生树种复合木梁的受弯性能研究.南京工业大学,2007,28-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700